Properties

Label 1568.2.q.g.815.1
Level $1568$
Weight $2$
Character 1568.815
Analytic conductor $12.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1568,2,Mod(815,1568)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1568, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1568.815");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.144054149089536.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 815.1
Root \(1.09935 - 0.468876i\) of defining polynomial
Character \(\chi\) \(=\) 1568.815
Dual form 1568.2.q.g.1391.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.27230 - 1.31191i) q^{3} +(-1.03926 - 1.80005i) q^{5} +(1.94224 + 3.36406i) q^{9} +(0.669938 - 1.16037i) q^{11} +2.50406 q^{13} +5.45368i q^{15} +(2.78212 + 1.60626i) q^{17} +(3.55442 - 2.05215i) q^{19} +(5.54952 - 3.20402i) q^{23} +(0.339877 - 0.588684i) q^{25} -2.32073i q^{27} +4.66151i q^{29} +(2.21897 - 3.84337i) q^{31} +(-3.04461 + 1.75780i) q^{33} +(5.50178 - 3.17646i) q^{37} +(-5.68997 - 3.28511i) q^{39} +5.55076i q^{41} +(4.03699 - 6.99227i) q^{45} +(-0.565988 - 0.980320i) q^{47} +(-4.21455 - 7.29981i) q^{51} +(-7.43567 - 4.29299i) q^{53} -2.78496 q^{55} -10.7690 q^{57} +(6.29193 + 3.63265i) q^{59} +(-2.57219 - 4.45517i) q^{61} +(-2.60236 - 4.50743i) q^{65} +(-3.93243 + 6.81116i) q^{67} -16.8136 q^{69} -5.29150i q^{71} +(-0.480369 - 0.277341i) q^{73} +(-1.54461 + 0.891779i) q^{75} +(-5.26862 + 3.04184i) q^{79} +(2.78212 - 4.81877i) q^{81} +0.503175i q^{83} -6.67728i q^{85} +(6.11551 - 10.5924i) q^{87} +(-1.50000 + 0.866025i) q^{89} +(-10.0844 + 5.82221i) q^{93} +(-7.38794 - 4.26543i) q^{95} -17.2234i q^{97} +5.20473 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} + 6 q^{11} + 6 q^{17} - 6 q^{19} + 6 q^{33} - 6 q^{51} - 36 q^{57} + 42 q^{59} - 12 q^{65} - 30 q^{67} - 18 q^{73} + 24 q^{75} + 6 q^{81} - 18 q^{89} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.27230 1.31191i −1.31191 0.757434i −0.329502 0.944155i \(-0.606881\pi\)
−0.982413 + 0.186720i \(0.940214\pi\)
\(4\) 0 0
\(5\) −1.03926 1.80005i −0.464771 0.805007i 0.534420 0.845219i \(-0.320530\pi\)
−0.999191 + 0.0402117i \(0.987197\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.94224 + 3.36406i 0.647414 + 1.12135i
\(10\) 0 0
\(11\) 0.669938 1.16037i 0.201994 0.349864i −0.747177 0.664625i \(-0.768591\pi\)
0.949171 + 0.314761i \(0.101925\pi\)
\(12\) 0 0
\(13\) 2.50406 0.694500 0.347250 0.937773i \(-0.387116\pi\)
0.347250 + 0.937773i \(0.387116\pi\)
\(14\) 0 0
\(15\) 5.45368i 1.40814i
\(16\) 0 0
\(17\) 2.78212 + 1.60626i 0.674763 + 0.389575i 0.797879 0.602818i \(-0.205955\pi\)
−0.123116 + 0.992392i \(0.539289\pi\)
\(18\) 0 0
\(19\) 3.55442 2.05215i 0.815440 0.470795i −0.0334012 0.999442i \(-0.510634\pi\)
0.848842 + 0.528647i \(0.177301\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.54952 3.20402i 1.15716 0.668084i 0.206535 0.978439i \(-0.433781\pi\)
0.950621 + 0.310355i \(0.100448\pi\)
\(24\) 0 0
\(25\) 0.339877 0.588684i 0.0679754 0.117737i
\(26\) 0 0
\(27\) 2.32073i 0.446626i
\(28\) 0 0
\(29\) 4.66151i 0.865621i 0.901485 + 0.432811i \(0.142478\pi\)
−0.901485 + 0.432811i \(0.857522\pi\)
\(30\) 0 0
\(31\) 2.21897 3.84337i 0.398539 0.690290i −0.595007 0.803721i \(-0.702851\pi\)
0.993546 + 0.113430i \(0.0361839\pi\)
\(32\) 0 0
\(33\) −3.04461 + 1.75780i −0.529998 + 0.305994i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.50178 3.17646i 0.904488 0.522206i 0.0258343 0.999666i \(-0.491776\pi\)
0.878653 + 0.477460i \(0.158442\pi\)
\(38\) 0 0
\(39\) −5.68997 3.28511i −0.911125 0.526038i
\(40\) 0 0
\(41\) 5.55076i 0.866882i 0.901182 + 0.433441i \(0.142701\pi\)
−0.901182 + 0.433441i \(0.857299\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 4.03699 6.99227i 0.601799 1.04235i
\(46\) 0 0
\(47\) −0.565988 0.980320i −0.0825579 0.142994i 0.821790 0.569790i \(-0.192976\pi\)
−0.904348 + 0.426796i \(0.859642\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −4.21455 7.29981i −0.590154 1.02218i
\(52\) 0 0
\(53\) −7.43567 4.29299i −1.02137 0.589687i −0.106868 0.994273i \(-0.534082\pi\)
−0.914500 + 0.404586i \(0.867416\pi\)
\(54\) 0 0
\(55\) −2.78496 −0.375524
\(56\) 0 0
\(57\) −10.7690 −1.42638
\(58\) 0 0
\(59\) 6.29193 + 3.63265i 0.819140 + 0.472931i 0.850120 0.526589i \(-0.176529\pi\)
−0.0309798 + 0.999520i \(0.509863\pi\)
\(60\) 0 0
\(61\) −2.57219 4.45517i −0.329336 0.570426i 0.653045 0.757319i \(-0.273491\pi\)
−0.982380 + 0.186893i \(0.940158\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.60236 4.50743i −0.322784 0.559078i
\(66\) 0 0
\(67\) −3.93243 + 6.81116i −0.480422 + 0.832116i −0.999748 0.0224607i \(-0.992850\pi\)
0.519325 + 0.854577i \(0.326183\pi\)
\(68\) 0 0
\(69\) −16.8136 −2.02412
\(70\) 0 0
\(71\) 5.29150i 0.627986i −0.949425 0.313993i \(-0.898333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) 0 0
\(73\) −0.480369 0.277341i −0.0562230 0.0324604i 0.471625 0.881799i \(-0.343668\pi\)
−0.527848 + 0.849339i \(0.677001\pi\)
\(74\) 0 0
\(75\) −1.54461 + 0.891779i −0.178356 + 0.102974i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.26862 + 3.04184i −0.592766 + 0.342233i −0.766190 0.642614i \(-0.777850\pi\)
