Properties

Label 1530.2.d.b.919.2
Level $1530$
Weight $2$
Character 1530.919
Analytic conductor $12.217$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1530,2,Mod(919,1530)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1530, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1530.919");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 919.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1530.919
Dual form 1530.2.d.b.919.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-1.00000 + 2.00000i) q^{5} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-1.00000 + 2.00000i) q^{5} -1.00000i q^{8} +(-2.00000 - 1.00000i) q^{10} +6.00000 q^{11} -3.00000i q^{13} +1.00000 q^{16} -1.00000i q^{17} +7.00000 q^{19} +(1.00000 - 2.00000i) q^{20} +6.00000i q^{22} -8.00000i q^{23} +(-3.00000 - 4.00000i) q^{25} +3.00000 q^{26} -5.00000 q^{29} +5.00000 q^{31} +1.00000i q^{32} +1.00000 q^{34} +8.00000i q^{37} +7.00000i q^{38} +(2.00000 + 1.00000i) q^{40} +4.00000i q^{43} -6.00000 q^{44} +8.00000 q^{46} -3.00000i q^{47} +7.00000 q^{49} +(4.00000 - 3.00000i) q^{50} +3.00000i q^{52} +9.00000i q^{53} +(-6.00000 + 12.0000i) q^{55} -5.00000i q^{58} +5.00000 q^{59} -3.00000 q^{61} +5.00000i q^{62} -1.00000 q^{64} +(6.00000 + 3.00000i) q^{65} -2.00000i q^{67} +1.00000i q^{68} +15.0000 q^{71} +11.0000i q^{73} -8.00000 q^{74} -7.00000 q^{76} -8.00000 q^{79} +(-1.00000 + 2.00000i) q^{80} +4.00000i q^{83} +(2.00000 + 1.00000i) q^{85} -4.00000 q^{86} -6.00000i q^{88} -1.00000 q^{89} +8.00000i q^{92} +3.00000 q^{94} +(-7.00000 + 14.0000i) q^{95} -9.00000i q^{97} +7.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 2 q^{5} - 4 q^{10} + 12 q^{11} + 2 q^{16} + 14 q^{19} + 2 q^{20} - 6 q^{25} + 6 q^{26} - 10 q^{29} + 10 q^{31} + 2 q^{34} + 4 q^{40} - 12 q^{44} + 16 q^{46} + 14 q^{49} + 8 q^{50} - 12 q^{55} + 10 q^{59} - 6 q^{61} - 2 q^{64} + 12 q^{65} + 30 q^{71} - 16 q^{74} - 14 q^{76} - 16 q^{79} - 2 q^{80} + 4 q^{85} - 8 q^{86} - 2 q^{89} + 6 q^{94} - 14 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.00000 + 2.00000i −0.447214 + 0.894427i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.00000 1.00000i −0.632456 0.316228i
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) 3.00000i 0.832050i −0.909353 0.416025i \(-0.863423\pi\)
0.909353 0.416025i \(-0.136577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 1.00000 2.00000i 0.223607 0.447214i
\(21\) 0 0
\(22\) 6.00000i 1.27920i
\(23\) 8.00000i 1.66812i −0.551677 0.834058i \(-0.686012\pi\)
0.551677 0.834058i \(-0.313988\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 3.00000 0.588348
\(27\) 0 0
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 7.00000i 1.13555i
\(39\) 0 0
\(40\) 2.00000 + 1.00000i 0.316228 + 0.158114i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) 8.00000 1.17954
\(47\) 3.00000i 0.437595i −0.975770 0.218797i \(-0.929787\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) 0 0
\(52\) 3.00000i 0.416025i
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) 0 0
\(55\) −6.00000 + 12.0000i −0.809040 + 1.61808i
\(56\) 0 0
\(57\) 0 0
\(58\) 5.00000i 0.656532i
\(59\) 5.00000 0.650945 0.325472 0.945552i \(-0.394477\pi\)
0.325472 + 0.945552i \(0.394477\pi\)
\(60\) 0 0
\(61\) −3.00000 −0.384111 −0.192055 0.981384i \(-0.561515\pi\)
−0.192055 + 0.981384i \(0.561515\pi\)
\(62\) 5.00000i 0.635001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 6.00000 + 3.00000i 0.744208 + 0.372104i
\(66\) 0 0
\(67\) 2.00000i 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 0 0
\(70\) 0 0
\(71\) 15.0000 1.78017 0.890086 0.455792i \(-0.150644\pi\)
0.890086 + 0.455792i \(0.150644\pi\)
\(72\) 0 0
\(73\) 11.0000i 1.28745i 0.765256 + 0.643726i \(0.222612\pi\)
−0.765256 + 0.643726i \(0.777388\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) −1.00000 + 2.00000i −0.111803 + 0.223607i
\(81\) 0 0
\(82\) 0 0
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 0 0
\(85\) 2.00000 + 1.00000i 0.216930 + 0.108465i
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 6.00000i 0.639602i
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.00000i 0.834058i
\(93\) 0 0
