Properties

Label 504.2.bk.a.19.6
Level $504$
Weight $2$
Character 504.19
Analytic conductor $4.024$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(19,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.144054149089536.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.6
Root \(-0.0263223 - 0.217464i\) of defining polynomial
Character \(\chi\) \(=\) 504.19
Dual form 504.2.bk.a.451.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30084 + 0.554812i) q^{2} +(1.38437 + 1.44344i) q^{4} +(1.03926 - 1.80005i) q^{5} +(-1.25203 + 2.33076i) q^{7} +(1.00000 + 2.64575i) q^{8} +(2.35060 - 1.76498i) q^{10} +(0.669938 + 1.16037i) q^{11} +2.50406 q^{13} +(-2.92182 + 2.33730i) q^{14} +(-0.167055 + 3.99651i) q^{16} +(2.78212 - 1.60626i) q^{17} +(3.55442 + 2.05215i) q^{19} +(4.03699 - 0.991819i) q^{20} +(0.227697 + 1.88114i) q^{22} +(-5.54952 - 3.20402i) q^{23} +(0.339877 + 0.588684i) q^{25} +(3.25737 + 1.38928i) q^{26} +(-5.09758 + 1.41939i) q^{28} -4.66151i q^{29} +(-2.21897 - 3.84337i) q^{31} +(-2.43462 + 5.10613i) q^{32} +(4.51026 - 0.545930i) q^{34} +(2.89430 + 4.67598i) q^{35} +(-5.50178 - 3.17646i) q^{37} +(3.48518 + 4.64155i) q^{38} +(5.80175 + 0.949572i) q^{40} -5.55076i q^{41} +(-0.747483 + 2.57339i) q^{44} +(-5.44141 - 7.24685i) q^{46} +(-0.565988 + 0.980320i) q^{47} +(-3.86485 - 5.83634i) q^{49} +(0.115516 + 0.954351i) q^{50} +(3.46653 + 3.61446i) q^{52} +(-7.43567 + 4.29299i) q^{53} +2.78496 q^{55} +(-7.41863 - 0.981797i) q^{56} +(2.58626 - 6.06388i) q^{58} +(-6.29193 + 3.63265i) q^{59} +(-2.57219 + 4.45517i) q^{61} +(-0.754178 - 6.23073i) q^{62} +(-6.00000 + 5.29150i) q^{64} +(2.60236 - 4.50743i) q^{65} +(3.93243 + 6.81116i) q^{67} +(6.17001 + 1.79218i) q^{68} +(1.17073 + 7.68849i) q^{70} -5.29150i q^{71} +(0.480369 - 0.277341i) q^{73} +(-5.39460 - 7.18452i) q^{74} +(1.95847 + 7.97153i) q^{76} +(-3.54332 + 0.108651i) q^{77} +(-5.26862 - 3.04184i) q^{79} +(7.02031 + 4.45412i) q^{80} +(3.07963 - 7.22064i) q^{82} +0.503175i q^{83} -6.67728i q^{85} +(-2.40011 + 2.93286i) q^{88} +(-1.50000 - 0.866025i) q^{89} +(-3.13515 + 5.83634i) q^{91} +(-3.05776 - 12.4460i) q^{92} +(-1.28015 + 0.961222i) q^{94} +(7.38794 - 4.26543i) q^{95} -17.2234i q^{97} +(-1.78948 - 9.73641i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{8} + 6 q^{10} + 6 q^{11} - 6 q^{14} + 6 q^{17} - 6 q^{19} + 24 q^{22} - 6 q^{26} + 6 q^{28} - 18 q^{35} + 24 q^{38} + 42 q^{40} - 6 q^{44} - 18 q^{46} - 12 q^{49} + 48 q^{50} - 24 q^{52} + 18 q^{58}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30084 + 0.554812i 0.919832 + 0.392311i
\(3\) 0 0
\(4\) 1.38437 + 1.44344i 0.692184 + 0.721721i
\(5\) 1.03926 1.80005i 0.464771 0.805007i −0.534420 0.845219i \(-0.679470\pi\)
0.999191 + 0.0402117i \(0.0128032\pi\)
\(6\) 0 0
\(7\) −1.25203 + 2.33076i −0.473222 + 0.880943i
\(8\) 1.00000 + 2.64575i 0.353553 + 0.935414i
\(9\) 0 0
\(10\) 2.35060 1.76498i 0.743325 0.558137i
\(11\) 0.669938 + 1.16037i 0.201994 + 0.349864i 0.949171 0.314761i \(-0.101925\pi\)
−0.747177 + 0.664625i \(0.768591\pi\)
\(12\) 0 0
\(13\) 2.50406 0.694500 0.347250 0.937773i \(-0.387116\pi\)
0.347250 + 0.937773i \(0.387116\pi\)
\(14\) −2.92182 + 2.33730i −0.780889 + 0.624670i
\(15\) 0 0
\(16\) −0.167055 + 3.99651i −0.0417638 + 0.999128i
\(17\) 2.78212 1.60626i 0.674763 0.389575i −0.123116 0.992392i \(-0.539289\pi\)
0.797879 + 0.602818i \(0.205955\pi\)
\(18\) 0 0
\(19\) 3.55442 + 2.05215i 0.815440 + 0.470795i 0.848842 0.528647i \(-0.177301\pi\)
−0.0334012 + 0.999442i \(0.510634\pi\)
\(20\) 4.03699 0.991819i 0.902698 0.221778i
\(21\) 0 0
\(22\) 0.227697 + 1.88114i 0.0485451 + 0.401061i
\(23\) −5.54952 3.20402i −1.15716 0.668084i −0.206535 0.978439i \(-0.566219\pi\)
−0.950621 + 0.310355i \(0.899552\pi\)
\(24\) 0 0
\(25\) 0.339877 + 0.588684i 0.0679754 + 0.117737i
\(26\) 3.25737 + 1.38928i 0.638824 + 0.272460i
\(27\) 0 0
\(28\) −5.09758 + 1.41939i −0.963352 + 0.268240i
\(29\) 4.66151i 0.865621i −0.901485 0.432811i \(-0.857522\pi\)
0.901485 0.432811i \(-0.142478\pi\)
\(30\) 0 0
\(31\) −2.21897 3.84337i −0.398539 0.690290i 0.595007 0.803721i \(-0.297149\pi\)
−0.993546 + 0.113430i \(0.963816\pi\)
\(32\) −2.43462 + 5.10613i −0.430385 + 0.902646i
\(33\) 0 0
\(34\) 4.51026 0.545930i 0.773503 0.0936262i
\(35\) 2.89430 + 4.67598i 0.489226 + 0.790384i
\(36\) 0 0
\(37\) −5.50178 3.17646i −0.904488 0.522206i −0.0258343 0.999666i \(-0.508224\pi\)
−0.878653 + 0.477460i \(0.841558\pi\)
\(38\) 3.48518 + 4.64155i 0.565370 + 0.752959i
\(39\) 0 0
\(40\) 5.80175 + 0.949572i 0.917337 + 0.150141i
\(41\) 5.55076i 0.866882i −0.901182 0.433441i \(-0.857299\pi\)
0.901182 0.433441i \(-0.142701\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −0.747483 + 2.57339i −0.112687 + 0.387954i
\(45\) 0 0
\(46\) −5.44141 7.24685i −0.802292 1.06849i
\(47\) −0.565988 + 0.980320i −0.0825579 + 0.142994i −0.904348 0.426796i \(-0.859642\pi\)
0.821790 + 0.569790i \(0.192976\pi\)
\(48\) 0 0
\(49\) −3.86485 5.83634i −0.552122 0.833763i
\(50\) 0.115516 + 0.954351i 0.0163365 + 0.134966i
\(51\) 0 0
\(52\) 3.46653 + 3.61446i 0.480722 + 0.501236i
\(53\) −7.43567 + 4.29299i −1.02137 + 0.589687i −0.914500 0.404586i \(-0.867416\pi\)
−0.106868 + 0.994273i \(0.534082\pi\)
\(54\) 0 0
\(55\) 2.78496 0.375524
\(56\) −7.41863 0.981797i −0.991356 0.131198i
\(57\) 0 0
\(58\) 2.58626 6.06388i 0.339593 0.796227i
\(59\) −6.29193 + 3.63265i −0.819140 + 0.472931i −0.850120 0.526589i \(-0.823471\pi\)
0.0309798 + 0.999520i \(0.490137\pi\)
\(60\) 0 0
\(61\) −2.57219 + 4.45517i −0.329336 + 0.570426i −0.982380 0.186893i \(-0.940158\pi\)
0.653045 + 0.757319i \(0.273491\pi\)
\(62\) −0.754178 6.23073i −0.0957807 0.791303i
\(63\) 0 0
\(64\) −6.00000 + 5.29150i −0.750000 + 0.661438i
\(65\) 2.60236 4.50743i 0.322784 0.559078i
\(66\) 0 0
\(67\) 3.93243 + 6.81116i 0.480422 + 0.832116i 0.999748 0.0224607i \(-0.00715005\pi\)
−0.519325 + 0.854577i \(0.673817\pi\)
\(68\) 6.17001 + 1.79218i 0.748224 + 0.217334i
\(69\) 0 0
\(70\) 1.17073 + 7.68849i 0.139929 + 0.918950i
\(71\) 5.29150i 0.627986i −0.949425 0.313993i \(-0.898333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) 0 0
\(73\) 0.480369 0.277341i 0.0562230 0.0324604i −0.471625 0.881799i \(-0.656332\pi\)
0.527848 + 0.849339i \(0.322999\pi\)
\(74\) −5.39460 7.18452i −0.627110 0.835183i
\(75\) 0 0
