Properties

Label 56.2.m.a.19.6
Level $56$
Weight $2$
Character 56.19
Analytic conductor $0.447$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [56,2,Mod(3,56)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(56, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("56.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 56.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.447162251319\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.144054149089536.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.6
Root \(1.09935 - 0.468876i\) of defining polynomial
Character \(\chi\) \(=\) 56.19
Dual form 56.2.m.a.3.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13090 + 0.849154i) q^{2} +(-2.27230 + 1.31191i) q^{3} +(0.557875 + 1.92062i) q^{4} +(1.03926 - 1.80005i) q^{5} +(-3.68377 - 0.445890i) q^{6} +(1.25203 - 2.33076i) q^{7} +(-1.00000 + 2.64575i) q^{8} +(1.94224 - 3.36406i) q^{9} +(2.70382 - 1.15319i) q^{10} +(-0.669938 - 1.16037i) q^{11} +(-3.78735 - 3.63234i) q^{12} -2.50406 q^{13} +(3.39509 - 1.57269i) q^{14} +5.45368i q^{15} +(-3.37755 + 2.14293i) q^{16} +(-2.78212 + 1.60626i) q^{17} +(5.05309 - 2.15516i) q^{18} +(3.55442 + 2.05215i) q^{19} +(4.03699 + 0.991819i) q^{20} +(0.212768 + 6.93874i) q^{21} +(0.227697 - 1.88114i) q^{22} +(-5.54952 - 3.20402i) q^{23} +(-1.19870 - 7.32386i) q^{24} +(0.339877 + 0.588684i) q^{25} +(-2.83184 - 2.12633i) q^{26} +2.32073i q^{27} +(5.17497 + 1.10440i) q^{28} -4.66151i q^{29} +(-4.63102 + 6.16758i) q^{30} +(2.21897 + 3.84337i) q^{31} +(-5.63935 - 0.444621i) q^{32} +(3.04461 + 1.75780i) q^{33} +(-4.51026 - 0.545930i) q^{34} +(-2.89430 - 4.67598i) q^{35} +(7.54461 + 1.85358i) q^{36} +(5.50178 + 3.17646i) q^{37} +(2.27711 + 5.33903i) q^{38} +(5.68997 - 3.28511i) q^{39} +(3.72323 + 4.54968i) q^{40} +5.55076i q^{41} +(-5.65144 + 8.02770i) q^{42} +(1.85488 - 1.93404i) q^{44} +(-4.03699 - 6.99227i) q^{45} +(-3.55526 - 8.33583i) q^{46} +(-0.565988 + 0.980320i) q^{47} +(4.86348 - 9.30045i) q^{48} +(-3.86485 - 5.83634i) q^{49} +(-0.115516 + 0.954351i) q^{50} +(4.21455 - 7.29981i) q^{51} +(-1.39695 - 4.80934i) q^{52} +(-7.43567 + 4.29299i) q^{53} +(-1.97066 + 2.62452i) q^{54} -2.78496 q^{55} +(4.91457 + 5.64331i) q^{56} -10.7690 q^{57} +(3.95834 - 5.27171i) q^{58} +(6.29193 - 3.63265i) q^{59} +(-10.4744 + 3.04247i) q^{60} +(2.57219 - 4.45517i) q^{61} +(-0.754178 + 6.23073i) q^{62} +(-5.40907 - 8.73879i) q^{63} +(-6.00000 - 5.29150i) q^{64} +(-2.60236 + 4.50743i) q^{65} +(1.95050 + 4.57324i) q^{66} +(3.93243 + 6.81116i) q^{67} +(-4.63708 - 4.44730i) q^{68} +16.8136 q^{69} +(0.697459 - 7.74577i) q^{70} -5.29150i