0.173425 + 0.984847i \(0.444517\pi\)
\(80\) 0 0
\(81\) 2.78212 4.81877i 0.309124 0.535419i
\(82\) 0 0
\(83\) 0.503175i 0.0552307i 0.999619 + 0.0276153i \(0.00879135\pi\)
−0.999619 + 0.0276153i \(0.991209\pi\)
\(84\) 0 0
\(85\) 6.67728i 0.724252i
\(86\) 0 0
\(87\) 6.11551 10.5924i 0.655651 1.13562i
\(88\) 0 0
\(89\) −1.50000 + 0.866025i −0.159000 + 0.0917985i −0.577389 0.816469i \(-0.695928\pi\)
0.418389 + 0.908268i \(0.362595\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −10.0844 + 5.82221i −1.04570 + 0.603735i
\(94\) 0 0
\(95\) −7.38794 4.26543i −0.757986 0.437624i
\(96\) 0 0
\(97\) 17.2234i 1.74878i −0.485228 0.874388i \(-0.661263\pi\)
0.485228 0.874388i \(-0.338737\pi\)
\(98\) 0 0
\(99\) 5.20473 0.523095
\(100\) 0 0
\(101\) 0.613725 1.06300i 0.0610679 0.105773i −0.833875 0.551953i \(-0.813883\pi\)
0.894943 + 0.446180i \(0.147216\pi\)
\(102\) 0 0
\(103\) −7.62804 13.2122i −0.751613 1.30183i −0.947041 0.321114i \(-0.895943\pi\)
0.195427 0.980718i \(-0.437391\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.55442 + 9.62054i 0.536966 + 0.930053i 0.999065 + 0.0432246i \(0.0137631\pi\)
−0.462099 + 0.886828i \(0.652904\pi\)
\(108\) 0 0
\(109\) −10.9109 6.29938i −1.04507 0.603372i −0.123805 0.992307i \(-0.539510\pi\)
−0.921265 + 0.388935i \(0.872843\pi\)
\(110\) 0 0
\(111\) −16.6690 −1.58215
\(112\) 0 0
\(113\) 20.0629 1.88736 0.943680 0.330860i \(-0.107339\pi\)
0.943680 + 0.330860i \(0.107339\pi\)
\(114\) 0 0
\(115\) −11.5348 6.65961i −1.07562 0.621012i
\(116\) 0 0
\(117\) 4.86348 + 8.42380i 0.449629 + 0.778780i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 4.60236 + 7.97153i 0.418397 + 0.724685i
\(122\) 0 0
\(123\) 7.28212 12.6130i 0.656607 1.13728i
\(124\) 0 0
\(125\) −11.8055 −1.05591
\(126\) 0 0
\(127\) 14.6145i 1.29683i −0.761287 0.648415i \(-0.775432\pi\)
0.761287 0.648415i \(-0.224568\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.27230 + 3.04397i −0.460643 + 0.265953i −0.712315 0.701860i \(-0.752353\pi\)
0.251671 + 0.967813i \(0.419020\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.17744 + 2.41185i −0.359537 + 0.207579i
\(136\) 0 0
\(137\) −6.98685 + 12.1016i −0.596927 + 1.03391i 0.396345 + 0.918102i \(0.370278\pi\)
−0.993272 + 0.115806i \(0.963055\pi\)
\(138\) 0 0
\(139\) 0.503175i 0.0426788i −0.999772 0.0213394i \(-0.993207\pi\)
0.999772 0.0213394i \(-0.00679305\pi\)
\(140\) 0 0
\(141\) 2.97011i 0.250129i
\(142\) 0 0
\(143\) 1.67756 2.90562i 0.140285 0.242981i
\(144\) 0 0
\(145\) 8.39096 4.84452i 0.696832 0.402316i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.77077 2.75440i 0.390836 0.225649i −0.291686 0.956514i \(-0.594216\pi\)
0.682522 + 0.730865i \(0.260883\pi\)
\(150\) 0 0
\(151\) −6.09511 3.51901i −0.496013 0.286373i 0.231053 0.972941i \(-0.425783\pi\)
−0.727066 + 0.686568i \(0.759116\pi\)
\(152\) 0 0
\(153\) 12.4790i 1.00886i
\(154\) 0 0
\(155\) −9.22436 −0.740918
\(156\) 0 0
\(157\) 7.15477 12.3924i 0.571013 0.989023i −0.425450 0.904982i \(-0.639884\pi\)
0.996462 0.0840409i \(-0.0267827\pi\)
\(158\) 0 0
\(159\) 11.2641 + 19.5099i 0.893299 + 1.54724i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.15679 + 7.19977i 0.325585 + 0.563929i 0.981631 0.190792i \(-0.0611055\pi\)
−0.656046 + 0.754721i \(0.727772\pi\)
\(164\) 0 0
\(165\) 6.32828 + 3.65363i 0.492656 + 0.284435i
\(166\) 0 0
\(167\) −2.50406 −0.193770 −0.0968848 0.995296i \(-0.530888\pi\)
−0.0968848 + 0.995296i \(0.530888\pi\)
\(168\) 0 0
\(169\) −6.72971 −0.517670
\(170\) 0 0
\(171\) 13.8071 + 7.97153i 1.05585 + 0.609598i
\(172\) 0 0
\(173\) −2.71682 4.70568i −0.206556 0.357766i 0.744071 0.668100i \(-0.232892\pi\)
−0.950627 + 0.310334i \(0.899559\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −9.53146 16.5090i −0.716428 1.24089i
\(178\) 0 0
\(179\) 1.75915 3.04694i 0.131485 0.227739i −0.792764 0.609529i \(-0.791359\pi\)
0.924249 + 0.381790i \(0.124692\pi\)
\(180\) 0 0
\(181\) 22.1981 1.64997 0.824985 0.565154i \(-0.191183\pi\)
0.824985 + 0.565154i \(0.191183\pi\)
\(182\) 0 0
\(183\) 13.4980i 0.997801i
\(184\) 0 0
\(185\) −11.4356 6.60233i −0.840760 0.485413i
\(186\) 0 0
\(187\) 3.72770 2.15219i 0.272596 0.157383i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.13615 0.655958i 0.0822091 0.0474635i −0.458332 0.888781i \(-0.651553\pi\)
0.540541 + 0.841318i \(0.318220\pi\)
\(192\) 0 0
\(193\) 5.64697 9.78084i 0.406478 0.704040i −0.588014 0.808851i \(-0.700090\pi\)
0.994492 + 0.104810i \(0.0334235\pi\)
\(194\) 0 0
\(195\) 13.6563i 0.977950i
\(196\) 0 0
\(197\) 5.92149i 0.421889i −0.977498 0.210944i \(-0.932346\pi\)
0.977498 0.210944i \(-0.0676539\pi\)
\(198\) 0 0
\(199\) −9.30560 + 16.1178i −0.659657 + 1.14256i 0.321048 + 0.947063i \(0.395965\pi\)
−0.980704 + 0.195496i \(0.937368\pi\)
\(200\) 0 0
\(201\) 17.8713 10.3180i 1.26055 0.727777i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 9.99164 5.76868i 0.697847 0.402902i
\(206\) 0 0
\(207\) 21.5570 + 12.4460i 1.49832 + 0.865054i
\(208\) 0 0
\(209\) 5.49925i 0.380391i
\(210\) 0 0
\(211\) −5.72971 −0.394449 −0.197225 0.980358i \(-0.563193\pi\)
