Properties

Label 156.2.p.a.35.2
Level $156$
Weight $2$
Character 156.35
Analytic conductor $1.246$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,2,Mod(35,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.35");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 156.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.24566627153\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 35.2
Root \(1.72286 - 0.178197i\) of defining polynomial
Character \(\chi\) \(=\) 156.35
Dual form 156.2.p.a.107.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 1.22474i) q^{2} +(1.72286 + 0.178197i) q^{3} +(-1.00000 - 1.73205i) q^{4} -2.23607i q^{5} +(-1.43649 + 1.98406i) q^{6} +(2.73861 - 1.58114i) q^{7} +2.82843 q^{8} +(2.93649 + 0.614017i) q^{9} +(2.73861 + 1.58114i) q^{10} +(-2.12132 + 3.67423i) q^{11} +(-1.41421 - 3.16228i) q^{12} +(-3.50000 - 0.866025i) q^{13} +4.47214i q^{14} +(0.398461 - 3.85243i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(1.93649 - 1.11803i) q^{17} +(-2.82843 + 3.16228i) q^{18} +(-5.47723 + 3.16228i) q^{19} +(-3.87298 + 2.23607i) q^{20} +(5.00000 - 2.23607i) q^{21} +(-3.00000 - 5.19615i) q^{22} +(-1.41421 + 2.44949i) q^{23} +(4.87298 + 0.504017i) q^{24} +(3.53553 - 3.67423i) q^{26} +(4.94975 + 1.58114i) q^{27} +(-5.47723 - 3.16228i) q^{28} +(5.80948 + 3.35410i) q^{29} +(4.43649 + 3.21209i) q^{30} -3.16228i q^{31} +(-2.82843 - 4.89898i) q^{32} +(-4.30948 + 5.95218i) q^{33} +3.16228i q^{34} +(-3.53553 - 6.12372i) q^{35} +(-1.87298 - 5.70017i) q^{36} +(-0.500000 + 0.866025i) q^{37} -8.94427i q^{38} +(-5.87569 - 2.11573i) q^{39} -6.32456i q^{40} +(-9.68246 - 5.59017i) q^{41} +(-0.796921 + 7.70486i) q^{42} +(-2.73861 + 1.58114i) q^{43} +8.48528 q^{44} +(1.37298 - 6.56619i) q^{45} +(-2.00000 - 3.46410i) q^{46} -2.82843 q^{47} +(-4.06301 + 5.61177i) q^{48} +(1.50000 - 2.59808i) q^{49} +(3.53553 - 1.58114i) q^{51} +(2.00000 + 6.92820i) q^{52} +2.23607i q^{53} +(-5.43649 + 4.94414i) q^{54} +(8.21584 + 4.74342i) q^{55} +(7.74597 - 4.47214i) q^{56} +(-10.0000 + 4.47214i) q^{57} +(-8.21584 + 4.74342i) q^{58} +(-7.07107 + 3.16228i) q^{60} +(-0.500000 - 0.866025i) q^{61} +(3.87298 + 2.23607i) q^{62} +(9.01276 - 2.96145i) q^{63} +8.00000 q^{64} +(-1.93649 + 7.82624i) q^{65} +(-4.24264 - 9.48683i) q^{66} +(5.47723 + 3.16228i) q^{67} +(-3.87298 - 2.23607i) q^{68} +(-2.87298 + 3.96812i) q^{69} +10.0000 q^{70} +(1.41421 + 2.44949i) q^{71} +(8.30565 + 1.73670i) q^{72} -3.00000 q^{73} +(-0.707107 - 1.22474i) q^{74} +(10.9545 + 6.32456i) q^{76} +13.4164i q^{77} +(6.74597 - 5.70017i) q^{78} -12.6491i q^{79} +(7.74597 + 4.47214i) q^{80} +(8.24597 + 3.60611i) q^{81} +(13.6931 - 7.90569i) q^{82} -9.89949 q^{83} +(-8.87298 - 6.42419i) q^{84} +(-2.50000 - 4.33013i) q^{85} -4.47214i q^{86} +(9.41122 + 6.81388i) q^{87} +(-6.00000 + 10.3923i) q^{88} +(-3.87298 - 2.23607i) q^{89} +(7.07107 + 6.32456i) q^{90} +(-10.9545 + 3.16228i) q^{91} +5.65685 q^{92} +(0.563508 - 5.44816i) q^{93} +(2.00000 - 3.46410i) q^{94} +(7.07107 + 12.2474i) q^{95} +(-4.00000 - 8.94427i) q^{96} +(8.00000 + 13.8564i) q^{97} +(2.12132 + 3.67423i) q^{98} +(-8.48528 + 9.48683i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 4 q^{6} + 8 q^{9} - 28 q^{13} - 16 q^{16} + 40 q^{21} - 24 q^{22} + 8 q^{24} + 20 q^{30} + 12 q^{33} + 16 q^{36} - 4 q^{37} - 20 q^{45} - 16 q^{46} + 12 q^{49} + 16 q^{52} - 28 q^{54} - 80 q^{57}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 1.22474i −0.500000 + 0.866025i
\(3\) 1.72286 + 0.178197i 0.994694 + 0.102882i
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) 2.23607i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(6\) −1.43649 + 1.98406i −0.586445 + 0.809989i
\(7\) 2.73861 1.58114i 1.03510 0.597614i 0.116657 0.993172i \(-0.462782\pi\)
0.918441 + 0.395558i \(0.129449\pi\)
\(8\) 2.82843 1.00000
\(9\) 2.93649 + 0.614017i 0.978831 + 0.204672i
\(10\) 2.73861 + 1.58114i 0.866025 + 0.500000i
\(11\) −2.12132 + 3.67423i −0.639602 + 1.10782i 0.345918 + 0.938265i \(0.387568\pi\)
−0.985520 + 0.169559i \(0.945766\pi\)
\(12\) −1.41421 3.16228i −0.408248 0.912871i
\(13\) −3.50000 0.866025i −0.970725 0.240192i
\(14\) 4.47214i 1.19523i
\(15\) 0.398461 3.85243i 0.102882 0.994694i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 1.93649 1.11803i 0.469668 0.271163i −0.246433 0.969160i \(-0.579258\pi\)
0.716101 + 0.697997i \(0.245925\pi\)
\(18\) −2.82843 + 3.16228i −0.666667 + 0.745356i
\(19\) −5.47723 + 3.16228i −1.25656 + 0.725476i −0.972404 0.233301i \(-0.925047\pi\)
−0.284157 + 0.958778i \(0.591714\pi\)
\(20\) −3.87298 + 2.23607i −0.866025 + 0.500000i
\(21\) 5.00000 2.23607i 1.09109 0.487950i
\(22\) −3.00000 5.19615i −0.639602 1.10782i
\(23\) −1.41421 + 2.44949i −0.294884 + 0.510754i −0.974958 0.222390i \(-0.928614\pi\)
0.680074 + 0.733144i \(0.261948\pi\)
\(24\) 4.87298 + 0.504017i 0.994694 + 0.102882i
\(25\) 0 0
\(26\) 3.53553 3.67423i 0.693375 0.720577i
\(27\) 4.94975 + 1.58114i 0.952579 + 0.304290i
\(28\) −5.47723 3.16228i −1.03510 0.597614i
\(29\) 5.80948 + 3.35410i 1.07879 + 0.622841i 0.930570 0.366113i \(-0.119312\pi\)
0.148222 + 0.988954i \(0.452645\pi\)
\(30\) 4.43649 + 3.21209i 0.809989 + 0.586445i
\(31\) 3.16228i 0.567962i −0.958830 0.283981i \(-0.908345\pi\)
0.958830 0.283981i \(-0.0916552\pi\)
\(32\) −2.82843 4.89898i −0.500000 0.866025i
\(33\) −4.30948 + 5.95218i −0.750183 + 1.03614i
\(34\) 3.16228i 0.542326i
\(35\) −3.53553 6.12372i −0.597614 1.03510i
\(36\) −1.87298 5.70017i −0.312164 0.950028i
\(37\) −0.500000 + 0.866025i −0.0821995 + 0.142374i −0.904194 0.427121i \(-0.859528\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 8.94427i 1.45095i
\(39\) −5.87569 2.11573i −0.940863 0.338788i
\(40\) 6.32456i 1.00000i
\(41\) −9.68246 5.59017i −1.51215 0.873038i −0.999899 0.0141996i \(-0.995480\pi\)
−0.512247 0.858838i \(-0.671187\pi\)
\(42\) −0.796921 + 7.70486i −0.122968 + 1.18889i
\(43\) −2.73861 + 1.58114i −0.417635 + 0.241121i −0.694065 0.719913i \(-0.744182\pi\)
0.276430 + 0.961034i \(0.410849\pi\)
\(44\) 8.48528 1.27920
\(45\) 1.37298 6.56619i 0.204672 0.978831i
\(46\) −2.00000 3.46410i −0.294884 0.510754i
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) −4.06301 + 5.61177i −0.586445 + 0.809989i
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0 0
\(51\) 3.53553 1.58114i 0.495074 0.221404i
\(52\) 2.00000 + 6.92820i 0.277350 + 0.960769i
\(53\) 2.23607i 0.307148i 0.988137 + 0.153574i \(0.0490783\pi\)
−0.988137 + 0.153574i \(0.950922\pi\)
\(54\) −5.43649 + 4.94414i −0.739813 + 0.672813i
\(55\) 8.21584 + 4.74342i 1.10782 + 0.639602i
\(56\) 7.74597 4.47214i 1.03510 0.597614i
\(57\) −10.0000 + 4.47214i −1.32453 + 0.592349i
\(58\) −8.21584 + 4.74342i −1.07879 + 0.622841i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) −7.07107 + 3.16228i −0.912871 + 0.408248i
\(61\) −0.500000 0.866025i −0.0640184 0.110883i 0.832240 0.554416i \(-0.187058\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 3.87298 + 2.23607i 0.491869 + 0.283981i
\(63\) 9.01276 2.96145i 1.13550 0.373107i
\(64\) 8.00000 1.00000
\(65\) −1.93649 + 7.82624i −0.240192 + 0.970725i
\(66\) −4.24264 9.48683i −0.522233 1.16775i
\(67\) 5.47723 + 3.16228i 0.669150 + 0.386334i 0.795754 0.605620i \(-0.207075\pi\)