q^{71} +(6.95823 + 8.50275i) q^{72} +(0.480369 - 0.277341i) q^{73} +(3.52467 + 8.26412i) q^{74} +(-1.54461 - 0.891779i) q^{75} +(-1.95847 + 7.97153i) q^{76} +(-3.54332 + 0.108651i) q^{77} +(9.22436 + 1.11653i) q^{78} +(5.26862 + 3.04184i) q^{79} +(0.347228 + 8.30683i) q^{80} +(2.78212 + 4.81877i) q^{81} +(-4.71345 + 6.27736i) q^{82} -0.503175i q^{83} +(-13.2080 + 4.27959i) q^{84} +6.67728i q^{85} +(6.11551 + 10.5924i) q^{87} +(3.73998 - 0.612123i) q^{88} +(1.50000 + 0.866025i) q^{89} +(1.37208 - 11.3356i) q^{90} +(-3.13515 + 5.83634i) q^{91} +(3.05776 - 12.4460i) q^{92} +(-10.0844 - 5.82221i) q^{93} +(-1.47252 + 0.628034i) q^{94} +(7.38794 - 4.26543i) q^{95} +(13.3976 - 6.38804i) q^{96} -17.2234i q^{97} +(0.585189 - 9.88218i) q^{98} -5.20473 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} - 12 q^{8} + 6 q^{10} - 6 q^{11} - 18 q^{12} + 6 q^{14} - 6 q^{17} + 6 q^{18} - 6 q^{19} + 24 q^{22} + 6 q^{24} + 6 q^{26} + 6 q^{28} - 12 q^{30} - 6 q^{33} + 18 q^{35} + 48 q^{36} - 24 q^{38}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/56\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(29\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13090 + 0.849154i 0.799668 + 0.600443i
\(3\) −2.27230 + 1.31191i −1.31191 + 0.757434i −0.982413 0.186720i \(-0.940214\pi\)
−0.329502 + 0.944155i \(0.606881\pi\)
\(4\) 0.557875 + 1.92062i 0.278937 + 0.960309i
\(5\) 1.03926 1.80005i 0.464771 0.805007i −0.534420 0.845219i \(-0.679470\pi\)
0.999191 + 0.0402117i \(0.0128032\pi\)
\(6\) −3.68377 0.445890i −1.50389 0.182034i
\(7\) 1.25203 2.33076i 0.473222 0.880943i
\(8\) −1.00000 + 2.64575i −0.353553 + 0.935414i
\(9\) 1.94224 3.36406i 0.647414 1.12135i
\(10\) 2.70382 1.15319i 0.855023 0.364670i
\(11\) −0.669938 1.16037i −0.201994 0.349864i 0.747177 0.664625i \(-0.231409\pi\)
−0.949171 + 0.314761i \(0.898075\pi\)
\(12\) −3.78735 3.63234i −1.09331 1.04857i
\(13\) −2.50406 −0.694500 −0.347250 0.937773i \(-0.612884\pi\)
−0.347250 + 0.937773i \(0.612884\pi\)
\(14\) 3.39509 1.57269i 0.907376 0.420319i
\(15\) 5.45368i 1.40814i
\(16\) −3.37755 + 2.14293i −0.844388 + 0.535732i
\(17\) −2.78212 + 1.60626i −0.674763 + 0.389575i −0.797879 0.602818i \(-0.794045\pi\)
0.123116 + 0.992392i \(0.460711\pi\)
\(18\) 5.05309 2.15516i 1.19102 0.507976i
\(19\) 3.55442 + 2.05215i 0.815440 + 0.470795i 0.848842 0.528647i \(-0.177301\pi\)
−0.0334012 + 0.999442i \(0.510634\pi\)
\(20\) 4.03699 + 0.991819i 0.902698 + 0.221778i
\(21\) 0.212768 + 6.93874i 0.0464297 + 1.51416i
\(22\) 0.227697 1.88114i 0.0485451 0.401061i
\(23\) −5.54952 3.20402i −1.15716 0.668084i −0.206535 0.978439i \(-0.566219\pi\)