\(76\) 1.95847 + 7.97153i 0.224652 + 0.914397i
\(77\) −3.54332 + 0.108651i −0.403798 + 0.0123820i
\(78\) 0 0
\(79\) −5.26862 3.04184i −0.592766 0.342233i 0.173425 0.984847i \(-0.444517\pi\)
−0.766190 + 0.642614i \(0.777850\pi\)
\(80\) 7.02031 + 4.45412i 0.784894 + 0.497986i
\(81\) 0 0
\(82\) 3.07963 7.22064i 0.340088 0.797386i
\(83\) 0.503175i 0.0552307i 0.999619 + 0.0276153i \(0.00879135\pi\)
−0.999619 + 0.0276153i \(0.991209\pi\)
\(84\) 0 0
\(85\) 6.67728i 0.724252i
\(86\) 0 0
\(87\) 0 0
\(88\) −2.40011 + 2.93286i −0.255852 + 0.312644i
\(89\) −1.50000 0.866025i −0.159000 0.0917985i 0.418389 0.908268i \(-0.362595\pi\)
−0.577389 + 0.816469i \(0.695928\pi\)
\(90\) 0 0
\(91\) −3.13515 + 5.83634i −0.328653 + 0.611815i
\(92\) −3.05776 12.4460i −0.318793 1.29758i
\(93\) 0 0
\(94\) −1.28015 + 0.961222i −0.132038 + 0.0991425i
\(95\) 7.38794 4.26543i 0.757986 0.437624i
\(96\) 0 0
\(97\) 17.2234i 1.74878i −0.485228 0.874388i \(-0.661263\pi\)
0.485228 0.874388i \(-0.338737\pi\)
\(98\) −1.78948 9.73641i −0.180765 0.983526i
\(99\) 0 0
\(100\) −0.379217 + 1.30555i −0.0379217 + 0.130555i
\(101\) −0.613725 1.06300i −0.0610679 0.105773i 0.833875 0.551953i \(-0.186117\pi\)
−0.894943 + 0.446180i \(0.852784\pi\)
\(102\) 0 0
\(103\) 7.62804 13.2122i 0.751613 1.30183i −0.195427 0.980718i \(-0.562609\pi\)
0.947041 0.321114i \(-0.104057\pi\)
\(104\) 2.50406 + 6.62511i 0.245543 + 0.649645i
\(105\) 0 0
\(106\) −12.0544 + 1.45909i −1.17083 + 0.141719i
\(107\) 5.55442 9.62054i 0.536966 0.930053i −0.462099 0.886828i \(-0.652904\pi\)
0.999065 0.0432246i \(-0.0137631\pi\)
\(108\) 0 0
\(109\) 10.9109 6.29938i 1.04507 0.603372i 0.123805 0.992307i \(-0.460490\pi\)
0.921265 + 0.388935i \(0.127157\pi\)
\(110\) 3.62279 + 1.54513i 0.345419 + 0.147322i
\(111\) 0 0
\(112\) −9.10573 5.39311i −0.860411 0.509601i
\(113\) −20.0629 −1.88736 −0.943680 0.330860i \(-0.892661\pi\)
−0.943680 + 0.330860i \(0.892661\pi\)
\(114\) 0 0
\(115\) −11.5348 + 6.65961i −1.07562 + 0.621012i
\(116\) 6.72863 6.45325i 0.624737 0.599169i
\(117\) 0 0
\(118\) −10.2002 + 1.23465i −0.939008 + 0.113659i
\(119\) 0.260504 + 8.49552i 0.0238804 + 0.778783i
\(120\) 0 0
\(121\) 4.60236 7.97153i 0.418397 0.724685i
\(122\) −5.81779 + 4.36838i −0.526718 + 0.395494i
\(123\) 0 0
\(124\) 2.47582 8.52360i 0.222335 0.765442i
\(125\) 11.8055 1.05591
\(126\) 0 0
\(127\) 14.6145i 1.29683i 0.761287 + 0.648415i \(0.224568\pi\)
−0.761287 + 0.648415i \(0.775432\pi\)
\(128\) −10.7408 + 3.55452i −0.949364 + 0.314178i
\(129\) 0 0
\(130\) 5.88603 4.41962i 0.516239 0.387626i
\(131\) 5.27230 + 3.04397i 0.460643 + 0.265953i 0.712315 0.701860i \(-0.247647\pi\)
−0.251671 + 0.967813i \(0.580980\pi\)
\(132\) 0 0
\(133\) −9.23329 + 5.71515i −0.800628 + 0.495566i
\(134\) 1.33654 + 11.0420i 0.115460 + 0.953882i
\(135\) 0 0
\(136\) 7.03188 + 5.75454i 0.602978 + 0.493448i
\(137\) 6.98685 + 12.1016i 0.596927 + 1.03391i 0.993272 + 0.115806i \(0.0369451\pi\)
−0.396345 + 0.918102i \(0.629722\pi\)
\(138\) 0 0
\(139\) 0.503175i 0.0426788i 0.999772 + 0.0213394i \(0.00679305\pi\)
−0.999772 + 0.0213394i \(0.993207\pi\)
\(140\) −2.74273 + 10.6510i −0.231803 + 0.900176i
\(141\) 0 0
\(142\) 2.93579 6.88340i 0.246366 0.577642i
\(143\) 1.67756 + 2.90562i 0.140285 + 0.242981i
\(144\) 0 0
\(145\) −8.39096 4.84452i −0.696832 0.402316i
\(146\) 0.778756 0.0942619i 0.0644503 0.00780117i
\(147\) 0 0
\(148\) −3.03146 12.3389i −0.249184 1.01425i
\(149\) 4.77077 + 2.75440i 0.390836 + 0.225649i 0.682522 0.730865i \(-0.260883\pi\)
−0.291686 + 0.956514i \(0.594216\pi\)
\(150\) 0 0
\(151\) −6.09511 + 3.51901i −0.496013 + 0.286373i −0.727066 0.686568i \(-0.759116\pi\)
0.231053 + 0.972941i \(0.425783\pi\)
\(152\) −1.87505 + 11.4563i −0.152086 + 0.929226i
\(153\) 0 0
\(154\) −4.66957 1.82454i −0.376284 0.147025i
\(155\) −9.22436 −0.740918
\(156\) 0 0
\(157\) 7.15477 + 12.3924i 0.571013 + 0.989023i 0.996462 + 0.0840409i \(0.0267827\pi\)
−0.425450 + 0.904982i \(0.639884\pi\)
\(158\) −5.16598 6.88003i −0.410983 0.547346i
\(159\) 0 0
\(160\) 6.66110 + 9.68905i 0.526606 + 0.765987i
\(161\) 14.4159 8.92306i 1.13614 0.703236i
\(162\) 0 0
\(163\) −4.15679 + 7.19977i −0.325585 + 0.563929i −0.981631 0.190792i \(-0.938894\pi\)
0.656046 + 0.754721i \(0.272228\pi\)
\(164\) 8.01220 7.68428i 0.625648 0.600042i
\(165\) 0 0
\(166\) −0.279168 + 0.654550i −0.0216676 + 0.0508030i
\(167\) −2.50406 −0.193770 −0.0968848 0.995296i \(-0.530888\pi\)
−0.0968848 + 0.995296i \(0.530888\pi\)
\(168\) 0 0
\(169\) −6.72971 −0.517670
\(170\) 3.70463 8.68606i 0.284132 0.666191i
\(171\) 0 0
\(172\) 0 0
\(173\) 2.71682 4.70568i 0.206556 0.357766i −0.744071 0.668100i \(-0.767108\pi\)
0.950627 + 0.310334i \(0.100441\pi\)
\(174\) 0 0
\(175\) −1.79761 + 0.0551216i −0.135887 + 0.00416680i
\(176\) −4.74934 + 2.48357i −0.357995 + 0.187206i
\(177\) 0 0
\(178\) −1.47078 1.95878i −0.110239 0.146817i
\(179\) 1.75915 + 3.04694i 0.131485 + 0.227739i 0.924249 0.381790i \(-0.124692\pi\)
−0.792764 + 0.609529i \(0.791359\pi\)
\(180\) 0 0
\(181\) 22.1981 1.64997 0.824985 0.565154i \(-0.191183\pi\)
0.824985 + 0.565154i \(0.191183\pi\)
\(182\) −7.31640 + 5.85273i −0.542327 + 0.433833i
\(183\) 0 0
\(184\) 2.92751 17.8867i 0.215819 1.31862i
\(185\) −11.4356 + 6.60233i −0.840760 + 0.485413i
\(186\) 0 0
\(187\) 3.72770 + 2.15219i 0.272596 + 0.157383i
\(188\) −2.19857 + 0.540152i −0.160347 + 0.0393946i
\(189\) 0 0
\(190\) 11.9770 1.44972i 0.868905 0.105174i
\(191\) −1.13615 0.655958i −0.0822091 0.0474635i 0.458332 0.888781i \(-0.348447\pi\)
−0.540541 + 0.841318i \(0.681780\pi\)
\(192\) 0 0
\(193\) 5.64697 + 9.78084i 0.406478 + 0.704040i 0.994492 0.104810i \(-0.0334235\pi\)
−0.588014 + 0.808851i \(0.700090\pi\)
\(194\) 9.55577 22.4049i 0.686065 1.60858i
\(195\) 0 0
\(196\) 3.07405 13.6583i 0.219575 0.975596i
\(197\) 5.92149i 0.421889i 0.977498 + 0.210944i \(0.0676539\pi\)
−0.977498 + 0.210944i \(0.932346\pi\)
\(198\) 0 0
\(199\) 9.30560 + 16.1178i 0.659657 + 1.14256i 0.980704 + 0.195496i \(0.0626317\pi\)
−0.321048 + 0.947063i \(0.604035\pi\)
\(200\) −1.21763 + 1.48791i −0.0860998 + 0.105211i
\(201\) 0 0
\(202\) −0.208591 1.72330i −0.0146764 0.121251i
\(203\) 10.8649 + 5.83634i 0.762563 + 0.409631i
\(204\) 0 0
\(205\) −9.99164 5.76868i −0.697847 0.402902i
\(206\) 17.2531 12.9548i 1.20208 0.902601i
\(207\) 0 0
