Properties

Label 1539.1.cf.a.1106.1
Level $1539$
Weight $1$
Character 1539.1106
Analytic conductor $0.768$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1539,1,Mod(188,1539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1539, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([3, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1539.188");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1539 = 3^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1539.cf (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.768061054442\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 513)
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.1002862414008009.1

Embedding invariants

Embedding label 1106.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 1539.1106
Dual form 1539.1.cf.a.917.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 0.342020i) q^{4} +1.53209 q^{7} +(0.266044 + 0.223238i) q^{13} +(0.766044 - 0.642788i) q^{16} +(-0.500000 - 0.866025i) q^{19} +(-0.939693 + 0.342020i) q^{25} +(-1.43969 + 0.524005i) q^{28} +(0.939693 + 1.62760i) q^{31} +1.53209 q^{37} +(1.76604 + 0.642788i) q^{43} +1.34730 q^{49} +(-0.326352 - 0.118782i) q^{52} +(0.0603074 - 0.342020i) q^{61} +(-0.500000 + 0.866025i) q^{64} +(0.266044 - 1.50881i) q^{67} +(-0.326352 - 1.85083i) q^{73} +(0.766044 + 0.642788i) q^{76} +(-1.43969 + 1.20805i) q^{79} +(0.407604 + 0.342020i) q^{91} +(0.347296 + 1.96962i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{13} - 3 q^{19} - 3 q^{28} + 6 q^{43} + 6 q^{49} - 3 q^{52} + 6 q^{61} - 3 q^{64} - 3 q^{67} - 3 q^{73} - 3 q^{79} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1539\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(3\) 0 0
\(4\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(5\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(6\) 0 0
\(7\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.766044 0.642788i 0.766044 0.642788i
\(17\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.500000 0.866025i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(24\) 0 0
\(25\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(26\) 0 0
\(27\) 0 0
\(28\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(29\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(30\) 0 0
\(31\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(42\) 0 0
\(43\) 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 \(0\)
0.766044 + 0.642788i \(0.222222\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(48\) 0 0
\(49\) 1.34730 1.34730
\(50\) 0 0
\(51\) 0 0
\(52\) −0.326352 0.118782i −0.326352 0.118782i
\(53\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(60\) 0 0
\(61\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(72\) 0 0
\(73\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(90\) 0 0
\(91\) 0.407604 + 0.342020i 0.407604 + 0.342020i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.766044 0.642788i 0.766044 0.642788i
\(101\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(102\) 0 0
\(103\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0 0
\(109\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.17365 0.984808i 1.17365 0.984808i
\(113\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.43969 1.20805i −1.43969 1.20805i
\(125\) 0 0
\(126\) 0 0
\(127\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(132\) 0 0
\(133\) −0.766044 1.32683i −0.766044 1.32683i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(138\) 0 0
\(139\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(149\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(150\) 0 0
\(151\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(168\) 0 0
\(169\) −0.152704 0.866025i −0.152704 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.87939 −1.87939
\(173\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(174\) 0 0
\(175\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.26604 + 0.460802i −1.26604 + 0.460802i
\(197\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.347296 0.347296
\(209\) 0 0
\(210\) 0 0
\(211\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0 0
\(229\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(245\) 0 0
\(246\) 0 0
\(247\) 0.0603074 0.342020i 0.0603074 0.342020i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.173648 0.984808i 0.173648 0.984808i
\(257\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(258\) 0 0
\(259\) 2.34730 2.34730
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(269\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(270\) 0 0
\(271\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(282\) 0 0
\(283\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(290\) 0 0
\(291\) 0 0
\(292\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 2.70574 + 0.984808i 2.70574 + 0.984808i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.939693 0.342020i −0.939693 0.342020i
\(305\) 0 0
\(306\) 0 0
\(307\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.939693 1.62760i 0.939693 1.62760i
\(317\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.326352 0.118782i −0.326352 0.118782i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.532089 0.532089
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(348\) 0 0
\(349\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) −0.500000 0.181985i −0.500000 0.181985i
\(365\) 0 0
\(366\) 0 0
\(367\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −1.00000 1.73205i −1.00000 1.73205i
\(389\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(401\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(402\) 0 0
\(403\) −0.113341 + 0.642788i −0.113341 + 0.642788i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.76604 0.642788i 1.76604 0.642788i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i \(-0.222222\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.0923963 0.524005i 0.0923963 0.524005i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(432\) 0 0