−0.197225 + 0.980358i \(0.563193\pi\)
\(212\) 0 0
\(213\) −6.94200 + 12.0239i −0.475658 + 0.823864i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0.727697 + 1.26041i 0.0491732 + 0.0851704i
\(220\) 0 0
\(221\) 6.96658 + 4.02216i 0.468623 + 0.270560i
\(222\) 0 0
\(223\) 20.8668 1.39734 0.698672 0.715442i \(-0.253775\pi\)
0.698672 + 0.715442i \(0.253775\pi\)
\(224\) 0 0
\(225\) 2.64049 0.176033
\(226\) 0 0
\(227\) 14.2775 + 8.24309i 0.947628 + 0.547113i 0.892343 0.451357i \(-0.149060\pi\)
0.0552847 + 0.998471i \(0.482393\pi\)
\(228\) 0 0
\(229\) −4.24976 7.36079i −0.280832 0.486415i 0.690758 0.723086i \(-0.257277\pi\)
−0.971590 + 0.236671i \(0.923944\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.23751 3.87548i −0.146584 0.253891i 0.783379 0.621545i \(-0.213495\pi\)
−0.929963 + 0.367653i \(0.880161\pi\)
\(234\) 0 0
\(235\) −1.17642 + 2.03762i −0.0767410 + 0.132919i
\(236\) 0 0
\(237\) 15.9625 1.03688
\(238\) 0 0
\(239\) 24.5675i 1.58914i 0.607171 + 0.794571i \(0.292304\pi\)
−0.607171 + 0.794571i \(0.707696\pi\)
\(240\) 0 0
\(241\) 5.02498 + 2.90117i 0.323687 + 0.186881i 0.653035 0.757328i \(-0.273495\pi\)
−0.329348 + 0.944209i \(0.606829\pi\)
\(242\) 0 0
\(243\) −18.6731 + 10.7809i −1.19788 + 0.691596i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.90047 5.13869i 0.566323 0.326967i
\(248\) 0 0
\(249\) 0.660123 1.14337i 0.0418336 0.0724579i
\(250\) 0 0
\(251\) 18.8010i 1.18671i −0.804942 0.593353i \(-0.797804\pi\)
0.804942 0.593353i \(-0.202196\pi\)
\(252\) 0 0
\(253\) 8.58598i 0.539796i
\(254\) 0 0
\(255\) −8.76002 + 15.1728i −0.548574 + 0.950157i
\(256\) 0 0
\(257\) −10.9106 + 6.29923i −0.680584 + 0.392935i −0.800075 0.599900i \(-0.795207\pi\)
0.119491 + 0.992835i \(0.461874\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −15.6816 + 9.05379i −0.970668 + 0.560415i
\(262\) 0 0
\(263\) 4.27292 + 2.46697i 0.263479 + 0.152120i 0.625921 0.779887i \(-0.284723\pi\)
−0.362441 + 0.932007i \(0.618057\pi\)
\(264\) 0 0
\(265\) 17.8461i 1.09628i
\(266\) 0 0
\(267\) 4.54461 0.278125
\(268\) 0 0
\(269\) −13.1502 + 22.7769i −0.801783 + 1.38873i 0.116658 + 0.993172i \(0.462782\pi\)
−0.918441 + 0.395558i \(0.870551\pi\)
\(270\) 0 0
\(271\) −14.0490 24.3336i −0.853418 1.47816i −0.878105 0.478468i \(-0.841192\pi\)
0.0246868 0.999695i \(-0.492141\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.455393 0.788764i −0.0274612 0.0475643i
\(276\) 0 0
\(277\) 23.3982 + 13.5090i 1.40586 + 0.811675i 0.994986 0.100017i \(-0.0318897\pi\)
0.410876 + 0.911691i \(0.365223\pi\)
\(278\) 0 0
\(279\) 17.2391 1.03208
\(280\) 0 0
\(281\) −20.0629 −1.19685 −0.598426 0.801178i \(-0.704207\pi\)
−0.598426 + 0.801178i \(0.704207\pi\)
\(282\) 0 0
\(283\) −4.75248 2.74385i −0.282506 0.163105i 0.352052 0.935981i \(-0.385484\pi\)
−0.634557 + 0.772876i \(0.718817\pi\)
\(284\) 0 0
\(285\) 11.1918 + 19.3847i 0.662943 + 1.14825i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −3.33988 5.78484i −0.196463 0.340284i
\(290\) 0 0
\(291\) −22.5957 + 39.1369i −1.32458 + 2.29425i
\(292\) 0 0
\(293\) 13.6931 0.799957 0.399978 0.916525i \(-0.369018\pi\)
0.399978 + 0.916525i \(0.369018\pi\)
\(294\) 0 0
\(295\) 15.1011i 0.879218i
\(296\) 0 0
\(297\) −2.69291 1.55475i −0.156258 0.0902157i
\(298\) 0 0
\(299\) 13.8963 8.02304i 0.803644 0.463984i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −2.78914 + 1.61031i −0.160232 + 0.0925099i
\(304\) 0 0
\(305\) −5.34636 + 9.26016i −0.306131 + 0.530235i
\(306\) 0 0
\(307\) 24.4197i 1.39371i 0.717213 + 0.696854i \(0.245417\pi\)
−0.717213 + 0.696854i \(0.754583\pi\)
\(308\) 0 0
\(309\) 40.0294i 2.27719i
\(310\) 0 0
\(311\) −8.61539 + 14.9223i −0.488534 + 0.846165i −0.999913 0.0131898i \(-0.995801\pi\)
0.511379 + 0.859355i \(0.329135\pi\)
\(312\) 0 0
\(313\) −15.0446 + 8.68601i −0.850371 + 0.490962i −0.860776 0.508984i \(-0.830021\pi\)
0.0104047 + 0.999946i \(0.496688\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.7863 9.69155i 0.942810 0.544332i 0.0519701 0.998649i \(-0.483450\pi\)
0.890840 + 0.454317i \(0.150117\pi\)
\(318\) 0 0
\(319\) 5.40907 + 3.12293i 0.302850 + 0.174850i
\(320\) 0 0
\(321\) 29.1477i 1.62687i
\(322\) 0 0
\(323\) 13.1851 0.733639
\(324\) 0 0
\(325\) 0.851071 1.47410i 0.0472089 0.0817682i
\(326\) 0 0
\(327\) 16.5285 + 28.6282i 0.914029 + 1.58314i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10.4008 18.0147i −0.571678 0.990176i −0.996394 0.0848492i \(-0.972959\pi\)
0.424715 0.905327i \(-0.360374\pi\)
\(332\) 0 0
\(333\) 21.3716 + 12.3389i 1.17116 + 0.676167i
\(334\) 0 0
\(335\) 16.3473 0.893146
\(336\) 0 0
\(337\) 10.3332 0.562886 0.281443 0.959578i \(-0.409187\pi\)
0.281443 + 0.959578i \(0.409187\pi\)
\(338\) 0 0
\(339\) −45.5890 26.3208i −2.47606 1.42955i
\(340\) 0 0
\(341\) −2.97315 5.14965i −0.161005 0.278869i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 17.4737 + 30.2653i 0.940752 + 1.62943i
\(346\) 0 0
\(347\) 16.8169 29.1277i 0.902779 1.56366i 0.0789080 0.996882i \(-0.474857\pi\)
0.823871 0.566777i \(-0.191810\pi\)
\(348\) 0 0
\(349\) 13.3546 0.714858 0.357429 0.933940i \(-0.383653\pi\)