\(94\) 3.00000 0.309426
\(95\) −7.00000 + 14.0000i −0.718185 + 1.43637i
\(96\) 0 0
\(97\) 9.00000i 0.913812i −0.889515 0.456906i \(-0.848958\pi\)
0.889515 0.456906i \(-0.151042\pi\)
\(98\) 7.00000i 0.707107i
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −3.00000 −0.294174
\(105\) 0 0
\(106\) −9.00000 −0.874157
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) −9.00000 −0.862044 −0.431022 0.902342i \(-0.641847\pi\)
−0.431022 + 0.902342i \(0.641847\pi\)
\(110\) −12.0000 6.00000i −1.14416 0.572078i
\(111\) 0 0
\(112\) 0 0
\(113\) 13.0000i 1.22294i −0.791269 0.611469i \(-0.790579\pi\)
0.791269 0.611469i \(-0.209421\pi\)
\(114\) 0 0
\(115\) 16.0000 + 8.00000i 1.49201 + 0.746004i
\(116\) 5.00000 0.464238
\(117\) 0 0
\(118\) 5.00000i 0.460287i
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 3.00000i 0.271607i
\(123\) 0 0
\(124\) −5.00000 −0.449013
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) 0 0
\(127\) 1.00000i 0.0887357i 0.999015 + 0.0443678i \(0.0141274\pi\)
−0.999015 + 0.0443678i \(0.985873\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −3.00000 + 6.00000i −0.263117 + 0.526235i
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 12.0000i 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 15.0000i 1.25877i
\(143\) 18.0000i 1.50524i
\(144\) 0 0
\(145\) 5.00000 10.0000i 0.415227 0.830455i
\(146\) −11.0000 −0.910366
\(147\) 0 0
\(148\) 8.00000i 0.657596i
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 7.00000i 0.567775i
\(153\) 0 0
\(154\) 0 0
\(155\) −5.00000 + 10.0000i −0.401610 + 0.803219i
\(156\) 0 0
\(157\) 14.0000i 1.11732i 0.829396 + 0.558661i \(0.188685\pi\)
−0.829396 + 0.558661i \(0.811315\pi\)
\(158\) 8.00000i 0.636446i
\(159\) 0 0
\(160\) −2.00000 1.00000i −0.158114 0.0790569i
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 6.00000i 0.464294i 0.972681 + 0.232147i \(0.0745750\pi\)
−0.972681 + 0.232147i \(0.925425\pi\)
\(168\) 0 0
\(169\) 4.00000 0.307692
\(170\) −1.00000 + 2.00000i −0.0766965 + 0.153393i
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.00000 0.452267
\(177\) 0 0
\(178\) 1.00000i 0.0749532i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.00000 −0.589768
\(185\) −16.0000 8.00000i −1.17634 0.588172i
\(186\) 0 0
\(187\) 6.00000i 0.438763i
\(188\) 3.00000i 0.218797i
\(189\) 0 0
\(190\) −14.0000 7.00000i −1.01567 0.507833i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 26.0000i 1.87152i −0.352636 0.935760i \(-0.614715\pi\)
0.352636 0.935760i \(-0.385285\pi\)
\(194\) 9.00000 0.646162
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 2.00000i 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 0 0
\(199\) −7.00000 −0.496217 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(200\) −4.00000 + 3.00000i −0.282843 + 0.212132i
\(201\) 0 0
\(202\) 12.0000i 0.844317i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 3.00000i 0.208013i
\(209\) 42.0000 2.90520
\(210\) 0 0
\(211\) 16.0000 1.10149 0.550743 0.834675i \(-0.314345\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 9.00000i 0.618123i
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) −8.00000 4.00000i −0.545595 0.272798i
\(216\) 0 0
\(217\) 0 0
\(218\) 9.00000i 0.609557i
\(219\) 0 0
\(220\) 6.00000 12.0000i 0.404520 0.809040i
\(221\) −3.00000 −0.201802
\(222\) 0 0
\(223\) 15.0000i 1.00447i 0.864730 + 0.502237i \(0.167490\pi\)
−0.864730 + 0.502237i \(0.832510\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 13.0000 0.864747
\(227\) 9.00000i 0.597351i 0.954355 + 0.298675i \(0.0965448\pi\)
−0.954355 + 0.298675i \(0.903455\pi\)
\(228\) 0 0
\(229\) −18.0000 −1.18947 −0.594737 0.803921i \(-0.702744\pi\)
−0.594737 + 0.803921i \(0.702744\pi\)
\(230\) −8.00000 + 16.0000i −0.527504 + 1.05501i
\(231\) 0 0
\(232\) 5.00000i 0.328266i
\(233\) 27.0000i 1.76883i 0.466702 + 0.884414i \(0.345442\pi\)
−0.466702 + 0.884414i \(0.654558\pi\)
\(234\) 0 0
\(235\) 6.00000 + 3.00000i 0.391397 + 0.195698i
\(236\) −5.00000 −0.325472
\(237\) 0 0
\(238\) 0 0
\(239\) 10.0000 0.646846 0.323423 0.946254i \(-0.395166\pi\)
0.323423 + 0.946254i \(0.395166\pi\)
\(240\) 0 0
\(241\) −20.0000 −1.28831 −0.644157 0.764894i \(-0.722792\pi\)