−0.950621 + 0.310355i \(0.899552\pi\)
\(24\) −1.19870 7.32386i −0.244683 1.49498i
\(25\) 0.339877 + 0.588684i 0.0679754 + 0.117737i
\(26\) −2.83184 2.12633i −0.555369 0.417007i
\(27\) 2.32073i 0.446626i
\(28\) 5.17497 + 1.10440i 0.977977 + 0.208712i
\(29\) 4.66151i 0.865621i −0.901485 0.432811i \(-0.857522\pi\)
0.901485 0.432811i \(-0.142478\pi\)
\(30\) −4.63102 + 6.16758i −0.845504 + 1.12604i
\(31\) 2.21897 + 3.84337i 0.398539 + 0.690290i 0.993546 0.113430i \(-0.0361839\pi\)
−0.595007 + 0.803721i \(0.702851\pi\)
\(32\) −5.63935 0.444621i −0.996906 0.0785986i
\(33\) 3.04461 + 1.75780i 0.529998 + 0.305994i
\(34\) −4.51026 0.545930i −0.773503 0.0936262i
\(35\) −2.89430 4.67598i −0.489226 0.790384i
\(36\) 7.54461 + 1.85358i 1.25743 + 0.308930i
\(37\) 5.50178 + 3.17646i 0.904488 + 0.522206i 0.878653 0.477460i \(-0.158442\pi\)
0.0258343 + 0.999666i \(0.491776\pi\)
\(38\) 2.27711 + 5.33903i 0.369396 + 0.866105i
\(39\) 5.68997 3.28511i 0.911125 0.526038i
\(40\) 3.72323 + 4.54968i 0.588694 + 0.719367i
\(41\) 5.55076i 0.866882i 0.901182 + 0.433441i \(0.142701\pi\)
−0.901182 + 0.433441i \(0.857299\pi\)
\(42\) −5.65144 + 8.02770i −0.872036 + 1.23870i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 1.85488 1.93404i 0.279634 0.291567i
\(45\) −4.03699 6.99227i −0.601799 1.04235i
\(46\) −3.55526 8.33583i −0.524194 1.22905i
\(47\) −0.565988 + 0.980320i −0.0825579 + 0.142994i −0.904348 0.426796i \(-0.859642\pi\)
0.821790 + 0.569790i \(0.192976\pi\)
\(48\) 4.86348 9.30045i 0.701983 1.34240i
\(49\) −3.86485 5.83634i −0.552122 0.833763i
\(50\) −0.115516 + 0.954351i −0.0163365 + 0.134966i
\(51\) 4.21455 7.29981i 0.590154 1.02218i
\(52\) −1.39695 4.80934i −0.193722 0.666935i
\(53\) −7.43567 + 4.29299i −1.02137 + 0.589687i −0.914500 0.404586i \(-0.867416\pi\)
−0.106868 + 0.994273i \(0.534082\pi\)
\(54\) −1.97066 + 2.62452i −0.268173 + 0.357152i
\(55\) −2.78496 −0.375524
\(56\) 4.91457 + 5.64331i 0.656738 + 0.754119i
\(57\) −10.7690 −1.42638
\(58\) 3.95834 5.27171i 0.519756 0.692210i
\(59\) 6.29193 3.63265i 0.819140 0.472931i −0.0309798 0.999520i \(-0.509863\pi\)
0.850120 + 0.526589i \(0.176529\pi\)
\(60\) −10.4744 + 3.04247i −1.35225 + 0.392781i
\(61\) 2.57219 4.45517i 0.329336 0.570426i −0.653045 0.757319i \(-0.726509\pi\)
0.982380 + 0.186893i \(0.0598419\pi\)
\(62\) −0.754178 + 6.23073i −0.0957807 + 0.791303i
\(63\) −5.40907 8.73879i −0.681479 1.10098i
\(64\) −6.00000 5.29150i −0.750000 0.661438i
\(65\) −2.60236 + 4.50743i −0.322784 + 0.559078i
\(66\) 1.95050 + 4.57324i 0.240090 + 0.562927i
\(67\) 3.93243 + 6.81116i 0.480422 + 0.832116i 0.999748 0.0224607i \(-0.00715005\pi\)
