Properties

Label 1568.1.x.a.491.1
Level $1568$
Weight $1$
Character 1568.491
Analytic conductor $0.783$
Analytic rank $0$
Dimension $4$
Projective image $D_{8}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1568,1,Mod(99,1568)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1568, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1568.99");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1568.x (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.782533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.5156108238848.2

Embedding invariants

Embedding label 491.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1568.491
Dual form 1568.1.x.a.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-0.707107 + 0.707107i) q^{8} +(0.707107 - 0.707107i) q^{9} +(-0.707107 + 1.70711i) q^{11} -1.00000 q^{16} +1.00000 q^{18} +(-1.70711 + 0.707107i) q^{22} +(1.00000 + 1.00000i) q^{23} +(0.707107 + 0.707107i) q^{25} +(-0.707107 + 0.292893i) q^{29} +(-0.707107 - 0.707107i) q^{32} +(0.707107 + 0.707107i) q^{36} +(0.707107 - 1.70711i) q^{37} +(0.292893 - 0.707107i) q^{43} +(-1.70711 - 0.707107i) q^{44} +1.41421i q^{46} +1.00000i q^{50} +(-1.70711 - 0.707107i) q^{53} +(-0.707107 - 0.292893i) q^{58} -1.00000i q^{64} +(0.292893 + 0.707107i) q^{67} +(1.41421 - 1.41421i) q^{71} +1.00000i q^{72} +(1.70711 - 0.707107i) q^{74} -1.41421 q^{79} -1.00000i q^{81} +(0.707107 - 0.292893i) q^{86} +(-0.707107 - 1.70711i) q^{88} +(-1.00000 + 1.00000i) q^{92} +(0.707107 + 1.70711i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{16} + 4 q^{18} - 4 q^{22} + 4 q^{23} + 4 q^{43} - 4 q^{44} - 4 q^{53} + 4 q^{67} + 4 q^{74} - 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(3\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(4\) 1.00000i 1.00000i
\(5\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(9\) 0.707107 0.707107i 0.707107 0.707107i
\(10\) 0 0
\(11\) −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i \(0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(12\) 0 0
\(13\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 1.00000 1.00000
\(19\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(23\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.707107 0.707107i −0.707107 0.707107i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(37\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(42\) 0 0
\(43\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(44\) −1.70711 0.707107i −1.70711 0.707107i
\(45\) 0 0
\(46\) 1.41421i 1.41421i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.00000i 1.00000i
\(51\) 0 0
\(52\) 0 0
\(53\) −1.70711 0.707107i −1.70711 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −0.707107 0.292893i −0.707107 0.292893i
\(59\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 \(0\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i \(-0.250000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(72\) 1.00000i 1.00000i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 1.70711 0.707107i 1.70711 0.707107i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(80\) 0 0
\(81\) 1.00000i 1.00000i
\(82\) 0 0
\(83\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.707107 0.292893i 0.707107 0.292893i
\(87\) 0 0
\(88\) −0.707107 1.70711i −0.707107 1.70711i
\(89\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(100\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(101\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.707107 1.70711i −0.707107 1.70711i
\(107\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(108\) 0 0
\(109\) −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.292893 0.707107i −0.292893 0.707107i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.70711 1.70711i −1.70711 1.70711i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(128\) 0.707107 0.707107i 0.707107 0.707107i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(135\) 0 0
\(136\) 0 0
\(137\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(138\) 0 0
\(139\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.00000 2.00000
\(143\) 0 0
\(144\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(149\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(150\) 0 0
\(151\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(158\) −1.00000 1.00000i −1.00000 1.00000i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.707107 0.707107i 0.707107 0.707107i
\(163\) 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i \(0.250000\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 0.707107 0.707107i 0.707107 0.707107i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(173\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.707107 1.70711i 0.707107 1.70711i
\(177\) 0 0
\(178\) 0 0
\(179\) −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.41421 −1.41421
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(192\) 0 0
\(193\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(198\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(199\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(200\) −1.00000 −1.00000
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.41421 1.41421
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(212\) 0.707107 1.70711i 0.707107 1.70711i
\(213\) 0 0
\(214\) 0.707107 0.292893i 0.707107 0.292893i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.292893 0.707107i 0.292893 0.707107i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.00000 1.00000