−0.644157 + 0.764894i \(0.722792\pi\)
\(242\) 25.0000i 1.60706i
\(243\) 0 0
\(244\) 3.00000 0.192055
\(245\) −7.00000 + 14.0000i −0.447214 + 0.894427i
\(246\) 0 0
\(247\) 21.0000i 1.33620i
\(248\) 5.00000i 0.317500i
\(249\) 0 0
\(250\) 2.00000 + 11.0000i 0.126491 + 0.695701i
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 48.0000i 3.01773i
\(254\) −1.00000 −0.0627456
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 28.0000i 1.74659i −0.487190 0.873296i \(-0.661978\pi\)
0.487190 0.873296i \(-0.338022\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −6.00000 3.00000i −0.372104 0.186052i
\(261\) 0 0
\(262\) 6.00000i 0.370681i
\(263\) 27.0000i 1.66489i 0.554107 + 0.832446i \(0.313060\pi\)
−0.554107 + 0.832446i \(0.686940\pi\)
\(264\) 0 0
\(265\) −18.0000 9.00000i −1.10573 0.552866i
\(266\) 0 0
\(267\) 0 0
\(268\) 2.00000i 0.122169i
\(269\) −19.0000 −1.15845 −0.579225 0.815168i \(-0.696645\pi\)
−0.579225 + 0.815168i \(0.696645\pi\)
\(270\) 0 0
\(271\) −6.00000 −0.364474 −0.182237 0.983255i \(-0.558334\pi\)
−0.182237 + 0.983255i \(0.558334\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) −18.0000 24.0000i −1.08544 1.44725i
\(276\) 0 0
\(277\) 2.00000i 0.120168i −0.998193 0.0600842i \(-0.980863\pi\)
0.998193 0.0600842i \(-0.0191369\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 33.0000 1.96861 0.984307 0.176462i \(-0.0564652\pi\)
0.984307 + 0.176462i \(0.0564652\pi\)
\(282\) 0 0
\(283\) 11.0000i 0.653882i −0.945045 0.326941i \(-0.893982\pi\)
0.945045 0.326941i \(-0.106018\pi\)
\(284\) −15.0000 −0.890086
\(285\) 0 0
\(286\) 18.0000 1.06436
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 10.0000 + 5.00000i 0.587220 + 0.293610i
\(291\) 0 0
\(292\) 11.0000i 0.643726i
\(293\) 19.0000i 1.10999i −0.831853 0.554996i \(-0.812720\pi\)
0.831853 0.554996i \(-0.187280\pi\)
\(294\) 0 0
\(295\) −5.00000 + 10.0000i −0.291111 + 0.582223i
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 2.00000i 0.115857i
\(299\) −24.0000 −1.38796
\(300\) 0 0
\(301\) 0 0
\(302\) 8.00000i 0.460348i
\(303\) 0 0
\(304\) 7.00000 0.401478
\(305\) 3.00000 6.00000i 0.171780 0.343559i
\(306\) 0 0
\(307\) 24.0000i 1.36975i −0.728659 0.684876i \(-0.759856\pi\)
0.728659 0.684876i \(-0.240144\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −10.0000 5.00000i −0.567962 0.283981i
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 0 0
\(313\) 22.0000i 1.24351i 0.783210 + 0.621757i \(0.213581\pi\)
−0.783210 + 0.621757i \(0.786419\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) −30.0000 −1.67968
\(320\) 1.00000 2.00000i 0.0559017 0.111803i
\(321\) 0 0
\(322\) 0 0
\(323\) 7.00000i 0.389490i
\(324\) 0 0
\(325\) −12.0000 + 9.00000i −0.665640 + 0.499230i
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.00000 0.384755 0.192377 0.981321i \(-0.438380\pi\)
0.192377 + 0.981321i \(0.438380\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 0 0
\(334\) −6.00000 −0.328305
\(335\) 4.00000 + 2.00000i 0.218543 + 0.109272i
\(336\) 0 0
\(337\) 13.0000i 0.708155i 0.935216 + 0.354078i \(0.115205\pi\)
−0.935216 + 0.354078i \(0.884795\pi\)
\(338\) 4.00000i 0.217571i
\(339\) 0 0
\(340\) −2.00000 1.00000i −0.108465 0.0542326i
\(341\) 30.0000 1.62459
\(342\) 0 0
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 0 0
\(347\) 5.00000i 0.268414i −0.990953 0.134207i \(-0.957151\pi\)
0.990953 0.134207i \(-0.0428487\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 6.00000i 0.319801i
\(353\) 8.00000i 0.425797i −0.977074 0.212899i \(-0.931710\pi\)
0.977074 0.212899i \(-0.0682904\pi\)
\(354\) 0 0
\(355\) −15.0000 + 30.0000i −0.796117 + 1.59223i
\(356\) 1.00000 0.0529999
\(357\) 0 0
\(358\) 12.0000i 0.634220i
\(359\) −28.0000 −1.47778 −0.738892 0.673824i \(-0.764651\pi\)
−0.738892 + 0.673824i \(0.764651\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 2.00000i 0.105118i
\(363\) 0 0
\(364\) 0 0
\(365\) −22.0000 11.0000i −1.15153 0.575766i
\(366\) 0 0
\(367\) 10.0000i 0.521996i −0.965339 0.260998i \(-0.915948\pi\)
0.965339 0.260998i \(-0.0840516\pi\)
\(368\) 8.00000i 0.417029i
\(369\) 0 0
\(370\) 8.00000 16.0000i 0.415900 0.831800i
\(371\) 0 0
\(372\) 0 0