−0.519325 + 0.854577i \(0.673817\pi\)
\(68\) −4.63708 4.44730i −0.562329 0.539314i
\(69\) 16.8136 2.02412
\(70\) 0.697459 7.74577i 0.0833622 0.925797i
\(71\) 5.29150i 0.627986i −0.949425 0.313993i \(-0.898333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) 6.95823 + 8.50275i 0.820035 + 1.00206i
\(73\) 0.480369 0.277341i 0.0562230 0.0324604i −0.471625 0.881799i \(-0.656332\pi\)
0.527848 + 0.849339i \(0.322999\pi\)
\(74\) 3.52467 + 8.26412i 0.409735 + 0.960685i
\(75\) −1.54461 0.891779i −0.178356 0.102974i
\(76\) −1.95847 + 7.97153i −0.224652 + 0.914397i
\(77\) −3.54332 + 0.108651i −0.403798 + 0.0123820i
\(78\) 9.22436 + 1.11653i 1.04445 + 0.126422i
\(79\) 5.26862 + 3.04184i 0.592766 + 0.342233i 0.766190 0.642614i \(-0.222150\pi\)
−0.173425 + 0.984847i \(0.555483\pi\)
\(80\) 0.347228 + 8.30683i 0.0388212 + 0.928731i
\(81\) 2.78212 + 4.81877i 0.309124 + 0.535419i
\(82\) −4.71345 + 6.27736i −0.520513 + 0.693218i
\(83\) 0.503175i 0.0552307i −0.999619 0.0276153i \(-0.991209\pi\)
0.999619 0.0276153i \(-0.00879135\pi\)
\(84\) −13.2080 + 4.27959i −1.44111 + 0.466942i
\(85\) 6.67728i 0.724252i
\(86\) 0 0
\(87\) 6.11551 + 10.5924i 0.655651 + 1.13562i
\(88\) 3.73998 0.612123i 0.398683 0.0652525i
\(89\) 1.50000 + 0.866025i 0.159000 + 0.0917985i 0.577389 0.816469i \(-0.304072\pi\)
−0.418389 + 0.908268i \(0.637405\pi\)
\(90\) 1.37208 11.3356i 0.144630 1.19488i
\(91\) −3.13515 + 5.83634i −0.328653 + 0.611815i
\(92\) 3.05776 12.4460i 0.318793 1.29758i
\(93\) −10.0844 5.82221i −1.04570 0.603735i
\(94\) −1.47252 + 0.628034i −0.151879 + 0.0647768i
\(95\) 7.38794 4.26543i 0.757986 0.437624i
\(96\) 13.3976 6.38804i 1.36739 0.651977i
\(97\) 17.2234i 1.74878i −0.485228 0.874388i \(-0.661263\pi\)
0.485228 0.874388i \(-0.338737\pi\)
\(98\) 0.585189 9.88218i 0.0591130 0.998251i
\(99\) −5.20473 −0.523095
\(100\) −0.941029 + 0.981186i −0.0941029 + 0.0981186i
\(101\) −0.613725 1.06300i −0.0610679 0.105773i 0.833875 0.551953i \(-0.186117\pi\)
−0.894943 + 0.446180i \(0.852784\pi\)
\(102\) 10.9649 4.67656i 1.08569 0.463049i
\(103\) −7.62804 + 13.2122i −0.751613 + 1.30183i 0.195427 + 0.980718i \(0.437391\pi\)
−0.947041 + 0.321114i \(0.895943\pi\)
\(104\) 2.50406 6.62511i 0.245543 0.649645i
\(105\) 12.7112 + 6.82816i 1.24049 + 0.666360i
\(106\) −12.0544 1.45909i −1.17083 0.141719i
\(107\) −5.55442 + 9.62054i −0.536966 + 0.930053i 0.462099 + 0.886828i \(0.347096\pi\)
−0.999065 + 0.0432246i \(0.986237\pi\)
\(108\) −4.45725 + 1.29468i −0.428899 + 0.124581i
\(109\) −10.9109 + 6.29938i −1.04507 + 0.603372i −0.921265 0.388935i \(-0.872843\pi\)