\(208\) −0.418315 + 10.0075i −0.0290050 + 0.693894i
\(209\) 5.49925i 0.380391i
\(210\) 0 0
\(211\) 5.72971 0.394449 0.197225 0.980358i \(-0.436807\pi\)
0.197225 + 0.980358i \(0.436807\pi\)
\(212\) −16.4904 4.78990i −1.13256 0.328972i
\(213\) 0 0
\(214\) 12.5630 9.43312i 0.858789 0.644835i
\(215\) 0 0
\(216\) 0 0
\(217\) 11.7362 0.359875i 0.796704 0.0244299i
\(218\) 17.6882 2.14101i 1.19800 0.145008i
\(219\) 0 0
\(220\) 3.85541 + 4.01993i 0.259932 + 0.271024i
\(221\) 6.96658 4.02216i 0.468623 0.270560i
\(222\) 0 0
\(223\) −20.8668 −1.39734 −0.698672 0.715442i \(-0.746225\pi\)
−0.698672 + 0.715442i \(0.746225\pi\)
\(224\) −8.85294 12.0675i −0.591512 0.806296i
\(225\) 0 0
\(226\) −26.0986 11.1311i −1.73605 0.740433i
\(227\) −14.2775 + 8.24309i −0.947628 + 0.547113i −0.892343 0.451357i \(-0.850940\pi\)
−0.0552847 + 0.998471i \(0.517607\pi\)
\(228\) 0 0
\(229\) −4.24976 + 7.36079i −0.280832 + 0.486415i −0.971590 0.236671i \(-0.923944\pi\)
0.690758 + 0.723086i \(0.257277\pi\)
\(230\) −18.6997 + 2.26345i −1.23302 + 0.149247i
\(231\) 0 0
\(232\) 12.3332 4.66151i 0.809715 0.306043i
\(233\) 2.23751 3.87548i 0.146584 0.253891i −0.783379 0.621545i \(-0.786505\pi\)
0.929963 + 0.367653i \(0.119839\pi\)
\(234\) 0 0
\(235\) 1.17642 + 2.03762i 0.0767410 + 0.132919i
\(236\) −13.9539 4.05313i −0.908320 0.263836i
\(237\) 0 0
\(238\) −4.37454 + 11.1958i −0.283559 + 0.725718i
\(239\) 24.5675i 1.58914i 0.607171 + 0.794571i \(0.292304\pi\)
−0.607171 + 0.794571i \(0.707696\pi\)
\(240\) 0 0
\(241\) −5.02498 + 2.90117i −0.323687 + 0.186881i −0.653035 0.757328i \(-0.726505\pi\)
0.329348 + 0.944209i \(0.393171\pi\)
\(242\) 10.4096 7.81623i 0.669157 0.502447i
\(243\) 0 0
\(244\) −9.99164 + 2.45478i −0.639649 + 0.157151i
\(245\) −14.5223 + 0.891454i −0.927796 + 0.0569529i
\(246\) 0 0
\(247\) 8.90047 + 5.13869i 0.566323 + 0.326967i
\(248\) 7.94964 9.71422i 0.504803 0.616854i
\(249\) 0 0
\(250\) 15.3570 + 6.54982i 0.971264 + 0.414247i
\(251\) 18.8010i 1.18671i −0.804942 0.593353i \(-0.797804\pi\)
0.804942 0.593353i \(-0.202196\pi\)
\(252\) 0 0
\(253\) 8.58598i 0.539796i
\(254\) −8.10832 + 19.0112i −0.508761 + 1.19287i
\(255\) 0 0
\(256\) −15.9442 1.33528i −0.996512 0.0834547i
\(257\) −10.9106 6.29923i −0.680584 0.392935i 0.119491 0.992835i \(-0.461874\pi\)
−0.800075 + 0.599900i \(0.795207\pi\)
\(258\) 0 0
\(259\) 14.2919 8.84631i 0.888058 0.549683i
\(260\) 10.1088 2.48357i 0.626924 0.154024i
\(261\) 0 0
\(262\) 5.16959 + 6.88485i 0.319378 + 0.425347i
\(263\) −4.27292 + 2.46697i −0.263479 + 0.152120i −0.625921 0.779887i \(-0.715277\pi\)
0.362441 + 0.932007i \(0.381943\pi\)
\(264\) 0 0
\(265\) 17.8461i 1.09628i
\(266\) −15.1819 + 2.31175i −0.930860 + 0.141743i
\(267\) 0 0
\(268\) −4.38760 + 15.1054i −0.268015 + 0.922708i
\(269\) 13.1502 + 22.7769i 0.801783 + 1.38873i 0.918441 + 0.395558i \(0.129449\pi\)
−0.116658 + 0.993172i \(0.537218\pi\)
\(270\) 0 0
\(271\) 14.0490 24.3336i 0.853418 1.47816i −0.0246868 0.999695i \(-0.507859\pi\)
0.878105 0.478468i \(-0.158808\pi\)
\(272\) 5.95465 + 11.3871i 0.361054 + 0.690444i
\(273\) 0 0
\(274\) 2.37467 + 19.6186i 0.143459 + 1.18520i
\(275\) −0.455393 + 0.788764i −0.0274612 + 0.0475643i
\(276\) 0 0
\(277\) −23.3982 + 13.5090i −1.40586 + 0.811675i −0.994986 0.100017i \(-0.968110\pi\)
−0.410876 + 0.911691i \(0.634777\pi\)
\(278\) −0.279168 + 0.654550i −0.0167434 + 0.0392573i
\(279\) 0 0
\(280\) −9.47717 + 12.3336i −0.566369 + 0.737072i
\(281\) 20.0629 1.19685 0.598426 0.801178i \(-0.295793\pi\)
0.598426 + 0.801178i \(0.295793\pi\)
\(282\) 0 0
\(283\) −4.75248 + 2.74385i −0.282506 + 0.163105i −0.634557 0.772876i \(-0.718817\pi\)
0.352052 + 0.935981i \(0.385484\pi\)
\(284\) 7.63798 7.32538i 0.453231 0.434681i
\(285\) 0 0
\(286\) 0.570165 + 4.71048i 0.0337146 + 0.278537i
\(287\) 12.9375 + 6.94970i 0.763674 + 0.410228i
\(288\) 0 0
\(289\) −3.33988 + 5.78484i −0.196463 + 0.340284i
\(290\) −8.22750 10.9574i −0.483135 0.643438i
\(291\) 0 0
\(292\) 1.06533 + 0.309443i 0.0623440 + 0.0181088i
\(293\) −13.6931 −0.799957 −0.399978 0.916525i \(-0.630982\pi\)
−0.399978 + 0.916525i \(0.630982\pi\)
\(294\) 0 0
\(295\) 15.1011i 0.879218i
\(296\) 2.90233 17.7328i 0.168695 1.03070i
\(297\) 0 0
\(298\) 4.67782 + 6.22991i 0.270979 + 0.360889i
\(299\) −13.8963 8.02304i −0.803644 0.463984i
\(300\) 0 0
\(301\) 0 0
\(302\) −9.88115 + 1.19603i −0.568596 + 0.0688238i
\(303\) 0 0
\(304\) −8.79521 + 13.8625i −0.504440 + 0.795067i
\(305\) 5.34636 + 9.26016i 0.306131 + 0.530235i
\(306\) 0 0
\(307\) 24.4197i 1.39371i −0.717213 0.696854i \(-0.754583\pi\)
0.717213 0.696854i \(-0.245417\pi\)
\(308\) −5.06208 4.96416i −0.288439 0.282859i
\(309\) 0 0
\(310\) −11.9994 5.11779i −0.681521 0.290671i
\(311\) −8.61539 14.9223i −0.488534 0.846165i 0.511379 0.859355i \(-0.329135\pi\)
−0.999913 + 0.0131898i \(0.995801\pi\)
\(312\) 0 0
\(313\) 15.0446 + 8.68601i 0.850371 + 0.490962i 0.860776 0.508984i \(-0.169979\pi\)
−0.0104047 + 0.999946i \(0.503312\pi\)
\(314\) 2.43174 + 20.0901i 0.137231 + 1.13375i
\(315\) 0 0
\(316\) −2.90298 11.8160i −0.163305 0.664700i
\(317\) 16.7863 + 9.69155i 0.942810 + 0.544332i 0.890840 0.454317i \(-0.150117\pi\)
0.0519701 + 0.998649i \(0.483450\pi\)
\(318\) 0 0
\(319\) 5.40907 3.12293i 0.302850 0.174850i
\(320\) 3.28942 + 16.2996i 0.183884 + 0.911173i
\(321\) 0 0
\(322\) 23.7034 3.60934i 1.32094 0.201141i
\(323\) 13.1851 0.733639
\(324\) 0 0
\(325\) 0.851071 + 1.47410i 0.0472089 + 0.0817682i
\(326\) −9.40183 + 7.05951i −0.520719 + 0.390990i
\(327\) 0 0
\(328\) 14.6859 5.55076i 0.810894 0.306489i
\(329\) −1.57625 2.54657i −0.0869018 0.140397i
\(330\) 0 0
\(331\) 10.4008 18.0147i 0.571678 0.990176i −0.424715 0.905327i \(-0.639626\pi\)
0.996394 0.0848492i \(-0.0270409\pi\)
\(332\) −0.726305 + 0.696579i −0.0398612 + 0.0382298i
\(333\) 0 0
\(334\) −3.25737 1.38928i −0.178236 0.0760180i
\(335\) 16.3473 0.893146
\(336\) 0 0
\(337\) 10.3332 0.562886 0.281443 0.959578i \(-0.409187\pi\)
0.281443 + 0.959578i \(0.409187\pi\)
\(338\) −8.75427 3.73372i −0.476169 0.203088i
\(339\) 0 0
\(340\) 9.63827 9.24380i 0.522708 0.501315i
\(341\) 2.97315 5.14965i 0.161005 0.278869i
\(342\) 0 0
\(343\) 18.4420 1.70077i 0.995774 0.0918328i
\(344\) 0 0
\(345\) 0 0
\(346\) 6.14492 4.61400i 0.330353 0.248050i
\(347\) 16.8169 + 29.1277i 0.902779 + 1.56366i 0.823871 + 0.566777i \(0.191810\pi\)