0.357429 + 0.933940i \(0.383653\pi\)
\(350\) 0 0
\(351\) 5.81125i 0.310182i
\(352\) 0 0
\(353\) −6.80175 3.92699i −0.362021 0.209013i 0.307946 0.951404i \(-0.400358\pi\)
−0.669967 + 0.742391i \(0.733692\pi\)
\(354\) 0 0
\(355\) −9.52498 + 5.49925i −0.505533 + 0.291870i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.140453 0.0810905i 0.00741282 0.00427979i −0.496289 0.868157i \(-0.665304\pi\)
0.503702 + 0.863878i \(0.331971\pi\)
\(360\) 0 0
\(361\) −1.07739 + 1.86609i −0.0567047 + 0.0982154i
\(362\) 0 0
\(363\) 24.1516i 1.26763i
\(364\) 0 0
\(365\) 1.15292i 0.0603466i
\(366\) 0 0
\(367\) 10.1321 17.5493i 0.528891 0.916066i −0.470541 0.882378i \(-0.655941\pi\)
0.999432 0.0336883i \(-0.0107254\pi\)
\(368\) 0 0
\(369\) −18.6731 + 10.7809i −0.972082 + 0.561232i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.78269 + 3.33864i −0.299416 + 0.172868i −0.642181 0.766553i \(-0.721970\pi\)
0.342764 + 0.939421i \(0.388637\pi\)
\(374\) 0 0
\(375\) 26.8256 + 15.4878i 1.38527 + 0.799786i
\(376\) 0 0
\(377\) 11.6727i 0.601174i
\(378\) 0 0
\(379\) 4.60350 0.236466 0.118233 0.992986i \(-0.462277\pi\)
0.118233 + 0.992986i \(0.462277\pi\)
\(380\) 0 0
\(381\) −19.1730 + 33.2086i −0.982264 + 1.70133i
\(382\) 0 0
\(383\) 5.71038 + 9.89066i 0.291787 + 0.505389i 0.974232 0.225547i \(-0.0724170\pi\)
−0.682446 + 0.730936i \(0.739084\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −26.0307 15.0288i −1.31981 0.761991i −0.336109 0.941823i \(-0.609111\pi\)
−0.983697 + 0.179832i \(0.942445\pi\)
\(390\) 0 0
\(391\) 20.5859 1.04107
\(392\) 0 0
\(393\) 15.9737 0.805766
\(394\) 0 0
\(395\) 10.9509 + 6.32252i 0.551001 + 0.318120i
\(396\) 0 0
\(397\) 2.17124 + 3.76069i 0.108971 + 0.188744i 0.915354 0.402651i \(-0.131911\pi\)
−0.806383 + 0.591394i \(0.798578\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.98685 + 17.2977i 0.498719 + 0.863807i 0.999999 0.00147805i \(-0.000470479\pi\)
−0.501279 + 0.865285i \(0.667137\pi\)
\(402\) 0 0
\(403\) 5.55643 9.62402i 0.276786 0.479407i
\(404\) 0 0
\(405\) −11.5654 −0.574688
\(406\) 0 0
\(407\) 8.51212i 0.421930i
\(408\) 0 0
\(409\) 26.4356 + 15.2626i 1.30715 + 0.754686i 0.981620 0.190844i \(-0.0611225\pi\)
0.325534 + 0.945530i \(0.394456\pi\)
\(410\) 0 0
\(411\) 31.7525 18.3323i 1.56623 0.904266i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0.905741 0.522930i 0.0444611 0.0256696i
\(416\) 0 0
\(417\) −0.660123 + 1.14337i −0.0323264 + 0.0559909i
\(418\) 0 0
\(419\) 2.08070i 0.101649i 0.998708 + 0.0508245i \(0.0161849\pi\)
−0.998708 + 0.0508245i \(0.983815\pi\)
\(420\) 0 0
\(421\) 30.4039i 1.48180i −0.671618 0.740898i \(-0.734400\pi\)
0.671618 0.740898i \(-0.265600\pi\)
\(422\) 0 0
\(423\) 2.19857 3.80804i 0.106898 0.185153i
\(424\) 0 0
\(425\) 1.89116 1.09186i 0.0917345 0.0529630i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −7.62386 + 4.40164i −0.368084 + 0.212513i
\(430\) 0 0
\(431\) −2.32280 1.34107i −0.111885 0.0645970i 0.443013 0.896515i \(-0.353910\pi\)
−0.554898 + 0.831918i \(0.687243\pi\)
\(432\) 0 0
\(433\) 29.4673i 1.41611i 0.706158 + 0.708054i \(0.250427\pi\)
−0.706158 + 0.708054i \(0.749573\pi\)
\(434\) 0 0
\(435\) −25.4224 −1.21891
\(436\) 0 0
\(437\) 13.1502 22.7769i 0.629061 1.08957i
\(438\) 0 0
\(439\) −3.77648 6.54106i −0.180242 0.312188i 0.761721 0.647905i \(-0.224355\pi\)
−0.941963 + 0.335717i \(0.891021\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.75915 6.51104i −0.178603 0.309349i 0.762799 0.646635i \(-0.223824\pi\)
−0.941402 + 0.337286i \(0.890491\pi\)
\(444\) 0 0
\(445\) 3.11778 + 1.80005i 0.147797 + 0.0853306i
\(446\) 0 0
\(447\) −14.4542 −0.683659
\(448\) 0 0
\(449\) −14.3332 −0.676426 −0.338213 0.941070i \(-0.609822\pi\)
−0.338213 + 0.941070i \(0.609822\pi\)
\(450\) 0 0
\(451\) 6.44092 + 3.71866i 0.303291 + 0.175105i
\(452\) 0 0
\(453\) 9.23329 + 15.9925i 0.433818 + 0.751394i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.48037 11.2243i −0.303139 0.525052i 0.673706 0.738999i \(-0.264701\pi\)
−0.976845 + 0.213947i \(0.931368\pi\)
\(458\) 0 0
\(459\) 3.72770 6.45656i 0.173994 0.301366i
\(460\) 0 0
\(461\) −33.3871 −1.55499 −0.777496 0.628888i \(-0.783510\pi\)
−0.777496 + 0.628888i \(0.783510\pi\)
\(462\) 0 0
\(463\) 29.7739i 1.38371i −0.722036 0.691855i \(-0.756794\pi\)
0.722036 0.691855i \(-0.243206\pi\)
\(464\) 0 0
\(465\) 20.9605 + 12.1016i 0.972022 + 0.561197i
\(466\) 0 0
\(467\) 23.5399 13.5908i 1.08930 0.628907i 0.155909 0.987771i \(-0.450169\pi\)
0.933390 + 0.358865i \(0.116836\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −32.5156 + 18.7729i −1.49824 + 0.865009i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.78991i 0.128010i
\(476\) 0 0
\(477\) 33.3521i 1.52709i
\(478\) 0 0
\(479\) −17.2187 + 29.8237i −0.786744 + 1.36268i 0.141208 + 0.989980i \(0.454901\pi\)
−0.927952 + 0.372700i \(0.878432\pi\)
\(480\) 0 0
\(481\) 13.7768 7.95402i 0.628167 0.362672i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −31.0031 + 17.8996i −1.40778 + 0.812781i
\(486\) 0 0
\(487\) 6.82613 + 3.94107i 0.309321 + 0.178587i 0.646623 0.762810i \(-0.276181\pi\)