\(226\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(227\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(228\) 0 0
\(229\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.292893 0.707107i 0.292893 0.707107i
\(233\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 2.41421i 2.41421i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(252\) 0 0
\(253\) −2.41421 + 1.00000i −2.41421 + 1.00000i
\(254\) 1.41421 1.41421i 1.41421 1.41421i
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(269\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 1.41421 1.41421
\(275\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(276\) 0 0
\(277\) 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i \(-0.250000\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(284\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(297\) 0 0
\(298\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 1.41421i 1.41421i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(312\) 0 0
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.41421i 1.41421i
\(317\) −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 1.41421i 1.41421i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(332\) 0 0
\(333\) −0.707107 1.70711i −0.707107 1.70711i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 1.00000 1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(345\) 0 0
\(346\) 0 0
\(347\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.70711 0.707107i 1.70711 0.707107i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −0.707107 0.292893i −0.707107 0.292893i
\(359\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −1.00000 1.00000i −1.00000 1.00000i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −0.707107 0.292893i −0.707107 0.292893i 1.00000i \(-0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.707107 0.292893i −0.707107 0.292893i 1.00000i \(-0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(387\) −0.292893 0.707107i −0.292893 0.707107i
\(388\) 0 0
\(389\) −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i \(0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 1.70711 0.707107i 1.70711 0.707107i
\(395\) 0 0
\(396\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(397\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.707107 0.707107i −0.707107 0.707107i
\(401\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.41421 + 2.41421i 2.41421 + 2.41421i
\(408\) 0 0
\(409\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(420\) 0 0
\(421\) −0.292893 + 0.707107i −0.292893 + 0.707107i 0.707107 + 0.707107i \(0.250000\pi\)
−1.00000 \(\pi\)
\(422\) −1.70711 0.707107i −1.70711 0.707107i
\(423\) 0 0
\(424\) 1.70711 0.707107i 1.70711 0.707107i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.707107 0.292893i 0.707107 0.292893i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.707107 0.292893i −0.707107 0.292893i 1.00000i \(-0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(451\) 0 0
\(452\) −1.41421 −1.41421
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(462\) 0 0
\(463\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0.707107 0.292893i 0.707107 0.292893i
\(465\) 0 0
\(466\) −1.41421 −1.41421
\(467\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(478\) −1.41421 1.41421i −1.41421 1.41421i
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.70711 1.70711i 1.70711 1.70711i
\(485\) 0 0
\(486\) 0 0
\(487\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.707107 0.292893i 0.707107 0.292893i 1.00000i \(-0.5\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2.41421 1.00000i −2.41421 1.00000i
\(507\) 0 0
\(508\) 2.00000 2.00000
\(509\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(522\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(523\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000i 1.00000i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −0.707107 0.292893i −0.707107 0.292893i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i \(0.250000\pi\)
1.00000i \(0.5\pi\)
\(548\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(549\) 0 0
\(550\) −1.70711 0.707107i −1.70711 0.707107i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 \(0\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 1.41421i 1.41421i
\(563\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 2.00000i 2.00000i
\(569\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(570\) 0 0
\(571\) −1.70711 0.707107i −1.70711 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.41421i 1.41421i
\(576\) −0.707107 0.707107i −0.707107 0.707107i
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.41421 2.41421i 2.41421 2.41421i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(600\) 0 0
\(601\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(602\) 0 0
\(603\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(604\) 1.00000 1.00000i 1.00000 1.00000i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(618\) 0 0
\(619\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000i 1.00000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(632\) 1.00000 1.00000i 1.00000 1.00000i
\(633\) 0 0
\(634\) −0.707107 0.292893i −0.707107 0.292893i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.00000 1.00000i 1.00000 1.00000i
\(639\) 2.00000i 2.00000i
\(640\) 0 0
\(641\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(642\) 0 0