0.0789080 + 0.996882i \(0.474857\pi\)
\(348\) 0 0
\(349\) 13.3546 0.714858 0.357429 0.933940i \(-0.383653\pi\)
0.357429 + 0.933940i \(0.383653\pi\)
\(350\) −2.36899 0.925634i −0.126628 0.0494772i
\(351\) 0 0
\(352\) −7.55604 + 0.595737i −0.402738 + 0.0317529i
\(353\) −6.80175 + 3.92699i −0.362021 + 0.209013i −0.669967 0.742391i \(-0.733692\pi\)
0.307946 + 0.951404i \(0.400358\pi\)
\(354\) 0 0
\(355\) −9.52498 5.49925i −0.505533 0.291870i
\(356\) −0.826492 3.36406i −0.0438040 0.178295i
\(357\) 0 0
\(358\) 0.597895 + 4.93958i 0.0315997 + 0.261065i
\(359\) −0.140453 0.0810905i −0.00741282 0.00427979i 0.496289 0.868157i \(-0.334696\pi\)
−0.503702 + 0.863878i \(0.668029\pi\)
\(360\) 0 0
\(361\) −1.07739 1.86609i −0.0567047 0.0982154i
\(362\) 28.8761 + 12.3158i 1.51770 + 0.647302i
\(363\) 0 0
\(364\) −12.7646 + 3.55424i −0.669048 + 0.186293i
\(365\) 1.15292i 0.0603466i
\(366\) 0 0
\(367\) −10.1321 17.5493i −0.528891 0.916066i −0.999432 0.0336883i \(-0.989275\pi\)
0.470541 0.882378i \(-0.344059\pi\)
\(368\) 13.7320 21.6435i 0.715828 1.12824i
\(369\) 0 0
\(370\) −18.5389 + 2.24398i −0.963791 + 0.116659i
\(371\) −0.696241 22.7057i −0.0361470 1.17882i
\(372\) 0 0
\(373\) 5.78269 + 3.33864i 0.299416 + 0.172868i 0.642181 0.766553i \(-0.278030\pi\)
−0.342764 + 0.939421i \(0.611363\pi\)
\(374\) 3.65508 + 4.86782i 0.188999 + 0.251709i
\(375\) 0 0
\(376\) −3.15967 0.517144i −0.162948 0.0266696i
\(377\) 11.6727i 0.601174i
\(378\) 0 0
\(379\) −4.60350 −0.236466 −0.118233 0.992986i \(-0.537723\pi\)
−0.118233 + 0.992986i \(0.537723\pi\)
\(380\) 16.3845 + 4.75915i 0.840508 + 0.244139i
\(381\) 0 0
\(382\) −1.11402 1.48365i −0.0569982 0.0759100i
\(383\) 5.71038 9.89066i 0.291787 0.505389i −0.682446 0.730936i \(-0.739084\pi\)
0.974232 + 0.225547i \(0.0724170\pi\)
\(384\) 0 0
\(385\) −3.48685 + 6.49107i −0.177706 + 0.330815i
\(386\) 1.91928 + 15.8563i 0.0976885 + 0.807065i
\(387\) 0 0
\(388\) 24.8611 23.8436i 1.26213 1.21047i
\(389\) −26.0307 + 15.0288i −1.31981 + 0.761991i −0.983697 0.179832i \(-0.942445\pi\)
−0.336109 + 0.941823i \(0.609111\pi\)
\(390\) 0 0
\(391\) −20.5859 −1.04107
\(392\) 11.5767 16.0618i 0.584710 0.811243i
\(393\) 0 0
\(394\) −3.28532 + 7.70291i −0.165512 + 0.388067i
\(395\) −10.9509 + 6.32252i −0.551001 + 0.318120i
\(396\) 0 0
\(397\) 2.17124 3.76069i 0.108971 0.188744i −0.806383 0.591394i \(-0.798578\pi\)
0.915354 + 0.402651i \(0.131911\pi\)
\(398\) 3.16276 + 26.1295i 0.158535 + 1.30975i
\(399\) 0 0
\(400\) −2.40946 + 1.25998i −0.120473 + 0.0629989i
\(401\) −9.98685 + 17.2977i −0.498719 + 0.863807i −0.999999 0.00147805i \(-0.999530\pi\)
0.501279 + 0.865285i \(0.332863\pi\)
\(402\) 0 0
\(403\) −5.55643 9.62402i −0.276786 0.479407i
\(404\) 0.684763 2.35746i 0.0340682 0.117288i
\(405\) 0 0
\(406\) 10.8954 + 13.6201i 0.540727 + 0.675954i
\(407\) 8.51212i 0.421930i
\(408\) 0 0
\(409\) −26.4356 + 15.2626i −1.30715 + 0.754686i −0.981620 0.190844i \(-0.938878\pi\)
−0.325534 + 0.945530i \(0.605544\pi\)
\(410\) −9.79699 13.0476i −0.483839 0.644376i
\(411\) 0 0
\(412\) 29.6310 7.27983i 1.45981 0.358652i
\(413\) −0.589147 19.2131i −0.0289900 0.945417i
\(414\) 0 0
\(415\) 0.905741 + 0.522930i 0.0444611 + 0.0256696i
\(416\) −6.09643 + 12.7860i −0.298902 + 0.626887i
\(417\) 0 0
\(418\) −3.05105 + 7.15364i −0.149232 + 0.349896i
\(419\) 2.08070i 0.101649i 0.998708 + 0.0508245i \(0.0161849\pi\)
−0.998708 + 0.0508245i \(0.983815\pi\)
\(420\) 0 0
\(421\) 30.4039i 1.48180i −0.671618 0.740898i \(-0.734400\pi\)
0.671618 0.740898i \(-0.265600\pi\)
\(422\) 7.45343 + 3.17891i 0.362827 + 0.154747i
\(423\) 0 0
\(424\) −18.7939 15.3800i −0.912710 0.746917i
\(425\) 1.89116 + 1.09186i 0.0917345 + 0.0529630i
\(426\) 0 0
\(427\) −7.16346 11.5732i −0.346664 0.560064i
\(428\) 21.5761 5.30087i 1.04292 0.256227i
\(429\) 0 0
\(430\) 0 0
\(431\) 2.32280 1.34107i 0.111885 0.0645970i −0.443013 0.896515i \(-0.646090\pi\)
0.554898 + 0.831918i \(0.312757\pi\)
\(432\) 0 0
\(433\) 29.4673i 1.41611i 0.706158 + 0.708054i \(0.250427\pi\)
−0.706158 + 0.708054i \(0.749573\pi\)
\(434\) 15.4666 + 6.04324i 0.742419 + 0.290085i
\(435\) 0 0
\(436\) 24.1974 + 7.02853i 1.15885 + 0.336606i
\(437\) −13.1502 22.7769i −0.629061 1.08957i
\(438\) 0 0
\(439\) 3.77648 6.54106i 0.180242 0.312188i −0.761721 0.647905i \(-0.775645\pi\)
0.941963 + 0.335717i \(0.108979\pi\)
\(440\) 2.78496 + 7.36831i 0.132768 + 0.351271i
\(441\) 0 0
\(442\) 11.2939 1.36704i 0.537198 0.0650234i
\(443\) −3.75915 + 6.51104i −0.178603 + 0.309349i −0.941402 0.337286i \(-0.890491\pi\)
0.762799 + 0.646635i \(0.223824\pi\)
\(444\) 0 0
\(445\) −3.11778 + 1.80005i −0.147797 + 0.0853306i
\(446\) −27.1444 11.5772i −1.28532 0.548194i
\(447\) 0 0
\(448\) −4.82104 20.6096i −0.227773 0.973714i
\(449\) 14.3332 0.676426 0.338213 0.941070i \(-0.390178\pi\)
0.338213 + 0.941070i \(0.390178\pi\)
\(450\) 0 0
\(451\) 6.44092 3.71866i 0.303291 0.175105i
\(452\) −27.7744 28.9597i −1.30640 1.36215i
\(453\) 0 0
\(454\) −23.1460 + 2.80164i −1.08630 + 0.131487i
\(455\) 7.24749 + 11.7089i 0.339767 + 0.548922i
\(456\) 0 0
\(457\) −6.48037 + 11.2243i −0.303139 + 0.525052i −0.976845 0.213947i \(-0.931368\pi\)
0.673706 + 0.738999i \(0.264701\pi\)
\(458\) −9.61211 + 7.21740i −0.449144 + 0.337247i
\(459\) 0 0
\(460\) −25.5812 7.43046i −1.19273 0.346447i
\(461\) 33.3871 1.55499 0.777496 0.628888i \(-0.216490\pi\)
0.777496 + 0.628888i \(0.216490\pi\)
\(462\) 0 0
\(463\) 29.7739i 1.38371i 0.722036 + 0.691855i \(0.243206\pi\)
−0.722036 + 0.691855i \(0.756794\pi\)
\(464\) 18.6298 + 0.778730i 0.864866 + 0.0361516i
\(465\) 0 0
\(466\) 5.06081 3.79998i 0.234437 0.176031i
\(467\) −23.5399 13.5908i −1.08930 0.628907i −0.155909 0.987771i \(-0.549831\pi\)
−0.933390 + 0.358865i \(0.883164\pi\)
\(468\) 0 0
\(469\) −20.7987 + 0.637765i −0.960393 + 0.0294492i
\(470\) 0.399837 + 3.30330i 0.0184431 + 0.152370i
\(471\) 0 0
\(472\) −15.9030 13.0142i −0.731996 0.599029i
\(473\) 0 0
\(474\) 0 0
\(475\) 2.78991i 0.128010i
\(476\) −11.9022 + 12.1369i −0.545535 + 0.556296i
\(477\) 0 0
\(478\) −13.6304 + 31.9584i −0.623439 + 1.46174i
\(479\) −17.2187 29.8237i −0.786744 1.36268i −0.927952 0.372700i \(-0.878432\pi\)
0.141208 0.989980i \(-0.454901\pi\)
\(480\) 0 0
\(481\) −13.7768 7.95402i −0.628167 0.362672i
\(482\) −8.14629 + 0.986041i −0.371053 + 0.0449129i