−0.126605 + 0.991953i \(0.540408\pi\)
\(68\) −3.87298 2.23607i −0.469668 0.271163i
\(69\) −2.87298 + 3.96812i −0.345867 + 0.477705i
\(70\) 10.0000 1.19523
\(71\) 1.41421 + 2.44949i 0.167836 + 0.290701i 0.937659 0.347557i \(-0.112989\pi\)
−0.769823 + 0.638258i \(0.779655\pi\)
\(72\) 8.30565 + 1.73670i 0.978831 + 0.204672i
\(73\) −3.00000 −0.351123 −0.175562 0.984468i \(-0.556174\pi\)
−0.175562 + 0.984468i \(0.556174\pi\)
\(74\) −0.707107 1.22474i −0.0821995 0.142374i
\(75\) 0 0
\(76\) 10.9545 + 6.32456i 1.25656 + 0.725476i
\(77\) 13.4164i 1.52894i
\(78\) 6.74597 5.70017i 0.763830 0.645417i
\(79\) 12.6491i 1.42314i −0.702617 0.711568i \(-0.747985\pi\)
0.702617 0.711568i \(-0.252015\pi\)
\(80\) 7.74597 + 4.47214i 0.866025 + 0.500000i
\(81\) 8.24597 + 3.60611i 0.916219 + 0.400679i
\(82\) 13.6931 7.90569i 1.51215 0.873038i
\(83\) −9.89949 −1.08661 −0.543305 0.839535i \(-0.682827\pi\)
−0.543305 + 0.839535i \(0.682827\pi\)
\(84\) −8.87298 6.42419i −0.968122 0.700936i
\(85\) −2.50000 4.33013i −0.271163 0.469668i
\(86\) 4.47214i 0.482243i
\(87\) 9.41122 + 6.81388i 1.00899 + 0.730524i
\(88\) −6.00000 + 10.3923i −0.639602 + 1.10782i
\(89\) −3.87298 2.23607i −0.410535 0.237023i 0.280484 0.959859i \(-0.409505\pi\)
−0.691020 + 0.722836i \(0.742838\pi\)
\(90\) 7.07107 + 6.32456i 0.745356 + 0.666667i
\(91\) −10.9545 + 3.16228i −1.14834 + 0.331497i
\(92\) 5.65685 0.589768
\(93\) 0.563508 5.44816i 0.0584331 0.564948i
\(94\) 2.00000 3.46410i 0.206284 0.357295i
\(95\) 7.07107 + 12.2474i 0.725476 + 1.25656i
\(96\) −4.00000 8.94427i −0.408248 0.912871i
\(97\) 8.00000 + 13.8564i 0.812277 + 1.40690i 0.911267 + 0.411816i \(0.135106\pi\)
−0.0989899 + 0.995088i \(0.531561\pi\)
\(98\) 2.12132 + 3.67423i 0.214286 + 0.371154i
\(99\) −8.48528 + 9.48683i −0.852803 + 0.953463i
\(100\) 0 0
\(101\) −5.80948 3.35410i −0.578064 0.333746i 0.182299 0.983243i \(-0.441646\pi\)
−0.760364 + 0.649497i \(0.774979\pi\)
\(102\) −0.563508 + 5.44816i −0.0557956 + 0.539448i
\(103\) 6.32456i 0.623177i −0.950217 0.311588i \(-0.899139\pi\)
0.950217 0.311588i \(-0.100861\pi\)
\(104\) −9.89949 2.44949i −0.970725 0.240192i
\(105\) −5.00000 11.1803i −0.487950 1.09109i
\(106\) −2.73861 1.58114i −0.265998 0.153574i
\(107\) −1.41421 + 2.44949i −0.136717 + 0.236801i −0.926252 0.376905i \(-0.876988\pi\)
0.789535 + 0.613706i \(0.210322\pi\)
\(108\) −2.21113 10.1544i −0.212767 0.977103i
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) −11.6190 + 6.70820i −1.10782 + 0.639602i
\(111\) −1.01575 + 1.40294i −0.0964110 + 0.133161i
\(112\) 12.6491i 1.19523i
\(113\) 5.80948 3.35410i 0.546509 0.315527i −0.201204 0.979549i \(-0.564485\pi\)
0.747713 + 0.664022i \(0.231152\pi\)
\(114\) 1.59384 15.4097i 0.149277 1.44325i
\(115\) 5.47723 + 3.16228i 0.510754 + 0.294884i
\(116\) 13.4164i 1.24568i
\(117\) −9.74597 4.69214i −0.901015 0.433788i
\(118\) 0 0
\(119\) 3.53553 6.12372i 0.324102 0.561361i
\(120\) 1.12702 10.8963i 0.102882 0.994694i
\(121\) −3.50000 6.06218i −0.318182 0.551107i
\(122\) 1.41421 0.128037
\(123\) −15.6854 11.3565i −1.41430 1.02398i
\(124\) −5.47723 + 3.16228i −0.491869 + 0.283981i
\(125\) 11.1803i 1.00000i
\(126\) −2.74597 + 13.1324i −0.244630 + 1.16993i
\(127\) −2.73861 1.58114i −0.243013 0.140303i 0.373548 0.927611i \(-0.378141\pi\)
−0.616561 + 0.787307i \(0.711474\pi\)
\(128\) −5.65685 + 9.79796i −0.500000 + 0.866025i
\(129\) −5.00000 + 2.23607i −0.440225 + 0.196875i
\(130\) −8.21584 7.90569i −0.720577 0.693375i
\(131\) 7.07107 0.617802 0.308901 0.951094i \(-0.400039\pi\)
0.308901 + 0.951094i \(0.400039\pi\)
\(132\) 14.6190 + 1.51205i 1.27242 + 0.131607i
\(133\) −10.0000 + 17.3205i −0.867110 + 1.50188i
\(134\) −7.74597 + 4.47214i −0.669150 + 0.386334i
\(135\) 3.53553 11.0680i 0.304290 0.952579i
\(136\) 5.47723 3.16228i 0.469668 0.271163i
\(137\) 13.5554 7.82624i 1.15812 0.668641i 0.207267 0.978284i \(-0.433543\pi\)
0.950853 + 0.309644i \(0.100210\pi\)
\(138\) −2.82843 6.32456i −0.240772 0.538382i
\(139\) −10.9545 + 6.32456i −0.929144 + 0.536442i −0.886541 0.462650i \(-0.846899\pi\)
−0.0426035 + 0.999092i \(0.513565\pi\)
\(140\) −7.07107 + 12.2474i −0.597614 + 1.03510i
\(141\) −4.87298 0.504017i −0.410379 0.0424459i
\(142\) −4.00000 −0.335673
\(143\) 10.6066 11.0227i 0.886969 0.921765i
\(144\) −8.00000 + 8.94427i −0.666667 + 0.745356i
\(145\) 7.50000 12.9904i 0.622841 1.07879i
\(146\) 2.12132 3.67423i 0.175562 0.304082i
\(147\) 3.04726 4.20883i 0.251334 0.347138i
\(148\) 2.00000 0.164399
\(149\) 17.4284 10.0623i 1.42779 0.824336i 0.430846 0.902426i \(-0.358215\pi\)
0.996946 + 0.0780893i \(0.0248819\pi\)
\(150\) 0 0
\(151\) 6.32456i 0.514685i 0.966320 + 0.257343i \(0.0828469\pi\)
−0.966320 + 0.257343i \(0.917153\pi\)
\(152\) −15.4919 + 8.94427i −1.25656 + 0.725476i
\(153\) 6.37298 2.09406i 0.515225 0.169295i
\(154\) −16.4317 9.48683i −1.32410 0.764471i
\(155\) −7.07107 −0.567962
\(156\) 2.21113 + 12.2927i 0.177032 + 0.984205i
\(157\) 11.0000 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(158\) 15.4919 + 8.94427i 1.23247 + 0.711568i
\(159\) −0.398461 + 3.85243i −0.0316000 + 0.305518i
\(160\) −10.9545 + 6.32456i −0.866025 + 0.500000i
\(161\) 8.94427i 0.704907i
\(162\) −10.2473 + 7.54930i −0.805107 + 0.593129i
\(163\) 10.9545 6.32456i 0.858019 0.495377i −0.00532951 0.999986i \(-0.501696\pi\)
0.863348 + 0.504608i \(0.168363\pi\)
\(164\) 22.3607i 1.74608i
\(165\) 13.3095 + 9.63628i 1.03614 + 0.750183i
\(166\) 7.00000 12.1244i 0.543305 0.941033i
\(167\) −2.82843 + 4.89898i −0.218870 + 0.379094i −0.954463 0.298330i \(-0.903570\pi\)
0.735593 + 0.677424i \(0.236904\pi\)
\(168\) 14.1421 6.32456i 1.09109 0.487950i
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 7.07107 0.542326
\(171\) −18.0255 + 5.92289i −1.37845 + 0.452935i
\(172\) 5.47723 + 3.16228i 0.417635 + 0.241121i
\(173\) −15.4919 + 8.94427i −1.17783 + 0.680020i −0.955512 0.294954i \(-0.904696\pi\)
−0.222318 + 0.974974i \(0.571362\pi\)
\(174\) −15.0000 + 6.70820i −1.13715 + 0.508548i
\(175\) 0 0
\(176\) −8.48528 14.6969i −0.639602 1.10782i
\(177\) 0 0
\(178\) 5.47723 3.16228i 0.410535 0.237023i
\(179\) 7.77817 13.4722i 0.581368 1.00696i −0.413949 0.910300i \(-0.635851\pi\)
0.995318 0.0966592i \(-0.0308157\pi\)
\(180\) −12.7460 + 4.18812i −0.950028 + 0.312164i
\(181\) −21.0000 −1.56092 −0.780459 0.625207i \(-0.785014\pi\)
−0.780459 + 0.625207i \(0.785014\pi\)
\(182\) 3.87298 15.6525i 0.287085 1.16024i
\(183\) −0.707107 1.58114i −0.0522708 0.116881i
\(184\) −4.00000 + 6.92820i −0.294884 + 0.510754i
\(185\) 1.93649 + 1.11803i 0.142374 + 0.0821995i
\(186\) 6.27415 + 4.54259i 0.460043 + 0.333079i
\(187\) 9.48683i 0.693746i
\(188\) 2.82843 + 4.89898i 0.206284 + 0.357295i
\(189\) 16.0554 3.49611i 1.16786 0.254305i
\(190\) −20.0000 −1.45095
\(191\) −9.19239 15.9217i −0.665138 1.15205i −0.979248 0.202666i \(-0.935039\pi\)
0.314110 0.949387i \(-0.398294\pi\)
\(192\) 13.7829 + 1.42558i 0.994694 + 0.102882i
\(193\) 11.5000 19.9186i 0.827788 1.43377i −0.0719816 0.997406i \(-0.522932\pi\)
0.899770 0.436365i \(-0.143734\pi\)
\(194\) −22.6274 −1.62455
\(195\) −4.73092 + 13.1384i −0.338788 + 0.940863i
\(196\) −6.00000 −0.428571