\(643\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(653\) 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 \(0\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(662\) 1.70711 0.707107i 1.70711 0.707107i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.707107 1.70711i 0.707107 1.70711i
\(667\) −1.00000 0.414214i −1.00000 0.414214i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(675\) 0 0
\(676\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(677\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.292893 + 0.707107i −0.292893 + 0.707107i 0.707107 + 0.707107i \(0.250000\pi\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.70711 0.707107i 1.70711 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
1.00000 \(0\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(710\) 0 0
\(711\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −0.292893 0.707107i −0.292893 0.707107i
\(717\) 0 0
\(718\) −1.41421 −1.41421
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.00000 −1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) −0.707107 0.292893i −0.707107 0.292893i
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) −0.707107 0.707107i −0.707107 0.707107i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 1.41421i 1.41421i
\(737\) −1.41421 −1.41421
\(738\) 0 0
\(739\) −0.707107 1.70711i −0.707107 1.70711i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(-0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.292893 0.707107i −0.292893 0.707107i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 \(0\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) −0.292893 0.707107i −0.292893 0.707107i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.41421 −1.41421
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.41421i 1.41421i
\(773\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(774\) 0.292893 0.707107i 0.292893 0.707107i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(779\) 0 0
\(780\) 0 0
\(781\) 1.41421 + 3.41421i 1.41421 + 3.41421i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(788\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −1.70711 0.707107i −1.70711 0.707107i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000i 1.00000i
\(801\) 0 0
\(802\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(810\) 0 0
\(811\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 3.41421i 3.41421i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i \(-0.250000\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.707107 0.292893i −0.707107 0.292893i 1.00000i \(-0.5\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 1.41421i 1.41421i
\(829\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(840\) 0 0
\(841\) −0.292893 + 0.292893i −0.292893 + 0.292893i
\(842\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(843\) 0 0
\(844\) −0.707107 1.70711i −0.707107 1.70711i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(849\) 0 0
\(850\) 0 0
\(851\) 2.41421 1.00000i 2.41421 1.00000i
\(852\) 0 0
\(853\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.00000 2.41421i 1.00000 2.41421i
\(870\) 0 0
\(871\) 0 0
\(872\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i \(0.250000\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 1.70711 0.707107i 1.70711 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
1.00000 \(0\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.292893 0.707107i −0.292893 0.707107i
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.00000i 1.00000i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −1.00000 1.00000i −1.00000 1.00000i
\(905\) 0 0
\(906\) 0 0
\(907\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.70711 0.707107i 1.70711 0.707107i
\(926\) −1.00000 1.00000i −1.00000 1.00000i
\(927\) 0 0
\(928\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.00000 1.00000i −1.00000 1.00000i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 1.41421i 1.41421i
\(947\) 1.70711 0.707107i 1.70711 0.707107i 0.707107 0.707107i \(-0.250000\pi\)
1.00000 \(0\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(954\) −1.70711 0.707107i −1.70711 0.707107i
\(955\) 0 0
\(956\) 2.00000i 2.00000i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) −0.292893 0.707107i −0.292893 0.707107i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(968\) 2.41421 2.41421
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.41421 1.41421
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.707107 0.292893i −0.707107 0.292893i
\(982\) 0.707107 0.292893i 0.707107 0.292893i
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.00000 0.414214i 1.00000 0.414214i
\(990\) 0 0
\(991\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(998\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.1.x.a.491.1 yes 4
7.2 even 3 1568.1.bo.a.459.1 8
7.3 odd 6 1568.1.bo.a.1451.1 8
7.4 even 3 1568.1.bo.a.1451.1 8
7.5 odd 6 1568.1.bo.a.459.1 8
7.6 odd 2 CM 1568.1.x.a.491.1 yes 4
32.3 odd 8 inner 1568.1.x.a.99.1 4
224.3 even 24 1568.1.bo.a.1059.1 8
224.67 odd 24 1568.1.bo.a.1059.1 8
224.131 even 24 1568.1.bo.a.67.1 8
224.163 odd 24 1568.1.bo.a.67.1 8
224.195 even 8 inner 1568.1.x.a.99.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1568.1.x.a.99.1 4 32.3 odd 8 inner
1568.1.x.a.99.1 4 224.195 even 8 inner
1568.1.x.a.491.1 yes 4 1.1 even 1 trivial
1568.1.x.a.491.1 yes 4 7.6 odd 2 CM
1568.1.bo.a.67.1 8 224.131 even 24
1568.1.bo.a.67.1 8 224.163 odd 24
1568.1.bo.a.459.1 8 7.2 even 3
1568.1.bo.a.459.1 8 7.5 odd 6
1568.1.bo.a.1059.1 8 224.3 even 24
1568.1.bo.a.1059.1 8 224.67 odd 24
1568.1.bo.a.1451.1 8 7.3 odd 6
1568.1.bo.a.1451.1 8 7.4 even 3