\(483\) 0 0
\(484\) 17.8778 4.39227i 0.812628 0.199649i
\(485\) −31.0031 17.8996i −1.40778 0.812781i
\(486\) 0 0
\(487\) 6.82613 3.94107i 0.309321 0.178587i −0.337301 0.941397i \(-0.609514\pi\)
0.646623 + 0.762810i \(0.276181\pi\)
\(488\) −14.3595 2.35021i −0.650022 0.106389i
\(489\) 0 0
\(490\) −19.3858 6.89751i −0.875760 0.311598i
\(491\) 8.06291 0.363874 0.181937 0.983310i \(-0.441763\pi\)
0.181937 + 0.983310i \(0.441763\pi\)
\(492\) 0 0
\(493\) −7.48759 12.9689i −0.337224 0.584089i
\(494\) 8.72708 + 11.6227i 0.392650 + 0.522930i
\(495\) 0 0
\(496\) 15.7308 8.22609i 0.706333 0.369362i
\(497\) 12.3332 + 6.62511i 0.553220 + 0.297177i
\(498\) 0 0
\(499\) 12.0216 20.8221i 0.538163 0.932125i −0.460841 0.887483i \(-0.652452\pi\)
0.999003 0.0446419i \(-0.0142147\pi\)
\(500\) 16.3431 + 17.0405i 0.730887 + 0.762076i
\(501\) 0 0
\(502\) 10.4310 24.4570i 0.465559 1.09157i
\(503\) −40.8993 −1.82361 −0.911804 0.410626i \(-0.865310\pi\)
−0.911804 + 0.410626i \(0.865310\pi\)
\(504\) 0 0
\(505\) −2.55128 −0.113530
\(506\) 4.76360 11.1690i 0.211768 0.496522i
\(507\) 0 0
\(508\) −21.0952 + 20.2319i −0.935950 + 0.897644i
\(509\) −2.02661 + 3.51019i −0.0898278 + 0.155586i −0.907438 0.420186i \(-0.861965\pi\)
0.817610 + 0.575772i \(0.195298\pi\)
\(510\) 0 0
\(511\) 0.0449795 + 1.46686i 0.00198978 + 0.0648902i
\(512\) −20.0000 10.5830i −0.883883 0.467707i
\(513\) 0 0
\(514\) −10.6980 14.2476i −0.471870 0.628436i
\(515\) −15.8550 27.4617i −0.698656 1.21011i
\(516\) 0 0
\(517\) −1.51671 −0.0667048
\(518\) 23.4996 3.57829i 1.03251 0.157221i
\(519\) 0 0
\(520\) 14.5279 + 2.37778i 0.637091 + 0.104273i
\(521\) −27.1927 + 15.6997i −1.19133 + 0.687817i −0.958609 0.284725i \(-0.908098\pi\)
−0.232725 + 0.972543i \(0.574764\pi\)
\(522\) 0 0
\(523\) −11.7132 6.76263i −0.512183 0.295709i 0.221547 0.975150i \(-0.428889\pi\)
−0.733731 + 0.679440i \(0.762223\pi\)
\(524\) 2.90501 + 11.8242i 0.126906 + 0.516544i
\(525\) 0 0
\(526\) −6.92708 + 0.838466i −0.302035 + 0.0365588i
\(527\) −12.3469 7.12848i −0.537839 0.310522i
\(528\) 0 0
\(529\) 9.03146 + 15.6429i 0.392672 + 0.680128i
\(530\) −9.90125 + 23.2149i −0.430083 + 1.00839i
\(531\) 0 0
\(532\) −21.0318 5.41586i −0.911842 0.234807i
\(533\) 13.8994i 0.602050i
\(534\) 0 0
\(535\) −11.5450 19.9965i −0.499133 0.864524i
\(536\) −14.0882 + 17.2154i −0.608518 + 0.743591i
\(537\) 0 0
\(538\) 4.46946 + 36.9249i 0.192692 + 1.59195i
\(539\) 4.18309 8.39464i 0.180178 0.361583i
\(540\) 0 0
\(541\) 27.1543 + 15.6775i 1.16745 + 0.674030i 0.953079 0.302722i \(-0.0978953\pi\)
0.214375 + 0.976751i \(0.431229\pi\)
\(542\) 31.7761 23.8596i 1.36490 1.02486i
\(543\) 0 0
\(544\) 1.42835 + 18.1165i 0.0612400 + 0.776739i
\(545\) 26.1868i 1.12172i
\(546\) 0 0
\(547\) −44.7293 −1.91249 −0.956244 0.292571i \(-0.905489\pi\)
−0.956244 + 0.292571i \(0.905489\pi\)
\(548\) −7.79557 + 26.8381i −0.333010 + 1.14647i
\(549\) 0 0
\(550\) −1.03001 + 0.773398i −0.0439197 + 0.0329778i
\(551\) 9.56611 16.5690i 0.407530 0.705863i
\(552\) 0 0
\(553\) 13.6862 8.47140i 0.581998 0.360240i
\(554\) −37.9322 + 4.59138i −1.61159 + 0.195069i
\(555\) 0 0
\(556\) −0.726305 + 0.696579i −0.0308022 + 0.0295415i
\(557\) 10.5345 6.08208i 0.446360 0.257706i −0.259932 0.965627i \(-0.583700\pi\)
0.706292 + 0.707921i \(0.250367\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −19.1711 + 10.7859i −0.810127 + 0.455790i
\(561\) 0 0
\(562\) 26.0986 + 11.1311i 1.10090 + 0.469539i
\(563\) 31.4311 18.1468i 1.32466 0.764794i 0.340194 0.940355i \(-0.389507\pi\)
0.984469 + 0.175561i \(0.0561738\pi\)
\(564\) 0 0
\(565\) −20.8506 + 36.1143i −0.877191 + 1.51934i
\(566\) −7.70453 + 0.932570i −0.323846 + 0.0391988i
\(567\) 0 0
\(568\) 14.0000 5.29150i 0.587427 0.222027i
\(569\) 6.01830 10.4240i 0.252300 0.436997i −0.711858 0.702323i \(-0.752146\pi\)
0.964159 + 0.265326i \(0.0854795\pi\)
\(570\) 0 0
\(571\) −4.10570 7.11128i −0.171818 0.297598i 0.767237 0.641363i \(-0.221631\pi\)
−0.939056 + 0.343765i \(0.888298\pi\)
\(572\) −1.87174 + 6.44392i −0.0782614 + 0.269434i
\(573\) 0 0
\(574\) 12.9738 + 16.2183i 0.541515 + 0.676939i
\(575\) 4.35589i 0.181653i
\(576\) 0 0
\(577\) 14.5500 8.40042i 0.605722 0.349714i −0.165567 0.986199i \(-0.552945\pi\)
0.771289 + 0.636485i \(0.219612\pi\)
\(578\) −7.55414 + 5.67214i −0.314211 + 0.235930i
\(579\) 0 0
\(580\) −4.62338 18.8185i −0.191975 0.781395i
\(581\) −1.17278 0.629989i −0.0486551 0.0261364i
\(582\) 0 0
\(583\) −9.96289 5.75208i −0.412621 0.238227i
\(584\) 1.21415 + 0.993596i 0.0502417 + 0.0411153i
\(585\) 0 0
\(586\) −17.8125 7.59707i −0.735826 0.313832i
\(587\) 25.4261i 1.04945i −0.851273 0.524723i \(-0.824169\pi\)
0.851273 0.524723i \(-0.175831\pi\)
\(588\) 0 0
\(589\) 18.2146i 0.750521i
\(590\) −8.37826 + 19.6441i −0.344927 + 0.808734i
\(591\) 0 0
\(592\) 13.6138 21.4573i 0.559525 0.881889i
\(593\) 19.0694 + 11.0097i 0.783086 + 0.452115i 0.837523 0.546402i \(-0.184003\pi\)
−0.0544368 + 0.998517i \(0.517336\pi\)
\(594\) 0 0
\(595\) 15.5631 + 8.36013i 0.638025 + 0.342732i
\(596\) 2.62867 + 10.6994i 0.107674 + 0.438266i
\(597\) 0 0
\(598\) −13.6256 18.1465i −0.557192 0.742067i
\(599\) −0.500607 + 0.289026i −0.0204543 + 0.0118093i −0.510192 0.860060i \(-0.670426\pi\)
0.489738 + 0.871870i \(0.337092\pi\)
\(600\) 0 0
\(601\) 27.3186i 1.11435i −0.830395 0.557175i \(-0.811885\pi\)
0.830395 0.557175i \(-0.188115\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −13.5174 3.92634i −0.550014 0.159760i
\(605\) −9.56611 16.5690i −0.388918 0.673625i
\(606\) 0 0
\(607\) −5.99963 + 10.3917i −0.243518 + 0.421785i −0.961714 0.274056i \(-0.911635\pi\)
0.718196 + 0.695841i \(0.244968\pi\)
\(608\) −19.1322 + 13.1532i −0.775914 + 0.533431i
\(609\) 0 0
\(610\) 1.81710 + 15.0122i 0.0735723 + 0.607826i
\(611\) −1.41727 + 2.45478i −0.0573364 + 0.0993096i
\(612\) 0 0
\(613\) 3.96050 2.28659i 0.159963 0.0923547i −0.417882 0.908501i \(-0.637227\pi\)
0.577845 + 0.816147i \(0.303894\pi\)
\(614\) 13.5484 31.7661i 0.546767 1.28198i
\(615\) 0 0
\(616\) −3.83078 9.26608i −0.154347 0.373341i
\(617\) −5.12621 −0.206373 −0.103187 0.994662i \(-0.532904\pi\)
−0.103187 + 0.994662i \(0.532904\pi\)
\(618\) 0 0
\(619\) 39.5293 22.8222i 1.58881 0.917303i 0.595312 0.803495i \(-0.297028\pi\)
0.993503 0.113808i \(-0.0363049\pi\)
\(620\) −12.7699 13.3148i −0.512852 0.534737i