\(197\) −7.74597 4.47214i −0.551877 0.318626i 0.198002 0.980202i \(-0.436555\pi\)
−0.749879 + 0.661575i \(0.769888\pi\)
\(198\) −5.61895 17.1005i −0.399321 1.21528i
\(199\) 5.47723 3.16228i 0.388270 0.224168i −0.293140 0.956069i \(-0.594700\pi\)
0.681410 + 0.731902i \(0.261367\pi\)
\(200\) 0 0
\(201\) 8.87298 + 6.42419i 0.625852 + 0.453127i
\(202\) 8.21584 4.74342i 0.578064 0.333746i
\(203\) 21.2132 1.48888
\(204\) −6.27415 4.54259i −0.439278 0.318045i
\(205\) −12.5000 + 21.6506i −0.873038 + 1.51215i
\(206\) 7.74597 + 4.47214i 0.539687 + 0.311588i
\(207\) −5.65685 + 6.32456i −0.393179 + 0.439587i
\(208\) 10.0000 10.3923i 0.693375 0.720577i
\(209\) 26.8328i 1.85606i
\(210\) 17.2286 + 1.78197i 1.18889 + 0.122968i
\(211\) −2.73861 1.58114i −0.188534 0.108850i 0.402762 0.915305i \(-0.368050\pi\)
−0.591296 + 0.806455i \(0.701384\pi\)
\(212\) 3.87298 2.23607i 0.265998 0.153574i
\(213\) 2.00000 + 4.47214i 0.137038 + 0.306426i
\(214\) −2.00000 3.46410i −0.136717 0.236801i
\(215\) 3.53553 + 6.12372i 0.241121 + 0.417635i
\(216\) 14.0000 + 4.47214i 0.952579 + 0.304290i
\(217\) −5.00000 8.66025i −0.339422 0.587896i
\(218\) −8.48528 + 14.6969i −0.574696 + 0.995402i
\(219\) −5.16858 0.534591i −0.349260 0.0361243i
\(220\) 18.9737i 1.27920i
\(221\) −7.74597 + 2.23607i −0.521050 + 0.150414i
\(222\) −1.00000 2.23607i −0.0671156 0.150075i
\(223\) −8.21584 4.74342i −0.550173 0.317643i 0.199019 0.979996i \(-0.436225\pi\)
−0.749192 + 0.662353i \(0.769558\pi\)
\(224\) −15.4919 8.94427i −1.03510 0.597614i
\(225\) 0 0
\(226\) 9.48683i 0.631055i
\(227\) 9.89949 + 17.1464i 0.657053 + 1.13805i 0.981375 + 0.192102i \(0.0615304\pi\)
−0.324322 + 0.945947i \(0.605136\pi\)
\(228\) 17.7460 + 12.8484i 1.17526 + 0.850904i
\(229\) −8.00000 −0.528655 −0.264327 0.964433i \(-0.585150\pi\)
−0.264327 + 0.964433i \(0.585150\pi\)
\(230\) −7.74597 + 4.47214i −0.510754 + 0.294884i
\(231\) −2.39076 + 23.1146i −0.157301 + 1.52083i
\(232\) 16.4317 + 9.48683i 1.07879 + 0.622841i
\(233\) 26.8328i 1.75788i 0.476936 + 0.878938i \(0.341747\pi\)
−0.476936 + 0.878938i \(0.658253\pi\)
\(234\) 12.6381 8.61848i 0.826179 0.563408i
\(235\) 6.32456i 0.412568i
\(236\) 0 0
\(237\) 2.25403 21.7926i 0.146415 1.41558i
\(238\) 5.00000 + 8.66025i 0.324102 + 0.561361i
\(239\) 15.5563 1.00626 0.503128 0.864212i \(-0.332182\pi\)
0.503128 + 0.864212i \(0.332182\pi\)
\(240\) 12.5483 + 9.08517i 0.809989 + 0.586445i
\(241\) −3.50000 6.06218i −0.225455 0.390499i 0.731001 0.682376i \(-0.239053\pi\)
−0.956456 + 0.291877i \(0.905720\pi\)
\(242\) 9.89949 0.636364
\(243\) 13.5640 + 7.68223i 0.870134 + 0.492815i
\(244\) −1.00000 + 1.73205i −0.0640184 + 0.110883i
\(245\) −5.80948 3.35410i −0.371154 0.214286i
\(246\) 25.0000 11.1803i 1.59394 0.712832i
\(247\) 21.9089 6.32456i 1.39403 0.402422i
\(248\) 8.94427i 0.567962i
\(249\) −17.0554 1.76406i −1.08084 0.111793i
\(250\) 13.6931 + 7.90569i 0.866025 + 0.500000i
\(251\) −12.0208 20.8207i −0.758747 1.31419i −0.943490 0.331402i \(-0.892478\pi\)
0.184743 0.982787i \(-0.440855\pi\)
\(252\) −14.1421 12.6491i −0.890871 0.796819i
\(253\) −6.00000 10.3923i −0.377217 0.653359i
\(254\) 3.87298 2.23607i 0.243013 0.140303i
\(255\) −3.53553 7.90569i −0.221404 0.495074i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 9.68246 + 5.59017i 0.603975 + 0.348705i 0.770604 0.637315i \(-0.219955\pi\)
−0.166629 + 0.986020i \(0.553288\pi\)
\(258\) 0.796921 7.70486i 0.0496141 0.479684i
\(259\) 3.16228i 0.196494i
\(260\) 15.4919 4.47214i 0.960769 0.277350i
\(261\) 15.0000 + 13.4164i 0.928477 + 0.830455i
\(262\) −5.00000 + 8.66025i −0.308901 + 0.535032i
\(263\) −2.12132 + 3.67423i −0.130806 + 0.226563i −0.923988 0.382422i \(-0.875090\pi\)
0.793181 + 0.608985i \(0.208423\pi\)
\(264\) −12.1890 + 16.8353i −0.750183 + 1.03614i
\(265\) 5.00000 0.307148
\(266\) −14.1421 24.4949i −0.867110 1.50188i
\(267\) −6.27415 4.54259i −0.383972 0.278002i
\(268\) 12.6491i 0.772667i
\(269\) 15.4919 8.94427i 0.944560 0.545342i 0.0531731 0.998585i \(-0.483067\pi\)
0.891387 + 0.453243i \(0.149733\pi\)
\(270\) 11.0554 + 12.1564i 0.672813 + 0.739813i
\(271\) −10.9545 6.32456i −0.665436 0.384189i 0.128909 0.991656i \(-0.458852\pi\)
−0.794345 + 0.607467i \(0.792186\pi\)
\(272\) 8.94427i 0.542326i
\(273\) −19.4365 + 3.49611i −1.17635 + 0.211594i
\(274\) 22.1359i 1.33728i
\(275\) 0 0
\(276\) 9.74597 + 1.00803i 0.586638 + 0.0606765i
\(277\) −5.50000 9.52628i −0.330463 0.572379i 0.652140 0.758099i \(-0.273872\pi\)
−0.982603 + 0.185720i \(0.940538\pi\)
\(278\) 17.8885i 1.07288i
\(279\) 1.94169 9.28600i 0.116246 0.555938i
\(280\) −10.0000 17.3205i −0.597614 1.03510i
\(281\) 15.6525i 0.933748i 0.884324 + 0.466874i \(0.154620\pi\)
−0.884324 + 0.466874i \(0.845380\pi\)
\(282\) 4.06301 5.61177i 0.241949 0.334176i
\(283\) 2.73861 + 1.58114i 0.162794 + 0.0939889i 0.579183 0.815197i \(-0.303371\pi\)
−0.416390 + 0.909186i \(0.636705\pi\)
\(284\) 2.82843 4.89898i 0.167836 0.290701i
\(285\) 10.0000 + 22.3607i 0.592349 + 1.32453i
\(286\) 6.00000 + 20.7846i 0.354787 + 1.22902i
\(287\) −35.3553 −2.08696
\(288\) −5.29760 16.1225i −0.312164 0.950028i
\(289\) −6.00000 + 10.3923i −0.352941 + 0.611312i
\(290\) 10.6066 + 18.3712i 0.622841 + 1.07879i
\(291\) 11.3137 + 25.2982i 0.663221 + 1.48301i
\(292\) 3.00000 + 5.19615i 0.175562 + 0.304082i
\(293\) −17.4284 + 10.0623i −1.01818 + 0.587846i −0.913576 0.406668i \(-0.866691\pi\)
−0.104603 + 0.994514i \(0.533357\pi\)
\(294\) 3.00000 + 6.70820i 0.174964 + 0.391230i
\(295\) 0 0
\(296\) −1.41421 + 2.44949i −0.0821995 + 0.142374i
\(297\) −16.3095 + 14.8324i −0.946372 + 0.860665i
\(298\) 28.4605i 1.64867i
\(299\) 7.07107 7.34847i 0.408930 0.424973i
\(300\) 0 0
\(301\) −5.00000 + 8.66025i −0.288195 + 0.499169i
\(302\) −7.74597 4.47214i −0.445730 0.257343i
\(303\) −9.41122 6.81388i −0.540660 0.391447i
\(304\) 25.2982i 1.45095i
\(305\) −1.93649 + 1.11803i −0.110883 + 0.0640184i
\(306\) −1.94169 + 9.28600i −0.110999 + 0.530845i
\(307\) 18.9737i 1.08288i −0.840738 0.541442i \(-0.817879\pi\)
0.840738 0.541442i \(-0.182121\pi\)
\(308\) 23.2379 13.4164i 1.32410 0.764471i
\(309\) 1.12702 10.8963i 0.0641137 0.619870i
\(310\) 5.00000 8.66025i 0.283981 0.491869i
\(311\) 31.1127 1.76424 0.882120 0.471025i \(-0.156116\pi\)
0.882120 + 0.471025i \(0.156116\pi\)
\(312\) −16.6190 5.98419i −0.940863 0.338788i
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) −7.77817 + 13.4722i −0.438948 + 0.760280i
\(315\) −6.62200 20.1531i −0.373107 1.13550i
\(316\) −21.9089 + 12.6491i −1.23247 + 0.711568i
\(317\) 11.1803i 0.627950i 0.949431 + 0.313975i \(0.101661\pi\)
−0.949431 + 0.313975i \(0.898339\pi\)
\(318\) −4.43649 3.21209i −0.248786 0.180125i
\(319\) −24.6475 + 14.2302i −1.38000 + 0.796741i
\(320\) 17.8885i 1.00000i
\(321\) −2.87298 + 3.96812i −0.160354 + 0.221479i
\(322\) −10.9545 6.32456i −0.610468 0.352454i
\(323\) −7.07107 + 12.2474i −0.393445 + 0.681466i
\(324\) −2.00000 17.8885i −0.111111 0.993808i
\(325\) 0 0
\(326\) 17.8885i 0.990755i
\(327\) 20.6743 + 2.13836i 1.14329 + 0.118252i
\(328\) −27.3861 15.8114i −1.51215 0.873038i
\(329\) −7.74597 + 4.47214i −0.427049 + 0.246557i
\(330\) −21.2132 + 9.48683i −1.16775 + 0.522233i
