Properties

Label 155.2.a.e
Level $155$
Weight $2$
Character orbit 155.a
Self dual yes
Analytic conductor $1.238$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [155,2,Mod(1,155)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(155, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("155.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 155 = 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 155.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.23768123133\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.8468.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + \beta_1 q^{3} + (\beta_{3} - \beta_{2} + \beta_1 + 1) q^{4} + q^{5} + ( - \beta_{3} - \beta_1 - 1) q^{6} + ( - \beta_{3} + 2 \beta_{2} - \beta_1 + 1) q^{7} + (\beta_{3} - \beta_{2} - \beta_1 + 1) q^{8}+ \cdots + ( - 2 \beta_{2} - 2 \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + q^{3} + 5 q^{4} + 4 q^{5} - 4 q^{6} + 2 q^{7} + 3 q^{8} - q^{9} + q^{10} - 4 q^{11} + 6 q^{12} + 10 q^{13} - 16 q^{14} + q^{15} + 3 q^{16} + 11 q^{17} - 13 q^{18} - 3 q^{19} + 5 q^{20}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.27841
−1.89122
1.31743
−0.704624
−2.19117 2.27841 2.80122 1.00000 −4.99239 1.38995 −1.75561 2.19117 −2.19117
1.2 −0.576713 −1.89122 −1.66740 1.00000 1.09069 4.24412 2.11504 0.576713 −0.576713
1.3 1.26438 1.31743 −0.401352 1.00000 1.66573 1.13698 −3.03621 −1.26438 1.26438
1.4 2.50350 −0.704624 4.26753 1.00000 −1.76403 −4.77104 5.67678 −2.50350 2.50350
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 155.2.a.e 4
3.b odd 2 1 1395.2.a.l 4
4.b odd 2 1 2480.2.a.x 4
5.b even 2 1 775.2.a.e 4
5.c odd 4 2 775.2.b.f 8
7.b odd 2 1 7595.2.a.s 4
8.b even 2 1 9920.2.a.cb 4
8.d odd 2 1 9920.2.a.cg 4
15.d odd 2 1 6975.2.a.bn 4
31.b odd 2 1 4805.2.a.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
155.2.a.e 4 1.a even 1 1 trivial
775.2.a.e 4 5.b even 2 1
775.2.b.f 8 5.c odd 4 2
1395.2.a.l 4 3.b odd 2 1
2480.2.a.x 4 4.b odd 2 1
4805.2.a.n 4 31.b odd 2 1
6975.2.a.bn 4 15.d odd 2 1
7595.2.a.s 4 7.b odd 2 1
9920.2.a.cb 4 8.b even 2 1
9920.2.a.cg 4 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - T_{2}^{3} - 6T_{2}^{2} + 4T_{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(155))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} - 6 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} - 5 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 2 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( T^{4} - 10 T^{3} + \cdots - 136 \) Copy content Toggle raw display
$17$ \( T^{4} - 11 T^{3} + \cdots - 58 \) Copy content Toggle raw display
$19$ \( T^{4} + 3 T^{3} + \cdots + 44 \) Copy content Toggle raw display
$23$ \( T^{4} + 2 T^{3} + \cdots - 32 \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{3} + \cdots - 584 \) Copy content Toggle raw display
$31$ \( (T + 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 3 T^{3} + \cdots + 1538 \) Copy content Toggle raw display
$41$ \( T^{4} + 11 T^{3} + \cdots + 506 \) Copy content Toggle raw display
$43$ \( T^{4} - 17 T^{3} + \cdots - 236 \) Copy content Toggle raw display
$47$ \( T^{4} + 10 T^{3} + \cdots + 1408 \) Copy content Toggle raw display
$53$ \( T^{4} - 13 T^{3} + \cdots + 1306 \) Copy content Toggle raw display
$59$ \( T^{4} + 3 T^{3} + \cdots - 44 \) Copy content Toggle raw display
$61$ \( T^{4} - 22 T^{3} + \cdots + 352 \) Copy content Toggle raw display
$67$ \( T^{4} + 12 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$71$ \( T^{4} + 21 T^{3} + \cdots + 584 \) Copy content Toggle raw display
$73$ \( T^{4} - 19 T^{3} + \cdots + 34 \) Copy content Toggle raw display
$79$ \( T^{4} + 2 T^{3} + \cdots + 6592 \) Copy content Toggle raw display
$83$ \( T^{4} + 15 T^{3} + \cdots - 3364 \) Copy content Toggle raw display
$89$ \( T^{4} + 10 T^{3} + \cdots + 3688 \) Copy content Toggle raw display
$97$ \( T^{4} - 4 T^{3} + \cdots - 464 \) Copy content Toggle raw display
show more
show less