−0.337301 + 0.941397i \(0.609514\pi\)
\(488\) 0 0
\(489\) 21.8134i 0.986436i
\(490\) 0 0
\(491\) 8.06291 0.363874 0.181937 0.983310i \(-0.441763\pi\)
0.181937 + 0.983310i \(0.441763\pi\)
\(492\) 0 0
\(493\) −7.48759 + 12.9689i −0.337224 + 0.584089i
\(494\) 0 0
\(495\) −5.40907 9.36878i −0.243120 0.421095i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −12.0216 20.8221i −0.538163 0.932125i −0.999003 0.0446419i \(-0.985785\pi\)
0.460841 0.887483i \(-0.347548\pi\)
\(500\) 0 0
\(501\) 5.68997 + 3.28511i 0.254209 + 0.146768i
\(502\) 0 0
\(503\) −40.8993 −1.82361 −0.911804 0.410626i \(-0.865310\pi\)
−0.911804 + 0.410626i \(0.865310\pi\)
\(504\) 0 0
\(505\) −2.55128 −0.113530
\(506\) 0 0
\(507\) 15.2919 + 8.82880i 0.679139 + 0.392101i
\(508\) 0 0
\(509\) 2.02661 + 3.51019i 0.0898278 + 0.155586i 0.907438 0.420186i \(-0.138035\pi\)
−0.817610 + 0.575772i \(0.804702\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.76249 8.24887i −0.210269 0.364197i
\(514\) 0 0
\(515\) −15.8550 + 27.4617i −0.698656 + 1.21011i
\(516\) 0 0
\(517\) −1.51671 −0.0667048
\(518\) 0 0
\(519\) 14.2570i 0.625811i
\(520\) 0 0
\(521\) −27.1927 15.6997i −1.19133 0.687817i −0.232725 0.972543i \(-0.574764\pi\)
−0.958609 + 0.284725i \(0.908098\pi\)
\(522\) 0 0
\(523\) −11.7132 + 6.76263i −0.512183 + 0.295709i −0.733731 0.679440i \(-0.762223\pi\)
0.221547 + 0.975150i \(0.428889\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.3469 7.12848i 0.537839 0.310522i
\(528\) 0 0
\(529\) 9.03146 15.6429i 0.392672 0.680128i
\(530\) 0 0
\(531\) 28.2219i 1.22473i
\(532\) 0 0
\(533\) 13.8994i 0.602050i
\(534\) 0 0
\(535\) 11.5450 19.9965i 0.499133 0.864524i
\(536\) 0 0
\(537\) −7.99465 + 4.61572i −0.344995 + 0.199183i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −27.1543 + 15.6775i −1.16745 + 0.674030i −0.953079 0.302722i \(-0.902105\pi\)
−0.214375 + 0.976751i \(0.568771\pi\)
\(542\) 0 0
\(543\) −50.4408 29.1220i −2.16462 1.24974i
\(544\) 0 0
\(545\) 26.1868i 1.12172i
\(546\) 0 0
\(547\) 44.7293 1.91249 0.956244 0.292571i \(-0.0945108\pi\)
0.956244 + 0.292571i \(0.0945108\pi\)
\(548\) 0 0
\(549\) 9.99164 17.3060i 0.426433 0.738604i
\(550\) 0 0
\(551\) 9.56611 + 16.5690i 0.407530 + 0.705863i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 17.3234 + 30.0050i 0.735337 + 1.27364i
\(556\) 0 0
\(557\) 10.5345 + 6.08208i 0.446360 + 0.257706i 0.706292 0.707921i \(-0.250367\pi\)
−0.259932 + 0.965627i \(0.583700\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −11.2939 −0.476831
\(562\) 0 0
\(563\) −31.4311 18.1468i −1.32466 0.764794i −0.340194 0.940355i \(-0.610493\pi\)
−0.984469 + 0.175561i \(0.943826\pi\)
\(564\) 0 0
\(565\) −20.8506 36.1143i −0.877191 1.51934i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.01830 10.4240i −0.252300 0.436997i 0.711858 0.702323i \(-0.247854\pi\)
−0.964159 + 0.265326i \(0.914520\pi\)
\(570\) 0 0
\(571\) 4.10570 7.11128i 0.171818 0.297598i −0.767237 0.641363i \(-0.778369\pi\)
0.939056 + 0.343765i \(0.111702\pi\)
\(572\) 0 0
\(573\) −3.44225 −0.143802
\(574\) 0 0
\(575\) 4.35589i 0.181653i
\(576\) 0 0
\(577\) −14.5500 8.40042i −0.605722 0.349714i 0.165567 0.986199i \(-0.447055\pi\)
−0.771289 + 0.636485i \(0.780388\pi\)
\(578\) 0 0
\(579\) −25.6633 + 14.8167i −1.06653 + 0.615761i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −9.96289 + 5.75208i −0.412621 + 0.238227i
\(584\) 0 0
\(585\) 10.1088 17.5090i 0.417949 0.723909i
\(586\) 0 0
\(587\) 25.4261i 1.04945i −0.851273 0.524723i \(-0.824169\pi\)
0.851273 0.524723i \(-0.175831\pi\)
\(588\) 0 0
\(589\) 18.2146i 0.750521i
\(590\) 0 0
\(591\) −7.76849 + 13.4554i −0.319553 + 0.553482i
\(592\) 0 0
\(593\) 19.0694 11.0097i 0.783086 0.452115i −0.0544368 0.998517i \(-0.517336\pi\)
0.837523 + 0.546402i \(0.184003\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 42.2903 24.4163i 1.73083 0.999294i
\(598\) 0 0
\(599\) 0.500607 + 0.289026i 0.0204543 + 0.0118093i 0.510192 0.860060i \(-0.329574\pi\)
−0.489738 + 0.871870i \(0.662908\pi\)
\(600\) 0 0
\(601\) 27.3186i 1.11435i −0.830395 0.557175i \(-0.811885\pi\)
0.830395 0.557175i \(-0.188115\pi\)
\(602\) 0 0
\(603\) −30.5509 −1.24413
\(604\) 0 0
\(605\) 9.56611 16.5690i 0.388918 0.673625i
\(606\) 0 0
\(607\) 5.99963 + 10.3917i 0.243518 + 0.421785i 0.961714 0.274056i \(-0.0883653\pi\)
−0.718196 + 0.695841i \(0.755032\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.41727 2.45478i −0.0573364 0.0993096i
\(612\) 0 0
\(613\) −3.96050 2.28659i −0.159963 0.0923547i 0.417882 0.908501i \(-0.362773\pi\)
−0.577845 + 0.816147i \(0.696106\pi\)
\(614\) 0 0
\(615\) −30.2721 −1.22069
\(616\) 0 0
\(617\) 5.12621 0.206373 0.103187 0.994662i \(-0.467096\pi\)
0.103187 + 0.994662i \(0.467096\pi\)
\(618\) 0 0
\(619\) 39.5293 + 22.8222i 1.58881 + 0.917303i 0.993503 + 0.113808i \(0.0363049\pi\)
0.595312 + 0.803495i \(0.297028\pi\)
\(620\) 0 0
\(621\) −7.43567 12.8790i −0.298383 0.516815i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 10.5696 + 18.3071i 0.422783 + 0.732282i
\(626\) 0 0
\(627\) −7.21455 + 12.4960i −0.288121 + 0.499041i
\(628\) 0 0