\(331\) 10.9545 6.32456i 0.602111 0.347629i −0.167761 0.985828i \(-0.553654\pi\)
0.769872 + 0.638199i \(0.220320\pi\)
\(332\) 9.89949 + 17.1464i 0.543305 + 0.941033i
\(333\) −2.00000 + 2.23607i −0.109599 + 0.122536i
\(334\) −4.00000 6.92820i −0.218870 0.379094i
\(335\) 7.07107 12.2474i 0.386334 0.669150i
\(336\) −2.25403 + 21.7926i −0.122968 + 1.18889i
\(337\) −5.00000 −0.272367 −0.136184 0.990684i \(-0.543484\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(338\) −15.5563 + 9.79796i −0.846154 + 0.532939i
\(339\) 10.6066 4.74342i 0.576072 0.257627i
\(340\) −5.00000 + 8.66025i −0.271163 + 0.469668i
\(341\) 11.6190 + 6.70820i 0.629201 + 0.363270i
\(342\) 5.49193 26.2648i 0.296970 1.42024i
\(343\) 12.6491i 0.682988i
\(344\) −7.74597 + 4.47214i −0.417635 + 0.241121i
\(345\) 8.87298 + 6.42419i 0.477705 + 0.345867i
\(346\) 25.2982i 1.36004i
\(347\) 4.24264 + 7.34847i 0.227757 + 0.394486i 0.957143 0.289616i \(-0.0935275\pi\)
−0.729386 + 0.684102i \(0.760194\pi\)
\(348\) 2.39076 23.1146i 0.128158 1.23907i
\(349\) 6.00000 10.3923i 0.321173 0.556287i −0.659558 0.751654i \(-0.729256\pi\)
0.980730 + 0.195367i \(0.0625897\pi\)
\(350\) 0 0
\(351\) −15.9548 9.82059i −0.851605 0.524184i
\(352\) 24.0000 1.27920
\(353\) −5.80948 3.35410i −0.309207 0.178521i 0.337364 0.941374i \(-0.390465\pi\)
−0.646572 + 0.762853i \(0.723798\pi\)
\(354\) 0 0
\(355\) 5.47723 3.16228i 0.290701 0.167836i
\(356\) 8.94427i 0.474045i
\(357\) 7.18246 9.92030i 0.380136 0.525038i
\(358\) 11.0000 + 19.0526i 0.581368 + 1.00696i
\(359\) −21.2132 −1.11959 −0.559795 0.828631i \(-0.689120\pi\)
−0.559795 + 0.828631i \(0.689120\pi\)
\(360\) 3.88338 18.5720i 0.204672 0.978831i
\(361\) 10.5000 18.1865i 0.552632 0.957186i
\(362\) 14.8492 25.7196i 0.780459 1.35179i
\(363\) −4.94975 11.0680i −0.259794 0.580918i
\(364\) 16.4317 + 15.8114i 0.861254 + 0.828742i
\(365\) 6.70820i 0.351123i
\(366\) 2.43649 + 0.252009i 0.127357 + 0.0131727i
\(367\) −16.4317 9.48683i −0.857727 0.495209i 0.00552377 0.999985i \(-0.498242\pi\)
−0.863250 + 0.504776i \(0.831575\pi\)
\(368\) −5.65685 9.79796i −0.294884 0.510754i
\(369\) −25.0000 22.3607i −1.30145 1.16405i
\(370\) −2.73861 + 1.58114i −0.142374 + 0.0821995i
\(371\) 3.53553 + 6.12372i 0.183556 + 0.317928i
\(372\) −10.0000 + 4.47214i −0.518476 + 0.231869i
\(373\) −1.50000 2.59808i −0.0776671 0.134523i 0.824576 0.565751i \(-0.191414\pi\)
−0.902243 + 0.431228i \(0.858080\pi\)
\(374\) −11.6190 6.70820i −0.600802 0.346873i
\(375\) 1.99230 19.2622i 0.102882 0.994694i
\(376\) −8.00000 −0.412568
\(377\) −17.4284 16.7705i −0.897610 0.863725i
\(378\) −7.07107 + 22.1359i −0.363696 + 1.13855i
\(379\) −2.73861 1.58114i −0.140673 0.0812176i 0.428012 0.903773i \(-0.359214\pi\)
−0.568685 + 0.822556i \(0.692548\pi\)
\(380\) 14.1421 24.4949i 0.725476 1.25656i
\(381\) −4.43649 3.21209i −0.227288 0.164561i
\(382\) 26.0000 1.33028
\(383\) 8.48528 + 14.6969i 0.433578 + 0.750978i 0.997178 0.0750689i \(-0.0239177\pi\)
−0.563601 + 0.826047i \(0.690584\pi\)
\(384\) −11.4919 + 15.8725i −0.586445 + 0.809989i
\(385\) 30.0000 1.52894
\(386\) 16.2635 + 28.1691i 0.827788 + 1.43377i
\(387\) −9.01276 + 2.96145i −0.458144 + 0.150539i
\(388\) 16.0000 27.7128i 0.812277 1.40690i
\(389\) 29.0689i 1.47385i −0.675974 0.736925i \(-0.736277\pi\)
0.675974 0.736925i \(-0.263723\pi\)
\(390\) −12.7460 15.0844i −0.645417 0.763830i
\(391\) 6.32456i 0.319847i
\(392\) 4.24264 7.34847i 0.214286 0.371154i
\(393\) 12.1825 + 1.26004i 0.614524 + 0.0635608i
\(394\) 10.9545 6.32456i 0.551877 0.318626i
\(395\) −28.2843 −1.42314
\(396\) 24.9170 + 5.21011i 1.25212 + 0.261818i
\(397\) 10.0000 + 17.3205i 0.501886 + 0.869291i 0.999998 + 0.00217869i \(0.000693499\pi\)
−0.498112 + 0.867113i \(0.665973\pi\)
\(398\) 8.94427i 0.448336i
\(399\) −20.3151 + 28.0588i −1.01703 + 1.40470i
\(400\) 0 0
\(401\) 13.5554 + 7.82624i 0.676926 + 0.390824i 0.798696 0.601735i \(-0.205524\pi\)
−0.121770 + 0.992558i \(0.538857\pi\)
\(402\) −14.1421 + 6.32456i −0.705346 + 0.315440i
\(403\) −2.73861 + 11.0680i −0.136420 + 0.551335i
\(404\) 13.4164i 0.667491i
\(405\) 8.06351 18.4385i 0.400679 0.916219i
\(406\) −15.0000 + 25.9808i −0.744438 + 1.28940i
\(407\) −2.12132 3.67423i −0.105150 0.182125i
\(408\) 10.0000 4.47214i 0.495074 0.221404i
\(409\) 10.5000 + 18.1865i 0.519192 + 0.899266i 0.999751 + 0.0223042i \(0.00710022\pi\)
−0.480560 + 0.876962i \(0.659566\pi\)
\(410\) −17.6777 30.6186i −0.873038 1.51215i
\(411\) 24.7487 11.0680i 1.22077 0.545943i
\(412\) −10.9545 + 6.32456i −0.539687 + 0.311588i
\(413\) 0 0
\(414\) −3.74597 11.4003i −0.184104 0.560296i
\(415\) 22.1359i 1.08661i
\(416\) 5.65685 + 19.5959i 0.277350 + 0.960769i
\(417\) −20.0000 + 8.94427i −0.979404 + 0.438003i
\(418\) 32.8634 + 18.9737i 1.60740 + 0.928032i
\(419\) −7.77817 + 13.4722i −0.379989 + 0.658160i −0.991060 0.133416i \(-0.957405\pi\)
0.611071 + 0.791575i \(0.290739\pi\)
\(420\) −14.3649 + 19.8406i −0.700936 + 0.968122i
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 3.87298 2.23607i 0.188534 0.108850i
\(423\) −8.30565 1.73670i −0.403835 0.0844413i
\(424\) 6.32456i 0.307148i
\(425\) 0 0
\(426\) −6.89144 0.712788i −0.333891 0.0345347i
\(427\) −2.73861 1.58114i −0.132531 0.0765167i
\(428\) 5.65685 0.273434
\(429\) 20.2379 17.1005i 0.977095 0.825620i
\(430\) −10.0000 −0.482243
\(431\) −12.0208 + 20.8207i −0.579022 + 1.00290i 0.416570 + 0.909104i \(0.363232\pi\)
−0.995592 + 0.0937922i \(0.970101\pi\)
\(432\) −15.3767 + 13.9842i −0.739813 + 0.672813i
\(433\) 11.5000 + 19.9186i 0.552655 + 0.957226i 0.998082 + 0.0619079i \(0.0197185\pi\)
−0.445427 + 0.895318i \(0.646948\pi\)
\(434\) 14.1421 0.678844
\(435\) 15.2363 21.0441i 0.730524 1.00899i
\(436\) −12.0000 20.7846i −0.574696 0.995402i
\(437\) 17.8885i 0.855725i
\(438\) 4.30948 5.95218i 0.205915 0.284406i
\(439\) 8.21584 + 4.74342i 0.392121 + 0.226391i 0.683079 0.730345i \(-0.260641\pi\)
−0.290958 + 0.956736i \(0.593974\pi\)
\(440\) 23.2379 + 13.4164i 1.10782 + 0.639602i
\(441\) 6.00000 6.70820i 0.285714 0.319438i
\(442\) 2.73861 11.0680i 0.130263 0.526450i
\(443\) −11.3137 −0.537531 −0.268765 0.963206i \(-0.586616\pi\)
−0.268765 + 0.963206i \(0.586616\pi\)
\(444\) 3.44572 + 0.356394i 0.163527 + 0.0169137i
\(445\) −5.00000 + 8.66025i −0.237023 + 0.410535i
\(446\) 11.6190 6.70820i 0.550173 0.317643i
\(447\) 31.8198 14.2302i 1.50503 0.673068i
\(448\) 21.9089 12.6491i 1.03510 0.597614i
\(449\) −7.74597 + 4.47214i −0.365555 + 0.211053i −0.671515 0.740991i \(-0.734356\pi\)
0.305960 + 0.952044i \(0.401023\pi\)
\(450\) 0 0
\(451\) 41.0792 23.7171i 1.93434 1.11679i
\(452\) −11.6190 6.70820i −0.546509 0.315527i
\(453\) −1.12702 + 10.8963i −0.0529519 + 0.511954i
\(454\) −28.0000 −1.31411
\(455\) 7.07107 + 24.4949i 0.331497 + 1.14834i
\(456\) −28.2843 + 12.6491i −1.32453 + 0.592349i
\(457\) −0.500000 + 0.866025i −0.0233890 + 0.0405110i −0.877483 0.479608i \(-0.840779\pi\)
0.854094 + 0.520119i \(0.174112\pi\)
\(458\) 5.65685 9.79796i 0.264327 0.457829i
\(459\) 11.3529 2.47212i 0.529909 0.115389i
\(460\) 12.6491i 0.589768i
\(461\) 9.68246 5.59017i 0.450957 0.260360i −0.257277 0.966338i \(-0.582825\pi\)
0.708234 + 0.705977i \(0.249492\pi\)
\(462\) −26.6190 19.2726i −1.23843 0.896641i