\(373\) 14.0000i 0.724893i 0.932005 + 0.362446i \(0.118058\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 6.00000 0.310253
\(375\) 0 0
\(376\) −3.00000 −0.154713
\(377\) 15.0000i 0.772539i
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 7.00000 14.0000i 0.359092 0.718185i
\(381\) 0 0
\(382\) 0 0
\(383\) 27.0000i 1.37964i −0.723983 0.689818i \(-0.757691\pi\)
0.723983 0.689818i \(-0.242309\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 26.0000 1.32337
\(387\) 0 0
\(388\) 9.00000i 0.456906i
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 7.00000i 0.353553i
\(393\) 0 0
\(394\) 2.00000 0.100759
\(395\) 8.00000 16.0000i 0.402524 0.805047i
\(396\) 0 0
\(397\) 2.00000i 0.100377i −0.998740 0.0501886i \(-0.984018\pi\)
0.998740 0.0501886i \(-0.0159822\pi\)
\(398\) 7.00000i 0.350878i
\(399\) 0 0
\(400\) −3.00000 4.00000i −0.150000 0.200000i
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) 15.0000i 0.747203i
\(404\) −12.0000 −0.597022
\(405\) 0 0
\(406\) 0 0
\(407\) 48.0000i 2.37927i
\(408\) 0 0
\(409\) 31.0000 1.53285 0.766426 0.642333i \(-0.222033\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −8.00000 4.00000i −0.392705 0.196352i
\(416\) 3.00000 0.147087
\(417\) 0 0
\(418\) 42.0000i 2.05429i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) 16.0000i 0.778868i
\(423\) 0 0
\(424\) 9.00000 0.437079
\(425\) −4.00000 + 3.00000i −0.194029 + 0.145521i
\(426\) 0 0
\(427\) 0 0
\(428\) 4.00000i 0.193347i
\(429\) 0 0
\(430\) 4.00000 8.00000i 0.192897 0.385794i
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 0 0
\(433\) 20.0000i 0.961139i −0.876957 0.480569i \(-0.840430\pi\)
0.876957 0.480569i \(-0.159570\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 9.00000 0.431022
\(437\) 56.0000i 2.67884i
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 12.0000 + 6.00000i 0.572078 + 0.286039i
\(441\) 0 0
\(442\) 3.00000i 0.142695i
\(443\) 10.0000i 0.475114i 0.971374 + 0.237557i \(0.0763467\pi\)
−0.971374 + 0.237557i \(0.923653\pi\)
\(444\) 0 0
\(445\) 1.00000 2.00000i 0.0474045 0.0948091i
\(446\) −15.0000 −0.710271
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 13.0000i 0.611469i
\(453\) 0 0
\(454\) −9.00000 −0.422391
\(455\) 0 0
\(456\) 0 0
\(457\) 12.0000i 0.561336i −0.959805 0.280668i \(-0.909444\pi\)
0.959805 0.280668i \(-0.0905560\pi\)
\(458\) 18.0000i 0.841085i
\(459\) 0 0
\(460\) −16.0000 8.00000i −0.746004 0.373002i
\(461\) 20.0000 0.931493 0.465746 0.884918i \(-0.345786\pi\)
0.465746 + 0.884918i \(0.345786\pi\)
\(462\) 0 0
\(463\) 31.0000i 1.44069i −0.693615 0.720346i \(-0.743983\pi\)
0.693615 0.720346i \(-0.256017\pi\)
\(464\) −5.00000 −0.232119
\(465\) 0 0
\(466\) −27.0000 −1.25075
\(467\) 14.0000i 0.647843i 0.946084 + 0.323921i \(0.105001\pi\)
−0.946084 + 0.323921i \(0.894999\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −3.00000 + 6.00000i −0.138380 + 0.276759i
\(471\) 0 0
\(472\) 5.00000i 0.230144i
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) −21.0000 28.0000i −0.963546 1.28473i
\(476\) 0 0
\(477\) 0 0
\(478\) 10.0000i 0.457389i
\(479\) −37.0000 −1.69057 −0.845287 0.534313i \(-0.820570\pi\)
−0.845287 + 0.534313i \(0.820570\pi\)
\(480\) 0 0
\(481\) 24.0000 1.09431
\(482\) 20.0000i 0.910975i
\(483\) 0 0
\(484\) −25.0000 −1.13636
\(485\) 18.0000 + 9.00000i 0.817338 + 0.408669i
\(486\) 0 0
\(487\) 2.00000i 0.0906287i −0.998973 0.0453143i \(-0.985571\pi\)
0.998973 0.0453143i \(-0.0144289\pi\)
\(488\) 3.00000i 0.135804i
\(489\) 0 0
\(490\) −14.0000 7.00000i −0.632456 0.316228i
\(491\) 13.0000 0.586682 0.293341 0.956008i \(-0.405233\pi\)
0.293341 + 0.956008i \(0.405233\pi\)
\(492\) 0 0
\(493\) 5.00000i 0.225189i
\(494\) 21.0000 0.944835
\(495\) 0 0
\(496\) 5.00000 0.224507
\(497\) 0 0
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) −11.0000 + 2.00000i −0.491935 + 0.0894427i
\(501\) 0 0
\(502\) 12.0000i 0.535586i
\(503\) 42.0000i 1.87269i −0.351085 0.936344i \(-0.614187\pi\)
0.351085 0.936344i \(-0.385813\pi\)
\(504\) 0 0
\(505\) −12.0000 + 24.0000i −0.533993 + 1.06799i
\(506\) 48.0000 2.13386
\(507\) 0 0
\(508\) 1.00000i 0.0443678i
\(509\) −12.0000 −0.531891 −0.265945 0.963988i \(-0.585684\pi\)