\(629\) 20.4088 0.813753
\(630\) 0 0
\(631\) 17.1345i 0.682113i 0.940043 + 0.341057i \(0.110785\pi\)
−0.940043 + 0.341057i \(0.889215\pi\)
\(632\) 0 0
\(633\) 13.0196 + 7.51689i 0.517484 + 0.298769i
\(634\) 0 0
\(635\) −26.3069 + 15.1883i −1.04396 + 0.602729i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 17.8009 10.2774i 0.704194 0.406567i
\(640\) 0 0
\(641\) −4.02498 + 6.97146i −0.158977 + 0.275356i −0.934500 0.355963i \(-0.884153\pi\)
0.775523 + 0.631319i \(0.217486\pi\)
\(642\) 0 0
\(643\) 22.2710i 0.878283i −0.898418 0.439142i \(-0.855283\pi\)
0.898418 0.439142i \(-0.144717\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18.9125 32.7574i 0.743528 1.28783i −0.207352 0.978266i \(-0.566484\pi\)
0.950879 0.309561i \(-0.100182\pi\)
\(648\) 0 0
\(649\) 8.43042 4.86730i 0.330923 0.191058i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.6130 14.7877i 1.00231 0.578686i 0.0933818 0.995630i \(-0.470232\pi\)
0.908932 + 0.416944i \(0.136899\pi\)
\(654\) 0 0
\(655\) 10.9586 + 6.32694i 0.428188 + 0.247214i
\(656\) 0 0
\(657\) 2.15466i 0.0840611i
\(658\) 0 0
\(659\) −18.3961 −0.716611 −0.358305 0.933604i \(-0.616645\pi\)
−0.358305 + 0.933604i \(0.616645\pi\)
\(660\) 0 0
\(661\) −5.92732 + 10.2664i −0.230546 + 0.399317i −0.957969 0.286872i \(-0.907385\pi\)
0.727423 + 0.686189i \(0.240718\pi\)
\(662\) 0 0
\(663\) −10.5535 18.2791i −0.409862 0.709902i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 14.9356 + 25.8692i 0.578308 + 1.00166i
\(668\) 0 0
\(669\) −47.4157 27.3755i −1.83320 1.05840i
\(670\) 0 0
\(671\) −6.89285 −0.266095
\(672\) 0 0
\(673\) 10.8738 0.419154 0.209577 0.977792i \(-0.432791\pi\)
0.209577 + 0.977792i \(0.432791\pi\)
\(674\) 0 0
\(675\) −1.36618 0.788764i −0.0525843 0.0303595i
\(676\) 0 0
\(677\) 22.7163 + 39.3458i 0.873060 + 1.51218i 0.858815 + 0.512285i \(0.171201\pi\)
0.0142443 + 0.999899i \(0.495466\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −21.6285 37.4616i −0.828805 1.43553i
\(682\) 0 0
\(683\) 12.3693 21.4243i 0.473299 0.819778i −0.526234 0.850340i \(-0.676396\pi\)
0.999533 + 0.0305620i \(0.00972970\pi\)
\(684\) 0 0
\(685\) 29.0446 1.10974
\(686\) 0 0
\(687\) 22.3013i 0.850847i
\(688\) 0 0
\(689\) −18.6193 10.7499i −0.709340 0.409538i
\(690\) 0 0
\(691\) −4.10457 + 2.36977i −0.156145 + 0.0901504i −0.576037 0.817424i \(-0.695401\pi\)
0.419892 + 0.907574i \(0.362068\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.905741 + 0.522930i −0.0343567 + 0.0198359i
\(696\) 0 0
\(697\) −8.91594 + 15.4429i −0.337715 + 0.584940i
\(698\) 0 0
\(699\) 11.7417i 0.444112i
\(700\) 0 0
\(701\) 39.8121i 1.50368i 0.659345 + 0.751840i \(0.270834\pi\)
−0.659345 + 0.751840i \(0.729166\pi\)
\(702\) 0 0
\(703\) 13.0371 22.5809i 0.491704 0.851656i
\(704\) 0 0
\(705\) 5.34636 3.08672i 0.201355 0.116253i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.97242 2.87083i 0.186743 0.107816i −0.403714 0.914885i \(-0.632281\pi\)
0.590457 + 0.807069i \(0.298948\pi\)
\(710\) 0 0
\(711\) −20.4659 11.8160i −0.767529 0.443133i
\(712\) 0 0
\(713\) 28.4385i 1.06503i
\(714\) 0 0
\(715\) −6.97370 −0.260801
\(716\) 0 0
\(717\) 32.2305 55.8249i 1.20367 2.08482i
\(718\) 0 0
\(719\) −7.62804 13.2122i −0.284478 0.492730i 0.688005 0.725706i \(-0.258487\pi\)
−0.972482 + 0.232976i \(0.925154\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −7.61218 13.1847i −0.283100 0.490344i
\(724\) 0 0
\(725\) 2.74416 + 1.58434i 0.101915 + 0.0588409i
\(726\) 0 0
\(727\) 40.8993 1.51687 0.758435 0.651749i \(-0.225964\pi\)
0.758435 + 0.651749i \(0.225964\pi\)
\(728\) 0 0
\(729\) 39.8818 1.47710
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −12.2037 21.1374i −0.450753 0.780728i 0.547680 0.836688i \(-0.315511\pi\)
−0.998433 + 0.0559605i \(0.982178\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.26897 + 9.12612i 0.194085 + 0.336165i
\(738\) 0 0
\(739\) −15.3996 + 26.6730i −0.566485 + 0.981181i 0.430425 + 0.902626i \(0.358364\pi\)
−0.996910 + 0.0785545i \(0.974970\pi\)
\(740\) 0 0
\(741\) −26.9661 −0.990624
\(742\) 0 0
\(743\) 23.9376i 0.878184i 0.898442 + 0.439092i \(0.144700\pi\)
−0.898442 + 0.439092i \(0.855300\pi\)
\(744\) 0 0
\(745\) −9.91613 5.72508i −0.363299 0.209751i
\(746\) 0 0
\(747\) −1.69271 + 0.977288i −0.0619331 + 0.0357571i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 11.9543 6.90181i 0.436218 0.251851i −0.265774 0.964035i \(-0.585627\pi\)
0.701992 + 0.712185i \(0.252294\pi\)
\(752\) 0 0
\(753\) −24.6653 + 42.7215i −0.898853 + 1.55686i
\(754\) 0 0
\(755\) 14.6287i 0.532392i
\(756\) 0 0
\(757\) 2.14156i 0.0778362i −0.999242 0.0389181i \(-0.987609\pi\)
0.999242 0.0389181i \(-0.0123911\pi\)
\(758\) 0 0
\(759\) −11.2641 + 19.5099i −0.408860 + 0.708166i
\(760\) 0 0
\(761\) −36.8321 + 21.2650i −1.33516 + 0.770856i −0.986086 0.166239i \(-0.946838\pi\)
−0.349076 + 0.937094i \(0.613504\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 22.4628 12.9689i 0.812143 0.468891i
\(766\) 0 0
\(767\) 15.7554 + 9.09636i 0.568893 + 0.328450i
\(768\) 0 0
\(769\) 15.6459i 0.564206i 0.959384 + 0.282103i \(0.0910320\pi\)
−0.959384 + 0.282103i \(0.908968\pi\)