\(463\) 22.1359i 1.02874i 0.857567 + 0.514372i \(0.171975\pi\)
−0.857567 + 0.514372i \(0.828025\pi\)
\(464\) −23.2379 + 13.4164i −1.07879 + 0.622841i
\(465\) −12.1825 1.26004i −0.564948 0.0584331i
\(466\) −32.8634 18.9737i −1.52237 0.878938i
\(467\) −12.7279 −0.588978 −0.294489 0.955655i \(-0.595149\pi\)
−0.294489 + 0.955655i \(0.595149\pi\)
\(468\) 1.61895 + 21.5726i 0.0748360 + 0.997196i
\(469\) 20.0000 0.923514
\(470\) −7.74597 4.47214i −0.357295 0.206284i
\(471\) 18.9515 + 1.96017i 0.873237 + 0.0903197i
\(472\) 0 0
\(473\) 13.4164i 0.616887i
\(474\) 25.0966 + 18.1703i 1.15272 + 0.834591i
\(475\) 0 0
\(476\) −14.1421 −0.648204
\(477\) −1.37298 + 6.56619i −0.0628646 + 0.300645i
\(478\) −11.0000 + 19.0526i −0.503128 + 0.871444i
\(479\) 10.6066 18.3712i 0.484628 0.839400i −0.515216 0.857060i \(-0.672288\pi\)
0.999844 + 0.0176600i \(0.00562165\pi\)
\(480\) −20.0000 + 8.94427i −0.912871 + 0.408248i
\(481\) 2.50000 2.59808i 0.113990 0.118462i
\(482\) 9.89949 0.450910
\(483\) −1.59384 + 15.4097i −0.0725223 + 0.701167i
\(484\) −7.00000 + 12.1244i −0.318182 + 0.551107i
\(485\) 30.9839 17.8885i 1.40690 0.812277i
\(486\) −19.0000 + 11.1803i −0.861858 + 0.507151i
\(487\) 19.1703 11.0680i 0.868689 0.501538i 0.00177647 0.999998i \(-0.499435\pi\)
0.866912 + 0.498461i \(0.166101\pi\)
\(488\) −1.41421 2.44949i −0.0640184 0.110883i
\(489\) 20.0000 8.94427i 0.904431 0.404474i
\(490\) 8.21584 4.74342i 0.371154 0.214286i
\(491\) 16.2635 28.1691i 0.733959 1.27126i −0.221219 0.975224i \(-0.571004\pi\)
0.955178 0.296031i \(-0.0956632\pi\)
\(492\) −3.98461 + 38.5243i −0.179640 + 1.73681i
\(493\) 15.0000 0.675566
\(494\) −7.74597 + 31.3050i −0.348508 + 1.40848i
\(495\) 21.2132 + 18.9737i 0.953463 + 0.852803i
\(496\) 10.9545 + 6.32456i 0.491869 + 0.283981i
\(497\) 7.74597 + 4.47214i 0.347454 + 0.200603i
\(498\) 14.2205 19.6412i 0.637238 0.880143i
\(499\) 34.7851i 1.55719i −0.627525 0.778596i \(-0.715932\pi\)
0.627525 0.778596i \(-0.284068\pi\)
\(500\) −19.3649 + 11.1803i −0.866025 + 0.500000i
\(501\) −5.74597 + 7.93624i −0.256711 + 0.354565i
\(502\) 34.0000 1.51749
\(503\) −12.0208 20.8207i −0.535982 0.928347i −0.999115 0.0420589i \(-0.986608\pi\)
0.463133 0.886289i \(-0.346725\pi\)
\(504\) 25.4919 8.37624i 1.13550 0.373107i
\(505\) −7.50000 + 12.9904i −0.333746 + 0.578064i
\(506\) 16.9706 0.754434
\(507\) 18.7326 + 12.4935i 0.831945 + 0.554858i
\(508\) 6.32456i 0.280607i
\(509\) 9.68246 + 5.59017i 0.429167 + 0.247780i 0.698992 0.715130i \(-0.253632\pi\)
−0.269824 + 0.962910i \(0.586966\pi\)
\(510\) 12.1825 + 1.26004i 0.539448 + 0.0557956i
\(511\) −8.21584 + 4.74342i −0.363447 + 0.209836i
\(512\) 22.6274 1.00000
\(513\) −32.1109 + 6.99222i −1.41773 + 0.308714i
\(514\) −13.6931 + 7.90569i −0.603975 + 0.348705i
\(515\) −14.1421 −0.623177
\(516\) 8.87298 + 6.42419i 0.390611 + 0.282809i
\(517\) 6.00000 10.3923i 0.263880 0.457053i
\(518\) −3.87298 2.23607i −0.170169 0.0982472i
\(519\) −28.2843 + 12.6491i −1.24154 + 0.555234i
\(520\) −5.47723 + 22.1359i −0.240192 + 0.970725i
\(521\) 6.70820i 0.293892i 0.989145 + 0.146946i \(0.0469443\pi\)
−0.989145 + 0.146946i \(0.953056\pi\)
\(522\) −27.0383 + 8.88434i −1.18343 + 0.388857i
\(523\) −30.1247 17.3925i −1.31726 0.760522i −0.333975 0.942582i \(-0.608390\pi\)
−0.983287 + 0.182060i \(0.941724\pi\)
\(524\) −7.07107 12.2474i −0.308901 0.535032i
\(525\) 0 0
\(526\) −3.00000 5.19615i −0.130806 0.226563i
\(527\) −3.53553 6.12372i −0.154010 0.266754i
\(528\) −12.0000 26.8328i −0.522233 1.16775i
\(529\) 7.50000 + 12.9904i 0.326087 + 0.564799i
\(530\) −3.53553 + 6.12372i −0.153574 + 0.265998i
\(531\) 0 0
\(532\) 40.0000 1.73422
\(533\) 29.0474 + 27.9508i 1.25818 + 1.21069i
\(534\) 10.0000 4.47214i 0.432742 0.193528i
\(535\) 5.47723 + 3.16228i 0.236801 + 0.136717i
\(536\) 15.4919 + 8.94427i 0.669150 + 0.386334i
\(537\) 15.8014 21.8247i 0.681881 0.941803i
\(538\) 25.2982i 1.09068i
\(539\) 6.36396 + 11.0227i 0.274115 + 0.474781i
\(540\) −22.7058 + 4.94425i −0.977103 + 0.212767i
\(541\) −39.0000 −1.67674 −0.838370 0.545101i \(-0.816491\pi\)
−0.838370 + 0.545101i \(0.816491\pi\)
\(542\) 15.4919 8.94427i 0.665436 0.384189i
\(543\) −36.1801 3.74214i −1.55263 0.160590i
\(544\) −10.9545 6.32456i −0.469668 0.271163i
\(545\) 26.8328i 1.14939i
\(546\) 9.46183 26.2769i 0.404929 1.12455i
\(547\) 44.2719i 1.89293i 0.322808 + 0.946465i \(0.395373\pi\)
−0.322808 + 0.946465i \(0.604627\pi\)
\(548\) −27.1109 15.6525i −1.15812 0.668641i
\(549\) −0.936492 2.85008i −0.0399685 0.121639i
\(550\) 0 0
\(551\) −42.4264 −1.80743
\(552\) −8.12602 + 11.2235i −0.345867 + 0.477705i
\(553\) −20.0000 34.6410i −0.850487 1.47309i
\(554\) 15.5563 0.660926
\(555\) 3.13707 + 2.27129i 0.133161 + 0.0964110i
\(556\) 21.9089 + 12.6491i 0.929144 + 0.536442i
\(557\) −25.1744 14.5344i −1.06667 0.615844i −0.139403 0.990236i \(-0.544518\pi\)
−0.927271 + 0.374392i \(0.877852\pi\)
\(558\) 10.0000 + 8.94427i 0.423334 + 0.378641i
\(559\) 10.9545 3.16228i 0.463324 0.133750i
\(560\) 28.2843 1.19523
\(561\) −1.69052 + 16.3445i −0.0713740 + 0.690065i
\(562\) −19.1703 11.0680i −0.808650 0.466874i
\(563\) 19.7990 + 34.2929i 0.834428 + 1.44527i 0.894495 + 0.447077i \(0.147535\pi\)
−0.0600674 + 0.998194i \(0.519132\pi\)
\(564\) 4.00000 + 8.94427i 0.168430 + 0.376622i
\(565\) −7.50000 12.9904i −0.315527 0.546509i
\(566\) −3.87298 + 2.23607i −0.162794 + 0.0939889i
\(567\) 28.2843 3.16228i 1.18783 0.132803i
\(568\) 4.00000 + 6.92820i 0.167836 + 0.290701i
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) −34.4572 3.56394i −1.44325 0.149277i
\(571\) 15.8114i 0.661686i −0.943686 0.330843i \(-0.892667\pi\)
0.943686 0.330843i \(-0.107333\pi\)
\(572\) −29.6985 7.34847i −1.24176 0.307255i
\(573\) −13.0000 29.0689i −0.543083 1.21437i
\(574\) 25.0000 43.3013i 1.04348 1.80736i
\(575\) 0 0
\(576\) 23.4919 + 4.91213i 0.978831 + 0.204672i
\(577\) 39.0000 1.62359 0.811796 0.583942i \(-0.198490\pi\)
0.811796 + 0.583942i \(0.198490\pi\)
\(578\) −8.48528 14.6969i −0.352941 0.611312i
\(579\) 23.3623 32.2677i 0.970905 1.34100i
\(580\) −30.0000 −1.24568
\(581\) −27.1109 + 15.6525i −1.12475 + 0.649374i
\(582\) −38.9839 4.03214i −1.61593 0.167137i
\(583\) −8.21584 4.74342i −0.340265 0.196452i
\(584\) −8.48528 −0.351123
\(585\) −10.4919 + 21.7926i −0.433788 + 0.901015i
\(586\) 28.4605i 1.17569i
\(587\) 16.9706 29.3939i 0.700450 1.21322i −0.267858 0.963458i \(-0.586316\pi\)
0.968309 0.249757i \(-0.0803507\pi\)
\(588\) −10.3372 1.06918i −0.426297 0.0440923i
\(589\) 10.0000 + 17.3205i 0.412043 + 0.713679i
\(590\) 0 0
\(591\) −12.5483 9.08517i −0.516168 0.373714i
\(592\) −2.00000 3.46410i −0.0821995 0.142374i
\(593\) 2.23607i 0.0918243i −0.998945 0.0459122i \(-0.985381\pi\)
0.998945 0.0459122i \(-0.0146194\pi\)
\(594\) −6.63340 30.4631i −0.272172 1.24991i
\(595\) −13.6931 7.90569i −0.561361 0.324102i
\(596\) −34.8569 20.1246i −1.42779 0.824336i
\(597\) 10.0000 4.47214i 0.409273 0.183032i
\(598\) 4.00000 + 13.8564i 0.163572 + 0.566631i
\(599\) −15.5563 −0.635615 −0.317808 0.948155i \(-0.602947\pi\)
−0.317808 + 0.948155i \(0.602947\pi\)
\(600\) 0 0
\(601\) 16.5000 28.5788i 0.673049 1.16576i −0.303986 0.952676i \(-0.598318\pi\)
0.977035 0.213079i \(-0.0683491\pi\)