−0.265945 + 0.963988i \(0.585684\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 28.0000 1.23503
\(515\) 0 0
\(516\) 0 0
\(517\) 18.0000i 0.791639i
\(518\) 0 0
\(519\) 0 0
\(520\) 3.00000 6.00000i 0.131559 0.263117i
\(521\) −28.0000 −1.22670 −0.613351 0.789810i \(-0.710179\pi\)
−0.613351 + 0.789810i \(0.710179\pi\)
\(522\) 0 0
\(523\) 14.0000i 0.612177i −0.952003 0.306089i \(-0.900980\pi\)
0.952003 0.306089i \(-0.0990204\pi\)
\(524\) 6.00000 0.262111
\(525\) 0 0
\(526\) −27.0000 −1.17726
\(527\) 5.00000i 0.217803i
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 9.00000 18.0000i 0.390935 0.781870i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −8.00000 4.00000i −0.345870 0.172935i
\(536\) −2.00000 −0.0863868
\(537\) 0 0
\(538\) 19.0000i 0.819148i
\(539\) 42.0000 1.80907
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 6.00000i 0.257722i
\(543\) 0 0
\(544\) 1.00000 0.0428746
\(545\) 9.00000 18.0000i 0.385518 0.771035i
\(546\) 0 0
\(547\) 13.0000i 0.555840i 0.960604 + 0.277920i \(0.0896450\pi\)
−0.960604 + 0.277920i \(0.910355\pi\)
\(548\) 12.0000i 0.512615i
\(549\) 0 0
\(550\) 24.0000 18.0000i 1.02336 0.767523i
\(551\) −35.0000 −1.49105
\(552\) 0 0
\(553\) 0 0
\(554\) 2.00000 0.0849719
\(555\) 0 0
\(556\) 0 0
\(557\) 11.0000i 0.466085i −0.972467 0.233042i \(-0.925132\pi\)
0.972467 0.233042i \(-0.0748681\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 33.0000i 1.39202i
\(563\) 32.0000i 1.34864i 0.738440 + 0.674320i \(0.235563\pi\)
−0.738440 + 0.674320i \(0.764437\pi\)
\(564\) 0 0
\(565\) 26.0000 + 13.0000i 1.09383 + 0.546914i
\(566\) 11.0000 0.462364
\(567\) 0 0
\(568\) 15.0000i 0.629386i
\(569\) −21.0000 −0.880366 −0.440183 0.897908i \(-0.645086\pi\)
−0.440183 + 0.897908i \(0.645086\pi\)
\(570\) 0 0
\(571\) −10.0000 −0.418487 −0.209243 0.977864i \(-0.567100\pi\)
−0.209243 + 0.977864i \(0.567100\pi\)
\(572\) 18.0000i 0.752618i
\(573\) 0 0
\(574\) 0 0
\(575\) −32.0000 + 24.0000i −1.33449 + 1.00087i
\(576\) 0 0
\(577\) 16.0000i 0.666089i 0.942911 + 0.333044i \(0.108076\pi\)
−0.942911 + 0.333044i \(0.891924\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 0 0
\(580\) −5.00000 + 10.0000i −0.207614 + 0.415227i
\(581\) 0 0
\(582\) 0 0
\(583\) 54.0000i 2.23645i
\(584\) 11.0000 0.455183
\(585\) 0 0
\(586\) 19.0000 0.784883
\(587\) 36.0000i 1.48588i −0.669359 0.742940i \(-0.733431\pi\)
0.669359 0.742940i \(-0.266569\pi\)
\(588\) 0 0
\(589\) 35.0000 1.44215
\(590\) −10.0000 5.00000i −0.411693 0.205847i
\(591\) 0 0
\(592\) 8.00000i 0.328798i
\(593\) 22.0000i 0.903432i 0.892162 + 0.451716i \(0.149188\pi\)
−0.892162 + 0.451716i \(0.850812\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.00000 0.0819232
\(597\) 0 0
\(598\) 24.0000i 0.981433i
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) −25.0000 + 50.0000i −1.01639 + 2.03279i
\(606\) 0 0
\(607\) 12.0000i 0.487065i −0.969893 0.243532i \(-0.921694\pi\)
0.969893 0.243532i \(-0.0783062\pi\)
\(608\) 7.00000i 0.283887i
\(609\) 0 0
\(610\) 6.00000 + 3.00000i 0.242933 + 0.121466i
\(611\) −9.00000 −0.364101
\(612\) 0 0
\(613\) 17.0000i 0.686624i 0.939222 + 0.343312i \(0.111549\pi\)
−0.939222 + 0.343312i \(0.888451\pi\)
\(614\) 24.0000 0.968561
\(615\) 0 0
\(616\) 0 0
\(617\) 29.0000i 1.16750i 0.811935 + 0.583748i \(0.198414\pi\)
−0.811935 + 0.583748i \(0.801586\pi\)
\(618\) 0 0
\(619\) −14.0000 −0.562708 −0.281354 0.959604i \(-0.590783\pi\)
−0.281354 + 0.959604i \(0.590783\pi\)
\(620\) 5.00000 10.0000i 0.200805 0.401610i
\(621\) 0 0
\(622\) 4.00000i 0.160385i
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) 14.0000i 0.558661i
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) −42.0000 −1.67199 −0.835997 0.548734i \(-0.815110\pi\)
−0.835997 + 0.548734i \(0.815110\pi\)
\(632\) 8.00000i 0.318223i
\(633\) 0 0
\(634\) 0 0
\(635\) −2.00000 1.00000i −0.0793676 0.0396838i
\(636\) 0 0
\(637\) 21.0000i 0.832050i
\(638\) 30.0000i 1.18771i
\(639\) 0 0
\(640\) 2.00000 + 1.00000i 0.0790569 + 0.0395285i
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 44.0000i 1.73519i 0.497271 + 0.867595i \(0.334335\pi\)