\(621\) 0 0
\(622\) −2.92817 24.1914i −0.117409 0.969988i
\(623\) 3.89654 2.41185i 0.156111 0.0966286i
\(624\) 0 0
\(625\) 10.5696 18.3071i 0.422783 0.732282i
\(626\) 14.7515 + 19.6460i 0.589589 + 0.785213i
\(627\) 0 0
\(628\) −7.98293 + 27.4832i −0.318554 + 1.09670i
\(629\) −20.4088 −0.813753
\(630\) 0 0
\(631\) 17.1345i 0.682113i −0.940043 0.341057i \(-0.889215\pi\)
0.940043 0.341057i \(-0.110785\pi\)
\(632\) 2.77933 16.9813i 0.110556 0.675479i
\(633\) 0 0
\(634\) 16.4592 + 21.9204i 0.653680 + 0.870569i
\(635\) 26.3069 + 15.1883i 1.04396 + 0.602729i
\(636\) 0 0
\(637\) −9.67781 14.6145i −0.383449 0.579049i
\(638\) 8.76897 1.06141i 0.347167 0.0420217i
\(639\) 0 0
\(640\) −4.76419 + 23.0281i −0.188321 + 0.910266i
\(641\) 4.02498 + 6.97146i 0.158977 + 0.275356i 0.934500 0.355963i \(-0.115847\pi\)
−0.775523 + 0.631319i \(0.782514\pi\)
\(642\) 0 0
\(643\) 22.2710i 0.878283i 0.898418 + 0.439142i \(0.144717\pi\)
−0.898418 + 0.439142i \(0.855283\pi\)
\(644\) 32.8369 + 8.45579i 1.29395 + 0.333205i
\(645\) 0 0
\(646\) 17.1517 + 7.31525i 0.674825 + 0.287815i
\(647\) 18.9125 + 32.7574i 0.743528 + 1.28783i 0.950879 + 0.309561i \(0.100182\pi\)
−0.207352 + 0.978266i \(0.566484\pi\)
\(648\) 0 0
\(649\) −8.43042 4.86730i −0.330923 0.191058i
\(650\) 0.289259 + 2.38975i 0.0113457 + 0.0937337i
\(651\) 0 0
\(652\) −16.1470 + 3.96704i −0.632364 + 0.155361i
\(653\) 25.6130 + 14.7877i 1.00231 + 0.578686i 0.908932 0.416944i \(-0.136899\pi\)
0.0933818 + 0.995630i \(0.470232\pi\)
\(654\) 0 0
\(655\) 10.9586 6.32694i 0.428188 0.247214i
\(656\) 22.1836 + 0.927282i 0.866126 + 0.0362043i
\(657\) 0 0
\(658\) −0.637588 4.18720i −0.0248558 0.163234i
\(659\) −18.3961 −0.716611 −0.358305 0.933604i \(-0.616645\pi\)
−0.358305 + 0.933604i \(0.616645\pi\)
\(660\) 0 0
\(661\) −5.92732 10.2664i −0.230546 0.399317i 0.727423 0.686189i \(-0.240718\pi\)
−0.957969 + 0.286872i \(0.907385\pi\)
\(662\) 23.5245 17.6637i 0.914306 0.686520i
\(663\) 0 0
\(664\) −1.33128 + 0.503175i −0.0516635 + 0.0195270i
\(665\) 0.691771 + 22.5599i 0.0268257 + 0.874836i
\(666\) 0 0
\(667\) −14.9356 + 25.8692i −0.578308 + 1.00166i
\(668\) −3.46653 3.61446i −0.134124 0.139848i
\(669\) 0 0
\(670\) 21.2652 + 9.06965i 0.821545 + 0.350391i
\(671\) −6.89285 −0.266095
\(672\) 0 0
\(673\) 10.8738 0.419154 0.209577 0.977792i \(-0.432791\pi\)
0.209577 + 0.977792i \(0.432791\pi\)
\(674\) 13.4418 + 5.73299i 0.517760 + 0.220826i
\(675\) 0 0
\(676\) −9.31638 9.71395i −0.358322 0.373613i
\(677\) −22.7163 + 39.3458i −0.873060 + 1.51218i −0.0142443 + 0.999899i \(0.504534\pi\)
−0.858815 + 0.512285i \(0.828799\pi\)
\(678\) 0 0
\(679\) 40.1437 + 21.5642i 1.54057 + 0.827559i
\(680\) 17.6664 6.67728i 0.677476 0.256062i
\(681\) 0 0
\(682\) 6.72468 5.04933i 0.257501 0.193349i
\(683\) 12.3693 + 21.4243i 0.473299 + 0.819778i 0.999533 0.0305620i \(-0.00972970\pi\)
−0.526234 + 0.850340i \(0.676396\pi\)
\(684\) 0 0
\(685\) 29.0446 1.10974
\(686\) 24.9337 + 8.01942i 0.951973 + 0.306183i
\(687\) 0 0
\(688\) 0 0
\(689\) −18.6193 + 10.7499i −0.709340 + 0.409538i
\(690\) 0 0
\(691\) −4.10457 2.36977i −0.156145 0.0901504i 0.419892 0.907574i \(-0.362068\pi\)
−0.576037 + 0.817424i \(0.695401\pi\)
\(692\) 10.5535 2.59280i 0.401182 0.0985636i
\(693\) 0 0
\(694\) 5.71568 + 47.2207i 0.216964 + 1.79247i
\(695\) 0.905741 + 0.522930i 0.0343567 + 0.0198359i
\(696\) 0 0
\(697\) −8.91594 15.4429i −0.337715 0.584940i
\(698\) 17.3722 + 7.40932i 0.657549 + 0.280447i
\(699\) 0 0
\(700\) −2.56812 2.51845i −0.0970659 0.0951883i
\(701\) 39.8121i 1.50368i −0.659345 0.751840i \(-0.729166\pi\)
0.659345 0.751840i \(-0.270834\pi\)
\(702\) 0 0
\(703\) −13.0371 22.5809i −0.491704 0.851656i
\(704\) −10.1597 3.41722i −0.382909 0.128791i
\(705\) 0 0
\(706\) −11.0267 + 1.33469i −0.414996 + 0.0502319i
\(707\) 3.24600 0.0995345i 0.122078 0.00374338i
\(708\) 0 0
\(709\) −4.97242 2.87083i −0.186743 0.107816i 0.403714 0.914885i \(-0.367719\pi\)
−0.590457 + 0.807069i \(0.701052\pi\)
\(710\) −9.33942 12.4382i −0.350502 0.466798i
\(711\) 0 0
\(712\) 0.791288 4.83465i 0.0296548 0.181186i
\(713\) 28.4385i 1.06503i
\(714\) 0 0
\(715\) 6.97370 0.260801
\(716\) −1.96277 + 6.75732i −0.0733523 + 0.252533i
\(717\) 0 0
\(718\) −0.137717 0.183411i −0.00513954 0.00684482i
\(719\) −7.62804 + 13.2122i −0.284478 + 0.492730i −0.972482 0.232976i \(-0.925154\pi\)
0.688005 + 0.725706i \(0.258487\pi\)
\(720\) 0 0
\(721\) 21.2438 + 34.3211i 0.791160 + 1.27818i
\(722\) −0.366180 3.02523i −0.0136278 0.112588i
\(723\) 0 0
\(724\) 30.7303 + 32.0417i 1.14208 + 1.19082i
\(725\) 2.74416 1.58434i 0.101915 0.0588409i
\(726\) 0 0
\(727\) −40.8993 −1.51687 −0.758435 0.651749i \(-0.774036\pi\)
−0.758435 + 0.651749i \(0.774036\pi\)
\(728\) −18.5767 2.45848i −0.688497 0.0911172i
\(729\) 0 0
\(730\) 0.639654 1.49976i 0.0236746 0.0555087i
\(731\) 0 0
\(732\) 0 0
\(733\) −12.2037 + 21.1374i −0.450753 + 0.780728i −0.998433 0.0559605i \(-0.982178\pi\)
0.547680 + 0.836688i \(0.315511\pi\)
\(734\) −3.44367 28.4502i −0.127108 1.05012i
\(735\) 0 0
\(736\) 29.8711 20.5360i 1.10106 0.756968i
\(737\) −5.26897 + 9.12612i −0.194085 + 0.336165i
\(738\) 0 0
\(739\) 15.3996 + 26.6730i 0.566485 + 0.981181i 0.996910 + 0.0785545i \(0.0250305\pi\)
−0.430425 + 0.902626i \(0.641636\pi\)
\(740\) −25.3611 7.36654i −0.932293 0.270800i
\(741\) 0 0
\(742\) 11.6917 29.9227i 0.429216 1.09850i
\(743\) 23.9376i 0.878184i 0.898442 + 0.439092i \(0.144700\pi\)
−0.898442 + 0.439092i \(0.855300\pi\)
\(744\) 0 0
\(745\) 9.91613 5.72508i 0.363299 0.209751i
\(746\) 5.67004 + 7.55134i 0.207595 + 0.276474i
\(747\) 0 0
\(748\) 2.05394 + 8.36013i 0.0750996 + 0.305677i
\(749\) 15.4689 + 24.9912i 0.565219 + 0.913158i
\(750\) 0 0
\(751\) 11.9543 + 6.90181i 0.436218 + 0.251851i 0.701992 0.712185i \(-0.252294\pi\)
−0.265774 + 0.964035i \(0.585627\pi\)
\(752\) −3.82331 2.42574i −0.139422 0.0884578i
\(753\) 0 0
\(754\) 6.47615 15.1843i 0.235847 0.552979i
\(755\) 14.6287i 0.532392i
\(756\) 0 0
\(757\) 2.14156i 0.0778362i −0.999242 0.0389181i \(-0.987609\pi\)
0.999242 0.0389181i \(-0.0123911\pi\)
\(758\) −5.98841 2.55408i −0.217509 0.0927682i
\(759\) 0 0
\(760\) 18.6732 + 15.2812i 0.677348 + 0.554308i
\(761\) −36.8321 21.2650i −1.33516 0.770856i −0.349076 0.937094i \(-0.613504\pi\)
−0.986086 + 0.166239i \(0.946838\pi\)
\(762\) 0 0