\(770\) 0 0
\(771\) 33.0562 1.19049
\(772\) 0 0
\(773\) −15.2125 + 26.3489i −0.547156 + 0.947703i 0.451311 + 0.892367i \(0.350956\pi\)
−0.998468 + 0.0553362i \(0.982377\pi\)
\(774\) 0 0
\(775\) −1.50836 2.61255i −0.0541817 0.0938455i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.3910 + 19.7297i 0.408124 + 0.706891i
\(780\) 0 0
\(781\) −6.14009 3.54498i −0.219710 0.126849i
\(782\) 0 0
\(783\) 10.8181 0.386609
\(784\) 0 0
\(785\) −29.7427 −1.06156
\(786\) 0 0
\(787\) −28.3722 16.3807i −1.01136 0.583909i −0.0997704 0.995010i \(-0.531811\pi\)
−0.911590 + 0.411102i \(0.865144\pi\)
\(788\) 0 0
\(789\) −6.47291 11.2114i −0.230442 0.399137i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.44092 11.1560i −0.228724 0.396161i
\(794\) 0 0
\(795\) 23.4126 40.5518i 0.830359 1.43822i
\(796\) 0 0
\(797\) −28.3790 −1.00523 −0.502617 0.864509i \(-0.667630\pi\)
−0.502617 + 0.864509i \(0.667630\pi\)
\(798\) 0 0
\(799\) 3.63649i 0.128650i
\(800\) 0 0
\(801\) −5.82673 3.36406i −0.205877 0.118863i
\(802\) 0 0
\(803\) −0.643636 + 0.371603i −0.0227134 + 0.0131136i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 59.7626 34.5040i 2.10374 1.21460i
\(808\) 0 0
\(809\) 4.08387 7.07347i 0.143581 0.248690i −0.785262 0.619164i \(-0.787472\pi\)
0.928843 + 0.370474i \(0.120805\pi\)
\(810\) 0 0
\(811\) 22.2710i 0.782041i 0.920382 + 0.391021i \(0.127878\pi\)
−0.920382 + 0.391021i \(0.872122\pi\)
\(812\) 0 0
\(813\) 73.7246i 2.58563i
\(814\) 0 0
\(815\) 8.63997 14.9649i 0.302645 0.524196i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.52231 + 2.61096i −0.157830 + 0.0911230i −0.576835 0.816861i \(-0.695712\pi\)
0.419005 + 0.907984i \(0.362379\pi\)
\(822\) 0 0
\(823\) −8.29368 4.78836i −0.289099 0.166912i 0.348436 0.937333i \(-0.386713\pi\)
−0.637536 + 0.770421i \(0.720046\pi\)
\(824\) 0 0
\(825\) 2.38975i 0.0832004i
\(826\) 0 0
\(827\) −40.6664 −1.41411 −0.707055 0.707159i \(-0.749977\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(828\) 0 0
\(829\) 16.6171 28.7816i 0.577134 0.999625i −0.418672 0.908137i \(-0.637504\pi\)
0.995806 0.0914880i \(-0.0291623\pi\)
\(830\) 0 0
\(831\) −35.4452 61.3929i −1.22958 2.12970i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.60236 + 4.50743i 0.0900586 + 0.155986i
\(836\) 0 0
\(837\) −8.91945 5.14965i −0.308301 0.177998i
\(838\) 0 0
\(839\) 15.0243 0.518698 0.259349 0.965784i \(-0.416492\pi\)
0.259349 + 0.965784i \(0.416492\pi\)
\(840\) 0 0
\(841\) 7.27029 0.250700
\(842\) 0 0
\(843\) 45.5890 + 26.3208i 1.57017 + 0.906538i
\(844\) 0 0
\(845\) 6.99392 + 12.1138i 0.240598 + 0.416728i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 7.19938 + 12.4697i 0.247082 + 0.427959i
\(850\) 0 0
\(851\) 20.3548 35.2556i 0.697755 1.20855i
\(852\) 0 0
\(853\) −12.5203 −0.428686 −0.214343 0.976758i \(-0.568761\pi\)
−0.214343 + 0.976758i \(0.568761\pi\)
\(854\) 0 0
\(855\) 33.1380i 1.13329i
\(856\) 0 0
\(857\) 46.8265 + 27.0353i 1.59956 + 0.923509i 0.991571 + 0.129566i \(0.0413585\pi\)
0.607993 + 0.793942i \(0.291975\pi\)
\(858\) 0 0
\(859\) 17.0990 9.87213i 0.583411 0.336833i −0.179077 0.983835i \(-0.557311\pi\)
0.762488 + 0.647002i \(0.223978\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.3755 + 15.2279i −0.897833 + 0.518364i −0.876497 0.481408i \(-0.840126\pi\)
−0.0213367 + 0.999772i \(0.506792\pi\)
\(864\) 0 0
\(865\) −5.64697 + 9.78084i −0.192003 + 0.332559i
\(866\) 0 0
\(867\) 17.5265i 0.595232i
\(868\) 0 0
\(869\) 8.15137i 0.276516i
\(870\) 0 0
\(871\) −9.84701 + 17.0555i −0.333653 + 0.577905i
\(872\) 0 0
\(873\) 57.9407 33.4521i 1.96100 1.13218i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.3275 + 10.5814i −0.618877 + 0.357309i −0.776432 0.630201i \(-0.782972\pi\)
0.157555 + 0.987510i \(0.449639\pi\)
\(878\) 0 0
\(879\) −31.1148 17.9641i −1.04948 0.605915i
\(880\) 0 0
\(881\) 11.5367i 0.388681i 0.980934 + 0.194340i \(0.0622566\pi\)
−0.980934 + 0.194340i \(0.937743\pi\)
\(882\) 0 0
\(883\) −49.8555 −1.67777 −0.838886 0.544307i \(-0.816793\pi\)
−0.838886 + 0.544307i \(0.816793\pi\)
\(884\) 0 0
\(885\) −19.8113 + 34.3142i −0.665950 + 1.15346i
\(886\) 0 0
\(887\) 5.56575 + 9.64015i 0.186879 + 0.323685i 0.944208 0.329349i \(-0.106829\pi\)
−0.757329 + 0.653034i \(0.773496\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −3.72770 6.45656i −0.124883 0.216303i
\(892\) 0 0
\(893\) −4.02352 2.32298i −0.134642 0.0777356i
\(894\) 0 0
\(895\) −7.31287 −0.244442
\(896\) 0 0
\(897\) −42.1022 −1.40575
\(898\) 0 0
\(899\) 17.9159 + 10.3438i 0.597530 + 0.344984i
\(900\) 0 0
\(901\) −13.7913 23.8872i −0.459454 0.795798i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −23.0696 39.9577i −0.766859 1.32824i
\(906\) 0 0
\(907\) −7.20674 + 12.4824i −0.239296 + 0.414473i −0.960512 0.278237i \(-0.910250\pi\)
0.721217 + 0.692710i \(0.243583\pi\)
\(908\) 0 0
\(909\) 4.76801 0.158145
\(910\) 0 0
\(911\) 19.1909i 0.635823i 0.948120 + 0.317911i \(0.102981\pi\)
−0.948120 + 0.317911i \(0.897019\pi\)
\(912\) 0 0
\(913\) 0.583868 + 0.337096i 0.0193232 + 0.0111563i
\(914\) 0 0