\(602\) −7.07107 12.2474i −0.288195 0.499169i
\(603\) 14.1421 + 12.6491i 0.575912 + 0.515112i
\(604\) 10.9545 6.32456i 0.445730 0.257343i
\(605\) −13.5554 + 7.82624i −0.551107 + 0.318182i
\(606\) 15.0000 6.70820i 0.609333 0.272502i
\(607\) −24.6475 + 14.2302i −1.00041 + 0.577588i −0.908370 0.418167i \(-0.862673\pi\)
−0.0920417 + 0.995755i \(0.529339\pi\)
\(608\) 30.9839 + 17.8885i 1.25656 + 0.725476i
\(609\) 36.5474 + 3.78013i 1.48097 + 0.153179i
\(610\) 3.16228i 0.128037i
\(611\) 9.89949 + 2.44949i 0.400491 + 0.0990957i
\(612\) −10.0000 8.94427i −0.404226 0.361551i
\(613\) −2.50000 + 4.33013i −0.100974 + 0.174892i −0.912086 0.409998i \(-0.865529\pi\)
0.811112 + 0.584891i \(0.198863\pi\)
\(614\) 23.2379 + 13.4164i 0.937805 + 0.541442i
\(615\) −25.3938 + 35.0735i −1.02398 + 1.41430i
\(616\) 37.9473i 1.52894i
\(617\) −21.3014 + 12.2984i −0.857562 + 0.495114i −0.863195 0.504870i \(-0.831540\pi\)
0.00563284 + 0.999984i \(0.498207\pi\)
\(618\) 12.5483 + 9.08517i 0.504766 + 0.365459i
\(619\) 25.2982i 1.01682i −0.861115 0.508411i \(-0.830233\pi\)
0.861115 0.508411i \(-0.169767\pi\)
\(620\) 7.07107 + 12.2474i 0.283981 + 0.491869i
\(621\) −10.8730 + 9.88829i −0.436318 + 0.396803i
\(622\) −22.0000 + 38.1051i −0.882120 + 1.52788i
\(623\) −14.1421 −0.566593
\(624\) 19.0805 16.1225i 0.763830 0.645417i
\(625\) −25.0000 −1.00000
\(626\) 5.65685 9.79796i 0.226093 0.391605i
\(627\) 4.78153 46.2292i 0.190956 1.84622i
\(628\) −11.0000 19.0526i −0.438948 0.760280i
\(629\) 2.23607i 0.0891579i
\(630\) 29.3649 + 6.14017i 1.16993 + 0.244630i
\(631\) −21.9089 + 12.6491i −0.872180 + 0.503553i −0.868072 0.496438i \(-0.834641\pi\)
−0.00410769 + 0.999992i \(0.501308\pi\)
\(632\) 35.7771i 1.42314i
\(633\) −4.43649 3.21209i −0.176335 0.127669i
\(634\) −13.6931 7.90569i −0.543821 0.313975i
\(635\) −3.53553 + 6.12372i −0.140303 + 0.243013i
\(636\) 7.07107 3.16228i 0.280386 0.125392i
\(637\) −7.50000 + 7.79423i −0.297161 + 0.308819i
\(638\) 40.2492i 1.59348i
\(639\) 2.64880 + 8.06126i 0.104785 + 0.318898i
\(640\) 21.9089 + 12.6491i 0.866025 + 0.500000i
\(641\) −13.5554 + 7.82624i −0.535408 + 0.309118i −0.743216 0.669052i \(-0.766700\pi\)
0.207808 + 0.978170i \(0.433367\pi\)
\(642\) −2.82843 6.32456i −0.111629 0.249610i
\(643\) −10.9545 + 6.32456i −0.432001 + 0.249416i −0.700199 0.713948i \(-0.746905\pi\)
0.268198 + 0.963364i \(0.413572\pi\)
\(644\) 15.4919 8.94427i 0.610468 0.352454i
\(645\) 5.00000 + 11.1803i 0.196875 + 0.440225i
\(646\) −10.0000 17.3205i −0.393445 0.681466i
\(647\) 0.707107 1.22474i 0.0277992 0.0481497i −0.851791 0.523882i \(-0.824483\pi\)
0.879590 + 0.475732i \(0.157817\pi\)
\(648\) 23.3231 + 10.1996i 0.916219 + 0.400679i
\(649\) 0 0
\(650\) 0 0
\(651\) −7.07107 15.8114i −0.277137 0.619697i
\(652\) −21.9089 12.6491i −0.858019 0.495377i
\(653\) −27.1109 15.6525i −1.06093 0.612529i −0.135241 0.990813i \(-0.543181\pi\)
−0.925690 + 0.378284i \(0.876514\pi\)
\(654\) −17.2379 + 23.8087i −0.674055 + 0.930994i
\(655\) 15.8114i 0.617802i
\(656\) 38.7298 22.3607i 1.51215 0.873038i
\(657\) −8.80948 1.84205i −0.343690 0.0718652i
\(658\) 12.6491i 0.493114i
\(659\) 11.3137 + 19.5959i 0.440720 + 0.763349i 0.997743 0.0671481i \(-0.0213900\pi\)
−0.557024 + 0.830497i \(0.688057\pi\)
\(660\) 3.38105 32.6890i 0.131607 1.27242i
\(661\) −8.50000 + 14.7224i −0.330612 + 0.572636i −0.982632 0.185565i \(-0.940588\pi\)
0.652020 + 0.758202i \(0.273922\pi\)
\(662\) 17.8885i 0.695258i
\(663\) −13.7437 + 2.47212i −0.533760 + 0.0960093i
\(664\) −28.0000 −1.08661
\(665\) 38.7298 + 22.3607i 1.50188 + 0.867110i
\(666\) −1.32440 4.03063i −0.0513194 0.156184i
\(667\) −16.4317 + 9.48683i −0.636237 + 0.367332i
\(668\) 11.3137 0.437741
\(669\) −13.3095 9.63628i −0.514574 0.372560i
\(670\) 10.0000 + 17.3205i 0.386334 + 0.669150i
\(671\) 4.24264 0.163785
\(672\) −25.0966 18.1703i −0.968122 0.700936i
\(673\) −13.5000 + 23.3827i −0.520387 + 0.901336i 0.479332 + 0.877633i \(0.340879\pi\)
−0.999719 + 0.0237028i \(0.992454\pi\)
\(674\) 3.53553 6.12372i 0.136184 0.235877i
\(675\) 0 0
\(676\) −1.00000 25.9808i −0.0384615 0.999260i
\(677\) 44.7214i 1.71878i 0.511319 + 0.859391i \(0.329157\pi\)
−0.511319 + 0.859391i \(0.670843\pi\)
\(678\) −1.69052 + 16.3445i −0.0649242 + 0.627706i
\(679\) 43.8178 + 25.2982i 1.68157 + 0.970857i
\(680\) −7.07107 12.2474i −0.271163 0.469668i
\(681\) 14.0000 + 31.3050i 0.536481 + 1.19961i
\(682\) −16.4317 + 9.48683i −0.629201 + 0.363270i
\(683\) 9.19239 + 15.9217i 0.351737 + 0.609226i 0.986554 0.163436i \(-0.0522578\pi\)
−0.634817 + 0.772663i \(0.718924\pi\)
\(684\) 28.2843 + 25.2982i 1.08148 + 0.967302i
\(685\) −17.5000 30.3109i −0.668641 1.15812i
\(686\) −15.4919 8.94427i −0.591485 0.341494i
\(687\) −13.7829 1.42558i −0.525850 0.0543891i
\(688\) 12.6491i 0.482243i
\(689\) 1.93649 7.82624i 0.0737745 0.298156i
\(690\) −14.1421 + 6.32456i −0.538382 + 0.240772i
\(691\) 8.21584 + 4.74342i 0.312545 + 0.180448i 0.648065 0.761585i \(-0.275579\pi\)
−0.335520 + 0.942033i \(0.608912\pi\)
\(692\) 30.9839 + 17.8885i 1.17783 + 0.680020i
\(693\) −8.23790 + 39.3972i −0.312932 + 1.49657i
\(694\) −12.0000 −0.455514
\(695\) 14.1421 + 24.4949i 0.536442 + 0.929144i
\(696\) 26.6190 + 19.2726i 1.00899 + 0.730524i
\(697\) −25.0000 −0.946943
\(698\) 8.48528 + 14.6969i 0.321173 + 0.556287i
\(699\) −4.78153 + 46.2292i −0.180854 + 1.74855i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 23.3095 12.5964i 0.879759 0.475419i
\(703\) 6.32456i 0.238535i
\(704\) −16.9706 + 29.3939i −0.639602 + 1.10782i
\(705\) −1.12702 + 10.8963i −0.0424459 + 0.410379i
\(706\) 8.21584 4.74342i 0.309207 0.178521i
\(707\) −21.2132 −0.797805
\(708\) 0 0
\(709\) −8.50000 14.7224i −0.319224 0.552913i 0.661102 0.750296i \(-0.270089\pi\)
−0.980326 + 0.197383i \(0.936756\pi\)
\(710\) 8.94427i 0.335673i
\(711\) 7.76677 37.1440i 0.291277 1.39301i
\(712\) −10.9545 6.32456i −0.410535 0.237023i
\(713\) 7.74597 + 4.47214i 0.290089 + 0.167483i
\(714\) 7.07107 + 15.8114i 0.264628 + 0.591726i
\(715\) −24.6475 23.7171i −0.921765 0.886969i
\(716\) −31.1127 −1.16274
\(717\) 26.8014 + 2.77209i 1.00092 + 0.103526i
\(718\) 15.0000 25.9808i 0.559795 0.969593i
\(719\) −11.3137 19.5959i −0.421930 0.730804i 0.574198 0.818716i \(-0.305314\pi\)
−0.996128 + 0.0879120i \(0.971981\pi\)
\(720\) 20.0000 + 17.8885i 0.745356 + 0.666667i
\(721\) −10.0000 17.3205i −0.372419 0.645049i
\(722\) 14.8492 + 25.7196i 0.552632 + 0.957186i
\(723\) −4.94975 11.0680i −0.184083 0.411622i
\(724\) 21.0000 + 36.3731i 0.780459 + 1.35179i
\(725\) 0 0
\(726\) 17.0554 + 1.76406i 0.632987 + 0.0654704i
\(727\) 3.16228i 0.117282i 0.998279 + 0.0586412i \(0.0186768\pi\)
−0.998279 + 0.0586412i \(0.981323\pi\)
\(728\) −30.9839 + 8.94427i −1.14834 + 0.331497i
\(729\) 22.0000 + 15.6525i 0.814815 + 0.579721i
\(730\) −8.21584 4.74342i −0.304082 0.175562i
\(731\) −3.53553 + 6.12372i −0.130766 + 0.226494i
\(732\) −2.03151 + 2.80588i −0.0750866 + 0.103708i
\(733\) 13.0000 0.480166 0.240083 0.970752i \(-0.422825\pi\)
0.240083 + 0.970752i \(0.422825\pi\)
\(734\) 23.2379 13.4164i 0.857727 0.495209i
\(735\) −9.41122 6.81388i −0.347138 0.251334i
\(736\) 16.0000 0.589768
\(737\) −23.2379 + 13.4164i −0.855979 + 0.494200i