\(763\) 1.02164 + 33.3175i 0.0369859 + 1.20618i
\(764\) −0.626015 2.54806i −0.0226484 0.0921855i
\(765\) 0 0
\(766\) 12.9157 9.69798i 0.466665 0.350402i
\(767\) −15.7554 + 9.09636i −0.568893 + 0.328450i
\(768\) 0 0
\(769\) 15.6459i 0.564206i 0.959384 + 0.282103i \(0.0910320\pi\)
−0.959384 + 0.282103i \(0.908968\pi\)
\(770\) −8.13715 + 6.50929i −0.293243 + 0.234579i
\(771\) 0 0
\(772\) −6.30061 + 21.6914i −0.226764 + 0.780689i
\(773\) 15.2125 + 26.3489i 0.547156 + 0.947703i 0.998468 + 0.0553362i \(0.0176230\pi\)
−0.451311 + 0.892367i \(0.649044\pi\)
\(774\) 0 0
\(775\) 1.50836 2.61255i 0.0541817 0.0938455i
\(776\) 45.5689 17.2234i 1.63583 0.618286i
\(777\) 0 0
\(778\) −42.1999 + 5.10794i −1.51294 + 0.183129i
\(779\) 11.3910 19.7297i 0.408124 0.706891i
\(780\) 0 0
\(781\) 6.14009 3.54498i 0.219710 0.126849i
\(782\) −26.7790 11.4213i −0.957613 0.408425i
\(783\) 0 0
\(784\) 23.9707 14.4709i 0.856095 0.516819i
\(785\) 29.7427 1.06156
\(786\) 0 0
\(787\) −28.3722 + 16.3807i −1.01136 + 0.583909i −0.911590 0.411102i \(-0.865144\pi\)
−0.0997704 + 0.995010i \(0.531811\pi\)
\(788\) −8.54734 + 8.19752i −0.304486 + 0.292025i
\(789\) 0 0
\(790\) −17.7532 + 2.14888i −0.631631 + 0.0764536i
\(791\) 25.1193 46.7618i 0.893140 1.66266i
\(792\) 0 0
\(793\) −6.44092 + 11.1560i −0.228724 + 0.396161i
\(794\) 4.91091 3.68743i 0.174282 0.130862i
\(795\) 0 0
\(796\) −10.3827 + 35.7450i −0.368006 + 1.26695i
\(797\) 28.3790 1.00523 0.502617 0.864509i \(-0.332370\pi\)
0.502617 + 0.864509i \(0.332370\pi\)
\(798\) 0 0
\(799\) 3.63649i 0.128650i
\(800\) −3.83337 + 0.302233i −0.135530 + 0.0106855i
\(801\) 0 0
\(802\) −22.5883 + 16.9607i −0.797620 + 0.598905i
\(803\) 0.643636 + 0.371603i 0.0227134 + 0.0131136i
\(804\) 0 0
\(805\) −1.08006 35.2228i −0.0380672 1.24144i
\(806\) −1.88850 15.6021i −0.0665197 0.549560i
\(807\) 0 0
\(808\) 2.19872 2.68677i 0.0773505 0.0945201i
\(809\) −4.08387 7.07347i −0.143581 0.248690i 0.785262 0.619164i \(-0.212528\pi\)
−0.928843 + 0.370474i \(0.879195\pi\)
\(810\) 0 0
\(811\) 22.2710i 0.782041i −0.920382 0.391021i \(-0.872122\pi\)
0.920382 0.391021i \(-0.127878\pi\)
\(812\) 6.61652 + 23.7624i 0.232194 + 0.833898i
\(813\) 0 0
\(814\) 4.72263 11.0729i 0.165528 0.388105i
\(815\) 8.63997 + 14.9649i 0.302645 + 0.524196i
\(816\) 0 0
\(817\) 0 0
\(818\) −42.8563 + 5.18740i −1.49844 + 0.181373i
\(819\) 0 0
\(820\) −5.50535 22.4083i −0.192255 0.782533i
\(821\) −4.52231 2.61096i −0.157830 0.0911230i 0.419005 0.907984i \(-0.362379\pi\)
−0.576835 + 0.816861i \(0.695712\pi\)
\(822\) 0 0
\(823\) −8.29368 + 4.78836i −0.289099 + 0.166912i −0.637536 0.770421i \(-0.720046\pi\)
0.348436 + 0.937333i \(0.386713\pi\)
\(824\) 42.5841 + 6.96975i 1.48349 + 0.242803i
\(825\) 0 0
\(826\) 9.89330 25.3201i 0.344232 0.880998i
\(827\) −40.6664 −1.41411 −0.707055 0.707159i \(-0.749977\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(828\) 0 0
\(829\) 16.6171 + 28.7816i 0.577134 + 0.999625i 0.995806 + 0.0914880i \(0.0291623\pi\)
−0.418672 + 0.908137i \(0.637504\pi\)
\(830\) 0.888096 + 1.18276i 0.0308263 + 0.0410543i
\(831\) 0 0
\(832\) −15.0243 + 13.2502i −0.520875 + 0.459369i
\(833\) −20.1271 10.0295i −0.697364 0.347500i
\(834\) 0 0
\(835\) −2.60236 + 4.50743i −0.0900586 + 0.155986i
\(836\) −7.93785 + 7.61298i −0.274536 + 0.263300i
\(837\) 0 0
\(838\) −1.15440 + 2.70666i −0.0398781 + 0.0935001i
\(839\) 15.0243 0.518698 0.259349 0.965784i \(-0.416492\pi\)
0.259349 + 0.965784i \(0.416492\pi\)
\(840\) 0 0
\(841\) 7.27029 0.250700
\(842\) 16.8684 39.5506i 0.581325 1.36300i
\(843\) 0 0
\(844\) 7.93202 + 8.27050i 0.273031 + 0.284682i
\(845\) −6.99392 + 12.1138i −0.240598 + 0.416728i
\(846\) 0 0
\(847\) 12.8174 + 20.7076i 0.440411 + 0.711521i
\(848\) −15.9148 30.4339i −0.546517 1.04510i
\(849\) 0 0
\(850\) 1.85431 + 2.46957i 0.0636024 + 0.0847055i
\(851\) 20.3548 + 35.2556i 0.697755 + 1.20855i
\(852\) 0 0
\(853\) −12.5203 −0.428686 −0.214343 0.976758i \(-0.568761\pi\)
−0.214343 + 0.976758i \(0.568761\pi\)
\(854\) −2.89759 19.0292i −0.0991533 0.651165i
\(855\) 0 0
\(856\) 31.0080 + 5.07508i 1.05983 + 0.173463i
\(857\) 46.8265 27.0353i 1.59956 0.923509i 0.607993 0.793942i \(-0.291975\pi\)
0.991571 0.129566i \(-0.0413585\pi\)
\(858\) 0 0
\(859\) 17.0990 + 9.87213i 0.583411 + 0.336833i 0.762488 0.647002i \(-0.223978\pi\)
−0.179077 + 0.983835i \(0.557311\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 3.76563 0.455798i 0.128258 0.0155246i
\(863\) 26.3755 + 15.2279i 0.897833 + 0.518364i 0.876497 0.481408i \(-0.159874\pi\)
0.0213367 + 0.999772i \(0.493208\pi\)
\(864\) 0 0
\(865\) −5.64697 9.78084i −0.192003 0.332559i
\(866\) −16.3488 + 38.3322i −0.555555 + 1.30258i
\(867\) 0 0
\(868\) 16.7666 + 16.4423i 0.569097 + 0.558089i
\(869\) 8.15137i 0.276516i
\(870\) 0 0
\(871\) 9.84701 + 17.0555i 0.333653 + 0.577905i
\(872\) 27.5775 + 22.5680i 0.933890 + 0.764250i
\(873\) 0 0
\(874\) −4.46946 36.9249i −0.151182 1.24900i
\(875\) −14.7808 + 27.5157i −0.499682 + 0.930201i
\(876\) 0 0
\(877\) 18.3275 + 10.5814i 0.618877 + 0.357309i 0.776432 0.630201i \(-0.217028\pi\)
−0.157555 + 0.987510i \(0.550361\pi\)
\(878\) 8.54166 6.41363i 0.288267 0.216450i
\(879\) 0 0
\(880\) −0.465242 + 11.1301i −0.0156833 + 0.375196i
\(881\) 11.5367i 0.388681i −0.980934 0.194340i \(-0.937743\pi\)
0.980934 0.194340i \(-0.0622566\pi\)
\(882\) 0 0
\(883\) 49.8555 1.67777 0.838886 0.544307i \(-0.183207\pi\)
0.838886 + 0.544307i \(0.183207\pi\)
\(884\) 15.4501 + 4.48772i 0.519642 + 0.150938i
\(885\) 0 0
\(886\) −8.50246 + 6.38420i −0.285646 + 0.214481i
\(887\) 5.56575 9.64015i 0.186879 0.323685i −0.757329 0.653034i \(-0.773496\pi\)
0.944208 + 0.329349i \(0.106829\pi\)
\(888\) 0 0
\(889\) −34.0629 18.2978i −1.14243 0.613688i
\(890\) −5.05442 + 0.611796i −0.169425 + 0.0205074i
\(891\) 0 0
\(892\) −28.8873 30.1200i −0.967219 1.00849i
\(893\) −4.02352 + 2.32298i −0.134642 + 0.0777356i
\(894\) 0 0
\(895\) 7.31287 0.244442
\(896\) 5.16308 29.4846i 0.172487 0.985012i
\(897\) 0 0
\(898\) 18.6452 + 7.95223i 0.622198 + 0.265370i
\(899\) −17.9159 + 10.3438i −0.597530 + 0.344984i
\(900\) 0 0
\(901\) −13.7913 + 23.8872i −0.459454 + 0.795798i
\(902\) 10.4418 1.26389i 0.347672 0.0420829i
\(903\) 0 0
\(904\) −20.0629 53.0815i −0.667282 1.76546i
\(905\) 23.0696 39.9577i 0.766859 1.32824i
\(906\) 0 0