\(915\) 24.2971 14.0279i 0.803237 0.463749i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −22.4285 + 12.9491i −0.739848 + 0.427151i −0.822014 0.569467i \(-0.807150\pi\)
0.0821662 + 0.996619i \(0.473816\pi\)
\(920\) 0 0
\(921\) 32.0366 55.4890i 1.05564 1.82843i
\(922\) 0 0
\(923\) 13.2502i 0.436136i
\(924\) 0 0
\(925\) 4.31842i 0.141989i
\(926\) 0 0
\(927\) 29.6310 51.3224i 0.973210 1.68565i
\(928\) 0 0
\(929\) 36.7480 21.2165i 1.20566 0.696090i 0.243854 0.969812i \(-0.421588\pi\)
0.961809 + 0.273722i \(0.0882548\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 39.1536 22.6053i 1.28183 0.740065i
\(934\) 0 0
\(935\) −7.74809 4.47336i −0.253390 0.146295i
\(936\) 0 0
\(937\) 46.5547i 1.52088i −0.649410 0.760439i \(-0.724984\pi\)
0.649410 0.760439i \(-0.275016\pi\)
\(938\) 0 0
\(939\) 45.5812 1.48749
\(940\) 0 0
\(941\) 1.48937 2.57967i 0.0485522 0.0840949i −0.840728 0.541458i \(-0.817873\pi\)
0.889280 + 0.457363i \(0.151206\pi\)
\(942\) 0 0
\(943\) 17.7847 + 30.8040i 0.579150 + 1.00312i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.5270 23.4294i −0.439568 0.761354i 0.558088 0.829782i \(-0.311535\pi\)
−0.997656 + 0.0684276i \(0.978202\pi\)
\(948\) 0 0
\(949\) −1.20287 0.694478i −0.0390469 0.0225437i
\(950\) 0 0
\(951\) −50.8580 −1.64918
\(952\) 0 0
\(953\) 28.7293 0.930634 0.465317 0.885144i \(-0.345940\pi\)
0.465317 + 0.885144i \(0.345940\pi\)
\(954\) 0 0
\(955\) −2.36152 1.36342i −0.0764169 0.0441193i
\(956\) 0 0
\(957\) −8.19403 14.1925i −0.264875 0.458778i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 5.65232 + 9.79010i 0.182333 + 0.315810i
\(962\) 0 0
\(963\) −21.5761 + 37.3708i −0.695279 + 1.20426i
\(964\) 0 0
\(965\) −23.4747 −0.755677
\(966\) 0 0
\(967\) 13.3546i 0.429453i −0.976674 0.214727i \(-0.931114\pi\)
0.976674 0.214727i \(-0.0688861\pi\)
\(968\) 0 0
\(969\) −29.9605 17.2977i −0.962471 0.555683i
\(970\) 0 0
\(971\) −1.71876 + 0.992325i −0.0551575 + 0.0318452i −0.527325 0.849664i \(-0.676805\pi\)
0.472168 + 0.881509i \(0.343472\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.86778 + 2.23306i −0.123868 + 0.0715153i
\(976\) 0 0
\(977\) 31.2242 54.0818i 0.998950 1.73023i 0.459792 0.888027i \(-0.347924\pi\)
0.539158 0.842205i \(-0.318743\pi\)
\(978\) 0 0
\(979\) 2.32073i 0.0741710i
\(980\) 0 0
\(981\) 48.9397i 1.56252i
\(982\) 0 0
\(983\) −3.64021 + 6.30503i −0.116105 + 0.201099i −0.918221 0.396069i \(-0.870374\pi\)
0.802116 + 0.597168i \(0.203707\pi\)
\(984\) 0 0
\(985\) −10.6590 + 6.15397i −0.339624 + 0.196082i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 31.3345 + 18.0910i 0.995373 + 0.574679i 0.906876 0.421398i \(-0.138460\pi\)
0.0884967 + 0.996076i \(0.471794\pi\)
\(992\) 0 0
\(993\) 54.5797i 1.73204i
\(994\) 0 0
\(995\) 38.6838 1.22636
\(996\) 0 0
\(997\) 17.1218 29.6559i 0.542254 0.939211i −0.456520 0.889713i \(-0.650904\pi\)
0.998774 0.0494984i \(-0.0157623\pi\)
\(998\) 0 0
\(999\) −7.37171 12.7682i −0.233231 0.403967i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.2.q.g.815.1 12
4.3 odd 2 392.2.m.g.227.5 12
7.2 even 3 224.2.q.a.47.5 12
7.3 odd 6 1568.2.e.e.783.1 12
7.4 even 3 1568.2.e.e.783.12 12
7.5 odd 6 inner 1568.2.q.g.1391.2 12
7.6 odd 2 224.2.q.a.143.6 12
8.3 odd 2 inner 1568.2.q.g.815.2 12
8.5 even 2 392.2.m.g.227.2 12
21.2 odd 6 2016.2.bs.a.271.5 12
21.20 even 2 2016.2.bs.a.1711.2 12
28.3 even 6 392.2.e.e.195.8 12
28.11 odd 6 392.2.e.e.195.7 12
28.19 even 6 392.2.m.g.19.1 12
28.23 odd 6 56.2.m.a.19.1 yes 12
28.27 even 2 56.2.m.a.3.5 yes 12
56.3 even 6 1568.2.e.e.783.2 12
56.5 odd 6 392.2.m.g.19.6 12
56.11 odd 6 1568.2.e.e.783.11 12
56.13 odd 2 56.2.m.a.3.2 12
56.19 even 6 inner 1568.2.q.g.1391.1 12
56.27 even 2 224.2.q.a.143.5 12
56.37 even 6 56.2.m.a.19.6 yes 12
56.45 odd 6 392.2.e.e.195.6 12
56.51 odd 6 224.2.q.a.47.6 12
56.53 even 6 392.2.e.e.195.5 12
84.23 even 6 504.2.bk.a.19.6 12
84.83 odd 2 504.2.bk.a.451.2 12
168.83 odd 2 2016.2.bs.a.1711.5 12
168.107 even 6 2016.2.bs.a.271.2 12
168.125 even 2 504.2.bk.a.451.5 12
168.149 odd 6 504.2.bk.a.19.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.m.a.3.2 12 56.13 odd 2
56.2.m.a.3.5 yes 12 28.27 even 2
56.2.m.a.19.1 yes 12 28.23 odd 6
56.2.m.a.19.6 yes 12 56.37 even 6
224.2.q.a.47.5 12 7.2 even 3
224.2.q.a.47.6 12 56.51 odd 6
224.2.q.a.143.5 12 56.27 even 2
224.2.q.a.143.6 12 7.6 odd 2
392.2.e.e.195.5 12 56.53 even 6
392.2.e.e.195.6 12 56.45 odd 6
392.2.e.e.195.7 12 28.11 odd 6
392.2.e.e.195.8 12 28.3 even 6
392.2.m.g.19.1 12 28.19 even 6
392.2.m.g.19.6 12 56.5 odd 6
392.2.m.g.227.2 12 8.5 even 2
392.2.m.g.227.5 12 4.3 odd 2
504.2.bk.a.19.1 12 168.149 odd 6
504.2.bk.a.19.6 12 84.23 even 6
504.2.bk.a.451.2 12 84.83 odd 2
504.2.bk.a.451.5 12 168.125 even 2
1568.2.e.e.783.1 12 7.3 odd 6
1568.2.e.e.783.2 12 56.3 even 6
1568.2.e.e.783.11 12 56.11 odd 6
1568.2.e.e.783.12 12 7.4 even 3
1568.2.q.g.815.1 12 1.1 even 1 trivial
1568.2.q.g.815.2 12 8.3 odd 2 inner
1568.2.q.g.1391.1 12 56.19 even 6 inner
1568.2.q.g.1391.2 12 7.5 odd 6 inner
2016.2.bs.a.271.2 12 168.107 even 6
2016.2.bs.a.271.5 12 21.2 odd 6
2016.2.bs.a.1711.2 12 21.20 even 2
2016.2.bs.a.1711.5 12 168.83 odd 2