\(433\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.500000 0.866025i 0.500000 0.866025i
\(437\) 0 0
\(438\) 0 0
\(439\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(449\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(462\) 0 0
\(463\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 0.407604 2.31164i 0.407604 2.31164i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(480\) 0 0
\(481\) 0.407604 + 0.342020i 0.407604 + 0.342020i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(485\) 0 0
\(486\) 0 0
\(487\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −0.173648 0.984808i −0.173648 0.984808i
\(509\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(510\) 0 0
\(511\) −0.500000 2.83564i −0.500000 2.83564i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.766044 0.642788i 0.766044 0.642788i
\(530\) 0 0
\(531\) 0 0
\(532\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i \(0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −2.20574 + 1.85083i −2.20574 + 1.85083i
\(554\) 0 0
\(555\) 0 0
\(556\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(557\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(558\) 0 0
\(559\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(588\) 0 0
\(589\) 0.939693 1.62760i 0.939693 1.62760i
\(590\) 0 0
\(591\) 0 0
\(592\) 1.17365 0.984808i 1.17365 0.984808i
\(593\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(600\) 0 0
\(601\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.53209 + 1.28558i 1.53209 + 1.28558i
\(605\) 0 0
\(606\) 0 0
\(607\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(618\) 0 0
\(619\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.766044 0.642788i 0.766044 0.642788i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.173648 0.300767i −0.173648 0.300767i
\(629\) 0 0
\(630\) 0 0
\(631\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.358441 + 0.300767i 0.358441 + 0.300767i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(642\) 0 0
\(643\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(660\) 0 0
\(661\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0.532089 + 3.01763i 0.532089 + 3.01763i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 1.76604 0.642788i 1.76604 0.642788i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.17365 0.984808i 1.17365 0.984808i
\(701\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(702\) 0 0
\(703\) −0.766044 1.32683i −0.766044 1.32683i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(720\) 0 0
\(721\) −2.87939 −2.87939
\(722\) 0 0
\(723\) 0 0
\(724\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(725\) 0 0
\(726\) 0 0
\(727\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.347296 0.347296
\(773\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(774\) 0 0
\(775\) −1.43969 1.20805i −1.43969 1.20805i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.03209 0.866025i 1.03209 0.866025i
\(785\) 0 0
\(786\) 0 0
\(787\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.0923963 0.0775297i 0.0923963 0.0775297i
\(794\) 0 0
\(795\) 0 0
\(796\) 0.266044 0.223238i 0.266044 0.223238i
\(797\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.326352 1.85083i −0.326352 1.85083i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(822\) 0 0
\(823\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(828\) 0 0
\(829\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(840\) 0 0
\(841\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(842\) 0 0
\(843\) 0 0
\(844\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.766044 1.32683i −0.766044 1.32683i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(858\) 0 0
\(859\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) −2.20574 1.85083i −2.20574 1.85083i
\(869\) 0 0
\(870\) 0 0
\(871\) 0.407604 0.342020i 0.407604 0.342020i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 \(0\)
0.766044 + 0.642788i \(0.222222\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(888\) 0 0
\(889\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(890\) 0 0
\(891\) 0 0
\(892\) 0.347296 0.347296
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.87939 0.684040i −1.87939 0.684040i −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 0.342020i \(-0.888889\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(917\) 0 0
\(918\) 0 0
\(919\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(930\) 0 0
\(931\) −0.673648 1.16679i −0.673648 1.16679i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i \(0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(948\) 0 0
\(949\) 0.326352 0.565258i 0.326352 0.565258i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.26604 + 2.19285i −1.26604 + 2.19285i
\(962\) 0 0
\(963\) 0 0
\(964\) 1.17365 0.984808i 1.17365 0.984808i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(972\) 0 0
\(973\) −2.20574 1.85083i −2.20574 1.85083i
\(974\) 0 0
\(975\) 0 0
\(976\) −0.173648 0.300767i −0.173648 0.300767i
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(989\) 0 0
\(990\) 0 0
\(991\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1539.1.cf.a.1106.1 6
3.2 odd 2 CM 1539.1.cf.a.1106.1 6
9.2 odd 6 1539.1.bq.a.593.1 6
9.4 even 3 513.1.bs.a.80.1 6
9.5 odd 6 513.1.bs.a.80.1 6
9.7 even 3 1539.1.bq.a.593.1 6
19.5 even 9 1539.1.bq.a.1430.1 6
57.5 odd 18 1539.1.bq.a.1430.1 6
171.5 odd 18 513.1.bs.a.404.1 yes 6
171.43 even 9 inner 1539.1.cf.a.917.1 6
171.119 odd 18 inner 1539.1.cf.a.917.1 6
171.157 even 9 513.1.bs.a.404.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.1.bs.a.80.1 6 9.4 even 3
513.1.bs.a.80.1 6 9.5 odd 6
513.1.bs.a.404.1 yes 6 171.5 odd 18
513.1.bs.a.404.1 yes 6 171.157 even 9
1539.1.bq.a.593.1 6 9.2 odd 6
1539.1.bq.a.593.1 6 9.7 even 3
1539.1.bq.a.1430.1 6 19.5 even 9
1539.1.bq.a.1430.1 6 57.5 odd 18
1539.1.cf.a.917.1 6 171.43 even 9 inner
1539.1.cf.a.917.1 6 171.119 odd 18 inner
1539.1.cf.a.1106.1 6 1.1 even 1 trivial
1539.1.cf.a.1106.1 6 3.2 odd 2 CM