\(738\) 45.0638 14.8072i 1.65882 0.545062i
\(739\) 43.8178 + 25.2982i 1.61186 + 0.930610i 0.988938 + 0.148329i \(0.0473896\pi\)
0.622926 + 0.782281i \(0.285944\pi\)
\(740\) 4.47214i 0.164399i
\(741\) 38.8730 6.99222i 1.42803 0.256866i
\(742\) −10.0000 −0.367112
\(743\) 11.3137 19.5959i 0.415060 0.718905i −0.580375 0.814349i \(-0.697094\pi\)
0.995435 + 0.0954448i \(0.0304274\pi\)
\(744\) 1.59384 15.4097i 0.0584331 0.564948i
\(745\) −22.5000 38.9711i −0.824336 1.42779i
\(746\) 4.24264 0.155334
\(747\) −29.0698 6.07846i −1.06361 0.222399i
\(748\) 16.4317 9.48683i 0.600802 0.346873i
\(749\) 8.94427i 0.326817i
\(750\) 22.1825 + 16.0605i 0.809989 + 0.586445i
\(751\) 19.1703 + 11.0680i 0.699534 + 0.403876i 0.807174 0.590314i \(-0.200996\pi\)
−0.107640 + 0.994190i \(0.534329\pi\)
\(752\) 5.65685 9.79796i 0.206284 0.357295i
\(753\) −17.0000 38.0132i −0.619514 1.38528i
\(754\) 32.8634 9.48683i 1.19681 0.345490i
\(755\) 14.1421 0.514685
\(756\) −22.1109 24.3127i −0.804165 0.884245i
\(757\) −10.0000 + 17.3205i −0.363456 + 0.629525i −0.988527 0.151043i \(-0.951737\pi\)
0.625071 + 0.780568i \(0.285070\pi\)
\(758\) 3.87298 2.23607i 0.140673 0.0812176i
\(759\) −8.48528 18.9737i −0.307996 0.688700i
\(760\) 20.0000 + 34.6410i 0.725476 + 1.25656i
\(761\) 38.7298 22.3607i 1.40396 0.810574i 0.409160 0.912463i \(-0.365822\pi\)
0.994796 + 0.101889i \(0.0324886\pi\)
\(762\) 7.07107 3.16228i 0.256158 0.114557i
\(763\) 32.8634 18.9737i 1.18973 0.686893i
\(764\) −18.3848 + 31.8434i −0.665138 + 1.15205i
\(765\) −4.68246 14.2504i −0.169295 0.515225i
\(766\) −24.0000 −0.867155
\(767\) 0 0
\(768\) −11.3137 25.2982i −0.408248 0.912871i
\(769\) −8.00000 + 13.8564i −0.288487 + 0.499675i −0.973449 0.228904i \(-0.926486\pi\)
0.684962 + 0.728579i \(0.259819\pi\)
\(770\) −21.2132 + 36.7423i −0.764471 + 1.32410i
\(771\) 15.6854 + 11.3565i 0.564895 + 0.408993i
\(772\) −46.0000 −1.65558
\(773\) −38.7298 + 22.3607i −1.39302 + 0.804258i −0.993648 0.112533i \(-0.964104\pi\)
−0.399367 + 0.916791i \(0.630770\pi\)
\(774\) 2.74597 13.1324i 0.0987017 0.472034i
\(775\) 0 0
\(776\) 22.6274 + 39.1918i 0.812277 + 1.40690i
\(777\) −0.563508 + 5.44816i −0.0202157 + 0.195452i
\(778\) 35.6020 + 20.5548i 1.27639 + 0.736925i
\(779\) 70.7107 2.53347
\(780\) 27.4874 4.94425i 0.984205 0.177032i
\(781\) −12.0000 −0.429394
\(782\) −7.74597 4.47214i −0.276995 0.159923i
\(783\) 23.4521 + 25.7875i 0.838111 + 0.921572i
\(784\) 6.00000 + 10.3923i 0.214286 + 0.371154i
\(785\) 24.5967i 0.877896i
\(786\) −10.1575 + 14.0294i −0.362307 + 0.500413i
\(787\) 24.6475 14.2302i 0.878589 0.507254i 0.00839610 0.999965i \(-0.497327\pi\)
0.870193 + 0.492711i \(0.163994\pi\)
\(788\) 17.8885i 0.637253i
\(789\) −4.30948 + 5.95218i −0.153421 + 0.211903i
\(790\) 20.0000 34.6410i 0.711568 1.23247i
\(791\) 10.6066 18.3712i 0.377127 0.653204i
\(792\) −24.0000 + 26.8328i −0.852803 + 0.953463i
\(793\) 1.00000 + 3.46410i 0.0355110 + 0.123014i
\(794\) −28.2843 −1.00377
\(795\) 8.61430 + 0.890985i 0.305518 + 0.0316000i
\(796\) −10.9545 6.32456i −0.388270 0.224168i
\(797\) 23.2379 13.4164i 0.823129 0.475234i −0.0283655 0.999598i \(-0.509030\pi\)
0.851494 + 0.524364i \(0.175697\pi\)
\(798\) −20.0000 44.7214i −0.707992 1.58312i
\(799\) −5.47723 + 3.16228i −0.193770 + 0.111873i
\(800\) 0 0
\(801\) −10.0000 8.94427i −0.353333 0.316030i
\(802\) −19.1703 + 11.0680i −0.676926 + 0.390824i
\(803\) 6.36396 11.0227i 0.224579 0.388983i
\(804\) 2.25403 21.7926i 0.0794936 0.768567i
\(805\) 20.0000 0.704907
\(806\) −11.6190 11.1803i −0.409260 0.393811i
\(807\) 28.2843 12.6491i 0.995654 0.445270i
\(808\) −16.4317 9.48683i −0.578064 0.333746i
\(809\) −25.1744 14.5344i −0.885084 0.511004i −0.0127530 0.999919i \(-0.504060\pi\)
−0.872331 + 0.488915i \(0.837393\pi\)
\(810\) 16.8807 + 22.9138i 0.593129 + 0.805107i
\(811\) 47.4342i 1.66564i 0.553545 + 0.832819i \(0.313275\pi\)
−0.553545 + 0.832819i \(0.686725\pi\)
\(812\) −21.2132 36.7423i −0.744438 1.28940i
\(813\) −17.7460 12.8484i −0.622378 0.450612i
\(814\) 6.00000 0.210300
\(815\) −14.1421 24.4949i −0.495377 0.858019i
\(816\) −1.59384 + 15.4097i −0.0557956 + 0.539448i
\(817\) 10.0000 17.3205i 0.349856 0.605968i
\(818\) −29.6985 −1.03838
\(819\) −34.1093 + 2.55978i −1.19188 + 0.0894461i
\(820\) 50.0000 1.74608
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) −3.94456 + 38.1371i −0.137582 + 1.33019i
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 17.8885i 0.623177i
\(825\) 0 0
\(826\) 0 0
\(827\) −33.9411 −1.18025 −0.590124 0.807312i \(-0.700921\pi\)
−0.590124 + 0.807312i \(0.700921\pi\)
\(828\) 16.6113 + 3.47340i 0.577283 + 0.120709i
\(829\) 5.50000 9.52628i 0.191023 0.330861i −0.754567 0.656223i \(-0.772153\pi\)
0.945589 + 0.325362i \(0.105486\pi\)
\(830\) −27.1109 15.6525i −0.941033 0.543305i
\(831\) −7.77817 17.3925i −0.269822 0.603340i
\(832\) −28.0000 6.92820i −0.970725 0.240192i
\(833\) 6.70820i 0.232425i
\(834\) 3.18768 30.8195i 0.110380 1.06719i
\(835\) 10.9545 + 6.32456i 0.379094 + 0.218870i
\(836\) −46.4758 + 26.8328i −1.60740 + 0.928032i
\(837\) 5.00000 15.6525i 0.172825 0.541029i
\(838\) −11.0000 19.0526i −0.379989 0.658160i
\(839\) 7.77817 + 13.4722i 0.268532 + 0.465112i 0.968483 0.249079i \(-0.0801280\pi\)
−0.699951 + 0.714191i \(0.746795\pi\)
\(840\) −14.1421 31.6228i −0.487950 1.09109i
\(841\) 8.00000 + 13.8564i 0.275862 + 0.477807i
\(842\) 13.4350 23.2702i 0.463002 0.801942i
\(843\) −2.78922 + 26.9670i −0.0960660 + 0.928794i
\(844\) 6.32456i 0.217700i
\(845\) 13.5554 25.7148i 0.466321 0.884615i
\(846\) 8.00000 8.94427i 0.275046 0.307510i
\(847\) −19.1703 11.0680i −0.658699 0.380300i
\(848\) −7.74597 4.47214i −0.265998 0.153574i
\(849\) 4.43649 + 3.21209i 0.152260 + 0.110239i
\(850\) 0 0
\(851\) −1.41421 2.44949i −0.0484786 0.0839674i
\(852\) 5.74597 7.93624i 0.196854 0.271891i
\(853\) 35.0000 1.19838 0.599189 0.800608i \(-0.295490\pi\)
0.599189 + 0.800608i \(0.295490\pi\)
\(854\) 3.87298 2.23607i 0.132531 0.0765167i
\(855\) 13.2440 + 40.3063i 0.452935 + 1.37845i
\(856\) −4.00000 + 6.92820i −0.136717 + 0.236801i
\(857\) 24.5967i 0.840209i −0.907476 0.420104i \(-0.861993\pi\)
0.907476 0.420104i \(-0.138007\pi\)
\(858\) 6.63340 + 36.8782i 0.226461 + 1.25900i
\(859\) 6.32456i 0.215791i −0.994162 0.107896i \(-0.965589\pi\)
0.994162 0.107896i \(-0.0344112\pi\)
\(860\) 7.07107 12.2474i 0.241121 0.417635i
\(861\) −60.9123 6.30021i −2.07589 0.214711i
\(862\) −17.0000 29.4449i −0.579022 1.00290i
\(863\) 18.3848 0.625825 0.312913 0.949782i \(-0.398695\pi\)
0.312913 + 0.949782i \(0.398695\pi\)
\(864\) −6.25403 28.7208i −0.212767 0.977103i
\(865\) 20.0000 + 34.6410i 0.680020 + 1.17783i
\(866\) −32.5269 −1.10531
\(867\) −12.1890 + 16.8353i −0.413961 + 0.571757i
\(868\) −10.0000 + 17.3205i −0.339422 + 0.587896i
\(869\) 46.4758 + 26.8328i 1.57658 + 0.910241i
\(870\) 15.0000 + 33.5410i 0.508548 + 1.13715i
\(871\) −16.4317 15.8114i −0.556766 0.535748i
\(872\) 33.9411 1.14939
\(873\) 14.9839 + 45.6014i 0.507127 + 1.54337i
\(874\) 21.9089 + 12.6491i 0.741080 + 0.427863i
\(875\) −17.6777 30.6186i −0.597614 1.03510i
\(876\) 4.24264 + 9.48683i 0.143346 + 0.320530i
\(877\) 19.5000 + 33.7750i 0.658468 + 1.14050i 0.981012 + 0.193946i \(0.0621286\pi\)