−0.497271 + 0.867595i \(0.665665\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 7.00000 0.275411
\(647\) 17.0000i 0.668339i −0.942513 0.334169i \(-0.891544\pi\)
0.942513 0.334169i \(-0.108456\pi\)
\(648\) 0 0
\(649\) 30.0000 1.17760
\(650\) −9.00000 12.0000i −0.353009 0.470679i
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 30.0000i 1.17399i 0.809590 + 0.586995i \(0.199689\pi\)
−0.809590 + 0.586995i \(0.800311\pi\)
\(654\) 0 0
\(655\) 6.00000 12.0000i 0.234439 0.468879i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.0000 0.740135 0.370067 0.929005i \(-0.379335\pi\)
0.370067 + 0.929005i \(0.379335\pi\)
\(660\) 0 0
\(661\) −16.0000 −0.622328 −0.311164 0.950356i \(-0.600719\pi\)
−0.311164 + 0.950356i \(0.600719\pi\)
\(662\) 7.00000i 0.272063i
\(663\) 0 0
\(664\) 4.00000 0.155230
\(665\) 0 0
\(666\) 0 0
\(667\) 40.0000i 1.54881i
\(668\) 6.00000i 0.232147i
\(669\) 0 0
\(670\) −2.00000 + 4.00000i −0.0772667 + 0.154533i
\(671\) −18.0000 −0.694882
\(672\) 0 0
\(673\) 35.0000i 1.34915i 0.738206 + 0.674575i \(0.235673\pi\)
−0.738206 + 0.674575i \(0.764327\pi\)
\(674\) −13.0000 −0.500741
\(675\) 0 0
\(676\) −4.00000 −0.153846
\(677\) 24.0000i 0.922395i 0.887298 + 0.461197i \(0.152580\pi\)
−0.887298 + 0.461197i \(0.847420\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.00000 2.00000i 0.0383482 0.0766965i
\(681\) 0 0
\(682\) 30.0000i 1.14876i
\(683\) 45.0000i 1.72188i 0.508709 + 0.860939i \(0.330123\pi\)
−0.508709 + 0.860939i \(0.669877\pi\)
\(684\) 0 0
\(685\) 24.0000 + 12.0000i 0.916993 + 0.458496i
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000i 0.152499i
\(689\) 27.0000 1.02862
\(690\) 0 0
\(691\) −16.0000 −0.608669 −0.304334 0.952565i \(-0.598434\pi\)
−0.304334 + 0.952565i \(0.598434\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 5.00000 0.189797
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 2.00000i 0.0757011i
\(699\) 0 0
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) 56.0000i 2.11208i
\(704\) −6.00000 −0.226134
\(705\) 0 0
\(706\) 8.00000 0.301084
\(707\) 0 0
\(708\) 0 0
\(709\) −23.0000 −0.863783 −0.431892 0.901926i \(-0.642154\pi\)
−0.431892 + 0.901926i \(0.642154\pi\)
\(710\) −30.0000 15.0000i −1.12588 0.562940i
\(711\) 0 0
\(712\) 1.00000i 0.0374766i
\(713\) 40.0000i 1.49801i
\(714\) 0 0
\(715\) 36.0000 + 18.0000i 1.34632 + 0.673162i
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 28.0000i 1.04495i
\(719\) −27.0000 −1.00693 −0.503465 0.864016i \(-0.667942\pi\)
−0.503465 + 0.864016i \(0.667942\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 30.0000i 1.11648i
\(723\) 0 0
\(724\) −2.00000 −0.0743294
\(725\) 15.0000 + 20.0000i 0.557086 + 0.742781i
\(726\) 0 0
\(727\) 29.0000i 1.07555i −0.843088 0.537775i \(-0.819265\pi\)
0.843088 0.537775i \(-0.180735\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 11.0000 22.0000i 0.407128 0.814257i
\(731\) 4.00000 0.147945
\(732\) 0 0
\(733\) 14.0000i 0.517102i 0.965998 + 0.258551i \(0.0832450\pi\)
−0.965998 + 0.258551i \(0.916755\pi\)
\(734\) 10.0000 0.369107
\(735\) 0 0
\(736\) 8.00000 0.294884
\(737\) 12.0000i 0.442026i
\(738\) 0 0
\(739\) 1.00000 0.0367856 0.0183928 0.999831i \(-0.494145\pi\)
0.0183928 + 0.999831i \(0.494145\pi\)
\(740\) 16.0000 + 8.00000i 0.588172 + 0.294086i
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) 0 0
\(745\) 2.00000 4.00000i 0.0732743 0.146549i
\(746\) −14.0000 −0.512576
\(747\) 0 0
\(748\) 6.00000i 0.219382i
\(749\) 0 0
\(750\) 0 0
\(751\) 11.0000 0.401396 0.200698 0.979653i \(-0.435679\pi\)
0.200698 + 0.979653i \(0.435679\pi\)
\(752\) 3.00000i 0.109399i
\(753\) 0 0
\(754\) −15.0000 −0.546268
\(755\) 8.00000 16.0000i 0.291150 0.582300i
\(756\) 0 0
\(757\) 45.0000i 1.63555i −0.575536 0.817776i \(-0.695207\pi\)
0.575536 0.817776i \(-0.304793\pi\)
\(758\) 20.0000i 0.726433i
\(759\) 0 0
\(760\) 14.0000 + 7.00000i 0.507833 + 0.253917i
\(761\) −14.0000 −0.507500 −0.253750 0.967270i \(-0.581664\pi\)
−0.253750 + 0.967270i \(0.581664\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 27.0000 0.975550
\(767\) 15.0000i 0.541619i
\(768\) 0 0
\(769\) −37.0000 −1.33425 −0.667127 0.744944i \(-0.732476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 26.0000i 0.935760i