\(907\) 7.20674 + 12.4824i 0.239296 + 0.414473i 0.960512 0.278237i \(-0.0897501\pi\)
−0.721217 + 0.692710i \(0.756417\pi\)
\(908\) −31.6637 9.19723i −1.05080 0.305221i
\(909\) 0 0
\(910\) 2.93157 + 19.2524i 0.0971807 + 0.638211i
\(911\) 19.1909i 0.635823i 0.948120 + 0.317911i \(0.102981\pi\)
−0.948120 + 0.317911i \(0.897019\pi\)
\(912\) 0 0
\(913\) −0.583868 + 0.337096i −0.0193232 + 0.0111563i
\(914\) −14.6573 + 11.0057i −0.484821 + 0.364035i
\(915\) 0 0
\(916\) −16.5081 + 4.05576i −0.545443 + 0.134006i
\(917\) −13.6958 + 8.47733i −0.452276 + 0.279946i
\(918\) 0 0
\(919\) −22.4285 12.9491i −0.739848 0.427151i 0.0821662 0.996619i \(-0.473816\pi\)
−0.822014 + 0.569467i \(0.807150\pi\)
\(920\) −29.1545 23.8586i −0.961195 0.786594i
\(921\) 0 0
\(922\) 43.4312 + 18.5236i 1.43033 + 0.610041i
\(923\) 13.2502i 0.436136i
\(924\) 0 0
\(925\) 4.31842i 0.141989i
\(926\) −16.5189 + 38.7311i −0.542845 + 1.27278i
\(927\) 0 0
\(928\) 23.8023 + 11.3490i 0.781349 + 0.372550i
\(929\) 36.7480 + 21.2165i 1.20566 + 0.696090i 0.961809 0.273722i \(-0.0882548\pi\)
0.243854 + 0.969812i \(0.421588\pi\)
\(930\) 0 0
\(931\) −1.76029 28.6761i −0.0576910 0.939820i
\(932\) 8.69158 2.13537i 0.284702 0.0699464i
\(933\) 0 0
\(934\) −23.0814 30.7397i −0.755245 1.00583i
\(935\) 7.74809 4.47336i 0.253390 0.146295i
\(936\) 0 0
\(937\) 46.5547i 1.52088i −0.649410 0.760439i \(-0.724984\pi\)
0.649410 0.760439i \(-0.275016\pi\)
\(938\) −27.4096 10.7097i −0.894954 0.349685i
\(939\) 0 0
\(940\) −1.31259 + 4.51890i −0.0428119 + 0.147390i
\(941\) −1.48937 2.57967i −0.0485522 0.0840949i 0.840728 0.541458i \(-0.182127\pi\)
−0.889280 + 0.457363i \(0.848794\pi\)
\(942\) 0 0
\(943\) −17.7847 + 30.8040i −0.579150 + 1.00312i
\(944\) −13.4668 25.7526i −0.438308 0.838177i
\(945\) 0 0
\(946\) 0 0
\(947\) −13.5270 + 23.4294i −0.439568 + 0.761354i −0.997656 0.0684276i \(-0.978202\pi\)
0.558088 + 0.829782i \(0.311535\pi\)
\(948\) 0 0
\(949\) 1.20287 0.694478i 0.0390469 0.0225437i
\(950\) −1.54788 + 3.62922i −0.0502197 + 0.117748i
\(951\) 0 0
\(952\) −22.2165 + 9.18475i −0.720042 + 0.297679i
\(953\) −28.7293 −0.930634 −0.465317 0.885144i \(-0.654060\pi\)
−0.465317 + 0.885144i \(0.654060\pi\)
\(954\) 0 0
\(955\) −2.36152 + 1.36342i −0.0764169 + 0.0441193i
\(956\) −35.4619 + 34.0105i −1.14692 + 1.09998i
\(957\) 0 0
\(958\) −5.85225 48.3490i −0.189078 1.56209i
\(959\) −36.9536 + 1.13313i −1.19329 + 0.0365908i
\(960\) 0 0
\(961\) 5.65232 9.79010i 0.182333 0.315810i
\(962\) −13.5084 17.9904i −0.435528 0.580035i
\(963\) 0 0
\(964\) −11.1441 3.23698i −0.358927 0.104256i
\(965\) 23.4747 0.755677
\(966\) 0 0
\(967\) 13.3546i 0.429453i 0.976674 + 0.214727i \(0.0688861\pi\)
−0.976674 + 0.214727i \(0.931114\pi\)
\(968\) 25.6931 + 4.20518i 0.825806 + 0.135160i
\(969\) 0 0
\(970\) −30.3991 40.4854i −0.976056 1.29991i
\(971\) 1.71876 + 0.992325i 0.0551575 + 0.0318452i 0.527325 0.849664i \(-0.323195\pi\)
−0.472168 + 0.881509i \(0.656528\pi\)
\(972\) 0 0
\(973\) −1.17278 0.629989i −0.0375976 0.0201965i
\(974\) 11.0662 1.33948i 0.354585 0.0429196i
\(975\) 0 0
\(976\) −17.3754 11.0241i −0.556174 0.352871i
\(977\) −31.2242 54.0818i −0.998950 1.73023i −0.539158 0.842205i \(-0.681257\pi\)
−0.459792 0.888027i \(-0.652076\pi\)
\(978\) 0 0
\(979\) 2.32073i 0.0741710i
\(980\) −21.3910 19.7280i −0.683309 0.630188i
\(981\) 0 0
\(982\) 10.4886 + 4.47340i 0.334703 + 0.142752i
\(983\) −3.64021 6.30503i −0.116105 0.201099i 0.802116 0.597168i \(-0.203707\pi\)
−0.918221 + 0.396069i \(0.870374\pi\)
\(984\) 0 0
\(985\) 10.6590 + 6.15397i 0.339624 + 0.196082i
\(986\) −2.54486 21.0246i −0.0810448 0.669561i
\(987\) 0 0
\(988\) 4.90411 + 19.9612i 0.156021 + 0.635049i
\(989\) 0 0
\(990\) 0 0
\(991\) 31.3345 18.0910i 0.995373 0.574679i 0.0884967 0.996076i \(-0.471794\pi\)
0.906876 + 0.421398i \(0.138460\pi\)
\(992\) 25.0271 1.97320i 0.794613 0.0626493i
\(993\) 0 0
\(994\) 12.3678 + 15.4608i 0.392284 + 0.490387i
\(995\) 38.6838 1.22636
\(996\) 0 0
\(997\) 17.1218 + 29.6559i 0.542254 + 0.939211i 0.998774 + 0.0494984i \(0.0157623\pi\)
−0.456520 + 0.889713i \(0.650904\pi\)
\(998\) 27.1906 20.4164i 0.860703 0.646271i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bk.a.19.6 12
3.2 odd 2 56.2.m.a.19.1 yes 12
4.3 odd 2 2016.2.bs.a.271.5 12
7.3 odd 6 inner 504.2.bk.a.451.2 12
8.3 odd 2 inner 504.2.bk.a.19.1 12
8.5 even 2 2016.2.bs.a.271.2 12
12.11 even 2 224.2.q.a.47.5 12
21.2 odd 6 392.2.e.e.195.7 12
21.5 even 6 392.2.e.e.195.8 12
21.11 odd 6 392.2.m.g.227.5 12
21.17 even 6 56.2.m.a.3.5 yes 12
21.20 even 2 392.2.m.g.19.1 12
24.5 odd 2 224.2.q.a.47.6 12
24.11 even 2 56.2.m.a.19.6 yes 12
28.3 even 6 2016.2.bs.a.1711.2 12
56.3 even 6 inner 504.2.bk.a.451.5 12
56.45 odd 6 2016.2.bs.a.1711.5 12
84.11 even 6 1568.2.q.g.815.1 12
84.23 even 6 1568.2.e.e.783.12 12
84.47 odd 6 1568.2.e.e.783.1 12
84.59 odd 6 224.2.q.a.143.6 12
84.83 odd 2 1568.2.q.g.1391.2 12
168.5 even 6 1568.2.e.e.783.2 12
168.11 even 6 392.2.m.g.227.2 12
168.53 odd 6 1568.2.q.g.815.2 12
168.59 odd 6 56.2.m.a.3.2 12
168.83 odd 2 392.2.m.g.19.6 12
168.101 even 6 224.2.q.a.143.5 12
168.107 even 6 392.2.e.e.195.5 12
168.125 even 2 1568.2.q.g.1391.1 12
168.131 odd 6 392.2.e.e.195.6 12
168.149 odd 6 1568.2.e.e.783.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.m.a.3.2 12 168.59 odd 6
56.2.m.a.3.5 yes 12 21.17 even 6
56.2.m.a.19.1 yes 12 3.2 odd 2
56.2.m.a.19.6 yes 12 24.11 even 2
224.2.q.a.47.5 12 12.11 even 2
224.2.q.a.47.6 12 24.5 odd 2
224.2.q.a.143.5 12 168.101 even 6
224.2.q.a.143.6 12 84.59 odd 6
392.2.e.e.195.5 12 168.107 even 6
392.2.e.e.195.6 12 168.131 odd 6
392.2.e.e.195.7 12 21.2 odd 6
392.2.e.e.195.8 12 21.5 even 6
392.2.m.g.19.1 12 21.20 even 2
392.2.m.g.19.6 12 168.83 odd 2
392.2.m.g.227.2 12 168.11 even 6
392.2.m.g.227.5 12 21.11 odd 6
504.2.bk.a.19.1 12 8.3 odd 2 inner
504.2.bk.a.19.6 12 1.1 even 1 trivial
504.2.bk.a.451.2 12 7.3 odd 6 inner
504.2.bk.a.451.5 12 56.3 even 6 inner
1568.2.e.e.783.1 12 84.47 odd 6
1568.2.e.e.783.2 12 168.5 even 6
1568.2.e.e.783.11 12 168.149 odd 6
1568.2.e.e.783.12 12 84.23 even 6
1568.2.q.g.815.1 12 84.11 even 6
1568.2.q.g.815.2 12 168.53 odd 6
1568.2.q.g.1391.1 12 168.125 even 2
1568.2.q.g.1391.2 12 84.83 odd 2
2016.2.bs.a.271.2 12 8.5 even 2
2016.2.bs.a.271.5 12 4.3 odd 2
2016.2.bs.a.1711.2 12 28.3 even 6
2016.2.bs.a.1711.5 12 56.45 odd 6