−0.322544 + 0.946554i \(0.604538\pi\)
\(878\) −11.6190 + 6.70820i −0.392121 + 0.226391i
\(879\) −31.8198 + 14.2302i −1.07326 + 0.479974i
\(880\) −32.8634 + 18.9737i −1.10782 + 0.639602i
\(881\) −9.68246 5.59017i −0.326210 0.188338i 0.327947 0.944696i \(-0.393643\pi\)
−0.654157 + 0.756359i \(0.726977\pi\)
\(882\) 3.97320 + 12.0919i 0.133785 + 0.407155i
\(883\) 22.1359i 0.744934i −0.928045 0.372467i \(-0.878512\pi\)
0.928045 0.372467i \(-0.121488\pi\)
\(884\) 11.6190 + 11.1803i 0.390788 + 0.376036i
\(885\) 0 0
\(886\) 8.00000 13.8564i 0.268765 0.465515i
\(887\) −19.7990 + 34.2929i −0.664785 + 1.15144i 0.314559 + 0.949238i \(0.398144\pi\)
−0.979344 + 0.202203i \(0.935190\pi\)
\(888\) −2.87298 + 3.96812i −0.0964110 + 0.133161i
\(889\) −10.0000 −0.335389
\(890\) −7.07107 12.2474i −0.237023 0.410535i
\(891\) −30.7420 + 22.6479i −1.02990 + 0.758733i
\(892\) 18.9737i 0.635285i
\(893\) 15.4919 8.94427i 0.518418 0.299309i
\(894\) −5.07157 + 49.0334i −0.169619 + 1.63992i
\(895\) −30.1247 17.3925i −1.00696 0.581368i
\(896\) 35.7771i 1.19523i
\(897\) 13.4919 11.4003i 0.450483 0.380646i
\(898\) 12.6491i 0.422106i
\(899\) 10.6066 18.3712i 0.353750 0.612713i
\(900\) 0 0
\(901\) 2.50000 + 4.33013i 0.0832871 + 0.144257i
\(902\) 67.0820i 2.23359i
\(903\) −10.1575 + 14.0294i −0.338021 + 0.466870i
\(904\) 16.4317 9.48683i 0.546509 0.315527i
\(905\) 46.9574i 1.56092i
\(906\) −12.5483 9.08517i −0.416889 0.301835i
\(907\) −32.8634 18.9737i −1.09121 0.630010i −0.157311 0.987549i \(-0.550283\pi\)
−0.933898 + 0.357539i \(0.883616\pi\)
\(908\) 19.7990 34.2929i 0.657053 1.13805i
\(909\) −15.0000 13.4164i −0.497519 0.444994i
\(910\) −35.0000 8.66025i −1.16024 0.287085i
\(911\) 45.2548 1.49936 0.749680 0.661801i \(-0.230208\pi\)
0.749680 + 0.661801i \(0.230208\pi\)
\(912\) 4.50807 43.5853i 0.149277 1.44325i
\(913\) 21.0000 36.3731i 0.694999 1.20377i
\(914\) −0.707107 1.22474i −0.0233890 0.0405110i
\(915\) −3.53553 + 1.58114i −0.116881 + 0.0522708i
\(916\) 8.00000 + 13.8564i 0.264327 + 0.457829i
\(917\) 19.3649 11.1803i 0.639486 0.369207i
\(918\) −5.00000 + 15.6525i −0.165025 + 0.516609i
\(919\) −46.5564 + 26.8794i −1.53575 + 0.886668i −0.536674 + 0.843790i \(0.680320\pi\)
−0.999080 + 0.0428787i \(0.986347\pi\)
\(920\) 15.4919 + 8.94427i 0.510754 + 0.294884i
\(921\) 3.38105 32.6890i 0.111409 1.07714i
\(922\) 15.8114i 0.520720i
\(923\) −2.82843 9.79796i −0.0930988 0.322504i
\(924\) 42.4264 18.9737i 1.39573 0.624188i
\(925\) 0 0
\(926\) −27.1109 15.6525i −0.890919 0.514372i
\(927\) 3.88338 18.5720i 0.127547 0.609985i
\(928\) 37.9473i 1.24568i
\(929\) −1.93649 + 1.11803i −0.0635342 + 0.0366815i −0.531431 0.847102i \(-0.678345\pi\)
0.467896 + 0.883783i \(0.345012\pi\)
\(930\) 10.1575 14.0294i 0.333079 0.460043i
\(931\) 18.9737i 0.621837i
\(932\) 46.4758 26.8328i 1.52237 0.878938i
\(933\) 53.6028 + 5.54419i 1.75488 + 0.181509i
\(934\) 9.00000 15.5885i 0.294489 0.510070i
\(935\) 21.2132 0.693746
\(936\) −27.5658 13.2714i −0.901015 0.433788i
\(937\) 21.0000 0.686040 0.343020 0.939328i \(-0.388550\pi\)
0.343020 + 0.939328i \(0.388550\pi\)
\(938\) −14.1421 + 24.4949i −0.461757 + 0.799787i
\(939\) −13.7829 1.42558i −0.449787 0.0465219i
\(940\) 10.9545 6.32456i 0.357295 0.206284i
\(941\) 8.94427i 0.291575i −0.989316 0.145787i \(-0.953428\pi\)
0.989316 0.145787i \(-0.0465716\pi\)
\(942\) −15.8014 + 21.8247i −0.514838 + 0.711086i
\(943\) 27.3861 15.8114i 0.891815 0.514890i
\(944\) 0 0
\(945\) −7.81754 35.9011i −0.254305 1.16786i
\(946\) 16.4317 + 9.48683i 0.534240 + 0.308444i
\(947\) −6.36396 + 11.0227i −0.206801 + 0.358190i −0.950705 0.310097i \(-0.899639\pi\)
0.743904 + 0.668286i \(0.232972\pi\)
\(948\) −40.0000 + 17.8885i −1.29914 + 0.580993i
\(949\) 10.5000 + 2.59808i 0.340844 + 0.0843371i
\(950\) 0 0
\(951\) −1.99230 + 19.2622i −0.0646048 + 0.624618i
\(952\) 10.0000 17.3205i 0.324102 0.561361i
\(953\) 19.3649 11.1803i 0.627291 0.362167i −0.152411 0.988317i \(-0.548704\pi\)
0.779702 + 0.626150i \(0.215370\pi\)
\(954\) −7.07107 6.32456i −0.228934 0.204765i
\(955\) −35.6020 + 20.5548i −1.15205 + 0.665138i
\(956\) −15.5563 26.9444i −0.503128 0.871444i
\(957\) −45.0000 + 20.1246i −1.45464 + 0.650536i
\(958\) 15.0000 + 25.9808i 0.484628 + 0.839400i
\(959\) 24.7487 42.8661i 0.799178 1.38422i
\(960\) 3.18768 30.8195i 0.102882 0.994694i
\(961\) 21.0000 0.677419
\(962\) 1.41421 + 4.89898i 0.0455961 + 0.157949i
\(963\) −5.65685 + 6.32456i −0.182290 + 0.203806i
\(964\) −7.00000 + 12.1244i −0.225455 + 0.390499i
\(965\) −44.5393 25.7148i −1.43377 0.827788i
\(966\) −17.7460 12.8484i −0.570967 0.413390i
\(967\) 44.2719i 1.42369i −0.702338 0.711844i \(-0.747860\pi\)
0.702338 0.711844i \(-0.252140\pi\)
\(968\) −9.89949 17.1464i −0.318182 0.551107i
\(969\) −14.3649 + 19.8406i −0.461468 + 0.637372i
\(970\) 50.5964i 1.62455i
\(971\) 3.53553 + 6.12372i 0.113461 + 0.196520i 0.917163 0.398511i \(-0.130473\pi\)
−0.803703 + 0.595031i \(0.797140\pi\)
\(972\) −0.258035 31.1758i −0.00827648 0.999966i
\(973\) −20.0000 + 34.6410i −0.641171 + 1.11054i
\(974\) 31.3050i 1.00308i
\(975\) 0 0
\(976\) 4.00000 0.128037
\(977\) 1.93649 + 1.11803i 0.0619539 + 0.0357691i 0.530657 0.847587i \(-0.321945\pi\)
−0.468703 + 0.883356i \(0.655279\pi\)
\(978\) −3.18768 + 30.8195i −0.101931 + 0.985497i
\(979\) 16.4317 9.48683i 0.525159 0.303200i
\(980\) 13.4164i 0.428571i
\(981\) 35.2379 + 7.36820i 1.12506 + 0.235249i
\(982\) 23.0000 + 39.8372i 0.733959 + 1.27126i
\(983\) 1.41421 0.0451064 0.0225532 0.999746i \(-0.492820\pi\)
0.0225532 + 0.999746i \(0.492820\pi\)
\(984\) −44.3649 32.1209i −1.41430 1.02398i
\(985\) −10.0000 + 17.3205i −0.318626 + 0.551877i
\(986\) −10.6066 + 18.3712i −0.337783 + 0.585057i
\(987\) −14.1421 + 6.32456i −0.450149 + 0.201313i
\(988\) −32.8634 31.6228i −1.04552 1.00605i
\(989\) 8.94427i 0.284411i
\(990\) −38.2379 + 12.5644i −1.21528 + 0.399321i
\(991\) 5.47723 + 3.16228i 0.173990 + 0.100453i 0.584466 0.811418i \(-0.301304\pi\)
−0.410476 + 0.911871i \(0.634637\pi\)
\(992\) −15.4919 + 8.94427i −0.491869 + 0.283981i
\(993\) 20.0000 8.94427i 0.634681 0.283838i
\(994\) −10.9545 + 6.32456i −0.347454 + 0.200603i
\(995\) −7.07107 12.2474i −0.224168 0.388270i
\(996\) 14.0000 + 31.3050i 0.443607 + 0.991935i
\(997\) −17.5000 30.3109i −0.554231 0.959955i −0.997963 0.0637961i \(-0.979679\pi\)
0.443732 0.896159i \(-0.353654\pi\)
\(998\) 42.6028 + 24.5967i 1.34857 + 0.778596i
\(999\) −3.84418 + 3.49604i −0.121624 + 0.110610i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.2.p.a.35.2 yes 8
3.2 odd 2 inner 156.2.p.a.35.4 yes 8
4.3 odd 2 inner 156.2.p.a.35.3 yes 8
12.11 even 2 inner 156.2.p.a.35.1 8
13.3 even 3 inner 156.2.p.a.107.1 yes 8
39.29 odd 6 inner 156.2.p.a.107.3 yes 8
52.3 odd 6 inner 156.2.p.a.107.4 yes 8
156.107 even 6 inner 156.2.p.a.107.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.p.a.35.1 8 12.11 even 2 inner
156.2.p.a.35.2 yes 8 1.1 even 1 trivial
156.2.p.a.35.3 yes 8 4.3 odd 2 inner
156.2.p.a.35.4 yes 8 3.2 odd 2 inner
156.2.p.a.107.1 yes 8 13.3 even 3 inner
156.2.p.a.107.2 yes 8 156.107 even 6 inner
156.2.p.a.107.3 yes 8 39.29 odd 6 inner
156.2.p.a.107.4 yes 8 52.3 odd 6 inner