\(773\) 6.00000i 0.215805i −0.994161 0.107903i \(-0.965587\pi\)
0.994161 0.107903i \(-0.0344134\pi\)
\(774\) 0 0
\(775\) −15.0000 20.0000i −0.538816 0.718421i
\(776\) −9.00000 −0.323081
\(777\) 0 0
\(778\) 30.0000i 1.07555i
\(779\) 0 0
\(780\) 0 0
\(781\) 90.0000 3.22045
\(782\) 8.00000i 0.286079i
\(783\) 0 0
\(784\) 7.00000 0.250000
\(785\) −28.0000 14.0000i −0.999363 0.499681i
\(786\) 0 0
\(787\) 47.0000i 1.67537i −0.546154 0.837685i \(-0.683909\pi\)
0.546154 0.837685i \(-0.316091\pi\)
\(788\) 2.00000i 0.0712470i
\(789\) 0 0
\(790\) 16.0000 + 8.00000i 0.569254 + 0.284627i
\(791\) 0 0
\(792\) 0 0
\(793\) 9.00000i 0.319599i
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) 7.00000 0.248108
\(797\) 54.0000i 1.91278i −0.292096 0.956389i \(-0.594353\pi\)
0.292096 0.956389i \(-0.405647\pi\)
\(798\) 0 0
\(799\) −3.00000 −0.106132
\(800\) 4.00000 3.00000i 0.141421 0.106066i
\(801\) 0 0
\(802\) 10.0000i 0.353112i
\(803\) 66.0000i 2.32909i
\(804\) 0 0
\(805\) 0 0
\(806\) 15.0000 0.528352
\(807\) 0 0
\(808\) 12.0000i 0.422159i
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) −32.0000 −1.12367 −0.561836 0.827249i \(-0.689905\pi\)
−0.561836 + 0.827249i \(0.689905\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −48.0000 −1.68240
\(815\) −8.00000 4.00000i −0.280228 0.140114i
\(816\) 0 0
\(817\) 28.0000i 0.979596i
\(818\) 31.0000i 1.08389i
\(819\) 0 0
\(820\) 0 0
\(821\) 27.0000 0.942306 0.471153 0.882051i \(-0.343838\pi\)
0.471153 + 0.882051i \(0.343838\pi\)
\(822\) 0 0
\(823\) 54.0000i 1.88232i 0.337959 + 0.941161i \(0.390263\pi\)
−0.337959 + 0.941161i \(0.609737\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.0000i 1.11275i 0.830932 + 0.556375i \(0.187808\pi\)
−0.830932 + 0.556375i \(0.812192\pi\)
\(828\) 0 0
\(829\) −18.0000 −0.625166 −0.312583 0.949890i \(-0.601194\pi\)
−0.312583 + 0.949890i \(0.601194\pi\)
\(830\) 4.00000 8.00000i 0.138842 0.277684i
\(831\) 0 0
\(832\) 3.00000i 0.104006i
\(833\) 7.00000i 0.242536i
\(834\) 0 0
\(835\) −12.0000 6.00000i −0.415277 0.207639i
\(836\) −42.0000 −1.45260
\(837\) 0 0
\(838\) 0 0
\(839\) 31.0000 1.07024 0.535119 0.844776i \(-0.320267\pi\)
0.535119 + 0.844776i \(0.320267\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 20.0000i 0.689246i
\(843\) 0 0
\(844\) −16.0000 −0.550743
\(845\) −4.00000 + 8.00000i −0.137604 + 0.275208i
\(846\) 0 0
\(847\) 0 0
\(848\) 9.00000i 0.309061i
\(849\) 0 0
\(850\) −3.00000 4.00000i −0.102899 0.137199i
\(851\) 64.0000 2.19389
\(852\) 0 0
\(853\) 30.0000i 1.02718i −0.858036 0.513590i \(-0.828315\pi\)
0.858036 0.513590i \(-0.171685\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 4.00000 0.136717
\(857\) 57.0000i 1.94708i 0.228510 + 0.973541i \(0.426614\pi\)
−0.228510 + 0.973541i \(0.573386\pi\)
\(858\) 0 0
\(859\) −33.0000 −1.12595 −0.562973 0.826475i \(-0.690342\pi\)
−0.562973 + 0.826475i \(0.690342\pi\)
\(860\) 8.00000 + 4.00000i 0.272798 + 0.136399i
\(861\) 0 0
\(862\) 16.0000i 0.544962i
\(863\) 8.00000i 0.272323i −0.990687 0.136162i \(-0.956523\pi\)
0.990687 0.136162i \(-0.0434766\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 20.0000 0.679628
\(867\) 0 0
\(868\) 0 0
\(869\) −48.0000 −1.62829
\(870\) 0 0
\(871\) −6.00000 −0.203302
\(872\) 9.00000i 0.304778i
\(873\) 0 0
\(874\) 56.0000 1.89423
\(875\) 0 0
\(876\) 0 0
\(877\) 10.0000i 0.337676i −0.985644 0.168838i \(-0.945999\pi\)
0.985644 0.168838i \(-0.0540015\pi\)
\(878\) 16.0000i 0.539974i
\(879\) 0 0
\(880\) −6.00000 + 12.0000i −0.202260 + 0.404520i
\(881\) −38.0000 −1.28025 −0.640126 0.768270i \(-0.721118\pi\)
−0.640126 + 0.768270i \(0.721118\pi\)
\(882\) 0 0
\(883\) 26.0000i 0.874970i 0.899226 + 0.437485i \(0.144131\pi\)
−0.899226 + 0.437485i \(0.855869\pi\)
\(884\) 3.00000 0.100901
\(885\) 0 0
\(886\) −10.0000 −0.335957
\(887\) 14.0000i 0.470074i 0.971986 + 0.235037i \(0.0755211\pi\)
−0.971986 + 0.235037i \(0.924479\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 2.00000 + 1.00000i 0.0670402 + 0.0335201i
\(891\) 0 0
\(892\) 15.0000i 0.502237i
\(893\) 21.0000i 0.702738i
\(894\) 0 0
\(895\) 12.0000 24.0000i 0.401116 0.802232i
\(896\) 0 0
\(897\) 0 0
\(898\) 6.00000i 0.200223i
\(899\) −25.0000 −0.833797
\(900\) 0 0
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) 0 0
\(904\) −13.0000 −0.432374
\(905\) −2.00000 + 4.00000i −0.0664822 + 0.132964i
\(906\) 0 0
\(907\) 27.0000i 0.896520i 0.893903 + 0.448260i \(0.147956\pi\)
−0.893903 + 0.448260i \(0.852044\pi\)
\(908\) 9.00000i 0.298675i
\(909\) 0 0
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) 24.0000i 0.794284i
\(914\) 12.0000 0.396925
\(915\) 0 0
\(916\) 18.0000 0.594737
\(917\) 0 0
\(918\) 0 0
\(919\) 6.00000 0.197922 0.0989609 0.995091i \(-0.468448\pi\)
0.0989609 + 0.995091i \(0.468448\pi\)
\(920\) 8.00000 16.0000i 0.263752 0.527504i
\(921\) 0 0
\(922\) 20.0000i 0.658665i
\(923\) 45.0000i 1.48119i
\(924\) 0 0
\(925\) 32.0000 24.0000i 1.05215 0.789115i
\(926\) 31.0000 1.01872
\(927\) 0 0
\(928\) 5.00000i 0.164133i
\(929\) −34.0000 −1.11550 −0.557752 0.830008i \(-0.688336\pi\)
−0.557752 + 0.830008i \(0.688336\pi\)
\(930\) 0 0
\(931\) 49.0000 1.60591
\(932\) 27.0000i 0.884414i
\(933\) 0 0
\(934\) −14.0000 −0.458094
\(935\) 12.0000 + 6.00000i 0.392442 + 0.196221i
\(936\) 0 0
\(937\) 44.0000i 1.43742i −0.695311 0.718709i \(-0.744734\pi\)
0.695311 0.718709i \(-0.255266\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −6.00000 3.00000i −0.195698 0.0978492i
\(941\) 5.00000 0.162995 0.0814977 0.996674i \(-0.474030\pi\)
0.0814977 + 0.996674i \(0.474030\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 5.00000 0.162736
\(945\) 0 0
\(946\) −24.0000 −0.780307
\(947\) 9.00000i 0.292461i 0.989251 + 0.146230i \(0.0467141\pi\)
−0.989251 + 0.146230i \(0.953286\pi\)
\(948\) 0 0
\(949\) 33.0000 1.07123
\(950\) 28.0000 21.0000i 0.908440 0.681330i
\(951\) 0 0
\(952\) 0 0
\(953\) 44.0000i 1.42530i −0.701520 0.712650i \(-0.747495\pi\)
0.701520 0.712650i \(-0.252505\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −10.0000 −0.323423
\(957\) 0 0
\(958\) 37.0000i 1.19542i
\(959\) 0 0
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 24.0000i 0.773791i
\(963\) 0 0
\(964\) 20.0000 0.644157
\(965\) 52.0000 + 26.0000i 1.67394 + 0.836970i
\(966\) 0 0
\(967\) 16.0000i 0.514525i −0.966342 0.257263i \(-0.917179\pi\)
0.966342 0.257263i \(-0.0828206\pi\)
\(968\) 25.0000i 0.803530i
\(969\) 0 0
\(970\) −9.00000 + 18.0000i −0.288973 + 0.577945i
\(971\) −37.0000 −1.18739 −0.593693 0.804691i \(-0.702331\pi\)
−0.593693 + 0.804691i \(0.702331\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 2.00000 0.0640841
\(975\) 0 0
\(976\) −3.00000 −0.0960277
\(977\) 38.0000i 1.21573i −0.794041 0.607864i \(-0.792027\pi\)
0.794041 0.607864i \(-0.207973\pi\)
\(978\) 0 0
\(979\) −6.00000 −0.191761
\(980\) 7.00000 14.0000i 0.223607 0.447214i
\(981\) 0 0
\(982\) 13.0000i 0.414847i
\(983\) 30.0000i 0.956851i 0.878128 + 0.478426i \(0.158792\pi\)
−0.878128 + 0.478426i \(0.841208\pi\)
\(984\) 0 0
\(985\) 4.00000 + 2.00000i 0.127451 + 0.0637253i
\(986\) −5.00000 −0.159232
\(987\) 0 0
\(988\) 21.0000i 0.668099i
\(989\) 32.0000 1.01754
\(990\) 0 0
\(991\) −19.0000 −0.603555 −0.301777 0.953378i \(-0.597580\pi\)
−0.301777 + 0.953378i \(0.597580\pi\)
\(992\) 5.00000i 0.158750i
\(993\) 0 0
\(994\) 0 0
\(995\) 7.00000 14.0000i 0.221915 0.443830i
\(996\) 0 0
\(997\) 28.0000i 0.886769i 0.896332 + 0.443384i \(0.146222\pi\)
−0.896332 + 0.443384i \(0.853778\pi\)
\(998\) 28.0000i 0.886325i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.d.b.919.2 2
3.2 odd 2 170.2.c.a.69.1 2
5.2 odd 4 7650.2.a.s.1.1 1
5.3 odd 4 7650.2.a.cb.1.1 1
5.4 even 2 inner 1530.2.d.b.919.1 2
12.11 even 2 1360.2.e.b.1089.2 2
15.2 even 4 850.2.a.h.1.1 1
15.8 even 4 850.2.a.d.1.1 1
15.14 odd 2 170.2.c.a.69.2 yes 2
60.23 odd 4 6800.2.a.g.1.1 1
60.47 odd 4 6800.2.a.r.1.1 1
60.59 even 2 1360.2.e.b.1089.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.c.a.69.1 2 3.2 odd 2
170.2.c.a.69.2 yes 2 15.14 odd 2
850.2.a.d.1.1 1 15.8 even 4
850.2.a.h.1.1 1 15.2 even 4
1360.2.e.b.1089.1 2 60.59 even 2
1360.2.e.b.1089.2 2 12.11 even 2
1530.2.d.b.919.1 2 5.4 even 2 inner
1530.2.d.b.919.2 2 1.1 even 1 trivial
6800.2.a.g.1.1 1 60.23 odd 4
6800.2.a.r.1.1 1 60.47 odd 4
7650.2.a.s.1.1 1 5.2 odd 4
7650.2.a.cb.1.1 1 5.3 odd 4