−0.123805 + 0.992307i \(0.539510\pi\)
\(110\) −3.14952 2.36486i −0.300295 0.225481i
\(111\) −16.6690 −1.58215
\(112\) 0.765858 + 10.5553i 0.0723668 + 0.997378i
\(113\) 20.0629 1.88736 0.943680 0.330860i \(-0.107339\pi\)
0.943680 + 0.330860i \(0.107339\pi\)
\(114\) −12.1786 9.14451i −1.14063 0.856462i
\(115\) −11.5348 + 6.65961i −1.07562 + 0.621012i
\(116\) 8.95299 2.60054i 0.831264 0.241454i
\(117\) −4.86348 + 8.42380i −0.449629 + 0.778780i
\(118\) 10.2002 + 1.23465i 0.939008 + 0.113659i
\(119\) 0.260504 + 8.49552i 0.0238804 + 0.778783i
\(120\) −14.4291 5.45368i −1.31719 0.497851i
\(121\) 4.60236 7.97153i 0.418397 0.724685i
\(122\) 6.69202 2.85417i 0.605867 0.258404i
\(123\) −7.28212 12.6130i −0.656607 1.13728i
\(124\) −6.14375 + 6.40592i −0.551725 + 0.575269i
\(125\) 11.8055 1.05591
\(126\) 1.30346 14.4758i 0.116121 1.28961i
\(127\) 14.6145i 1.29683i −0.761287 0.648415i \(-0.775432\pi\)
0.761287 0.648415i \(-0.224568\pi\)
\(128\) −2.29211 11.0791i −0.202595 0.979263i
\(129\) 0 0
\(130\) −6.77052 + 2.88765i −0.593814 + 0.253263i
\(131\) −5.27230 3.04397i −0.460643 0.265953i 0.251671 0.967813i \(-0.419020\pi\)
−0.712315 + 0.701860i \(0.752353\pi\)
\(132\) −1.67756 + 6.82816i −0.146013 + 0.594315i
\(133\) 9.23329 5.71515i 0.800628 0.495566i
\(134\) −1.33654 + 11.0420i −0.115460 + 0.953882i
\(135\) 4.17744 + 2.41185i 0.359537 + 0.207579i
\(136\) −1.46764 8.96705i −0.125849 0.768918i
\(137\) −6.98685 12.1016i −0.596927 1.03391i −0.993272 0.115806i \(-0.963055\pi\)
0.396345 0.918102i \(-0.370278\pi\)
\(138\) 19.0145 + 14.2773i 1.61862 + 1.21537i
\(139\) 0.503175i 0.0426788i 0.999772 + 0.0213394i \(0.00679305\pi\)
−0.999772 + 0.0213394i \(0.993207\pi\)
\(140\) 7.36611 8.16745i 0.622550 0.690276i
\(141\) 2.97011i 0.250129i
\(142\) 4.49330 5.98417i 0.377069 0.502180i
\(143\) 1.67756 + 2.90562i 0.140285 + 0.242981i
\(144\) 0.648923 + 15.5244i 0.0540769 + 1.29370i
\(145\) −8.39096 4.84452i −0.696832 0.402316i
\(146\) 0.778756 + 0.0942619i 0.0644503 + 0.00780117i
\(147\) 16.4389 + 8.19159i 1.35586 + 0.675631i
\(148\) −3.03146 + 12.3389i −0.249184 + 1.01425i
\(149\) 4.77077 + 2.75440i 0.390836 + 0.225649i 0.682522 0.730865i \(-0.260883\pi\)
−0.291686 + 0.956514i \(0.594216\pi\)
\(150\) −0.989540 2.32012i −0.0807956 0.189437i
\(151\) 6.09511 3.51901i 0.496013 0.286373i −0.231053 0.972941i \(-0.574217\pi\)
0.727066 + 0.686568i \(0.240884\pi\)
\(152\) −8.98389 + 7.35197i −0.728690 + 0.596324i
\(153\) 12.4790i 1.00886i
\(154\) −4.09940 2.88595i −0.330339 0.232556i
\(155\) 9.22436 0.740918
\(156\) 9.48373 + 9.09559i 0.759306 + 0.728230i
\(157\) −7.15477 12.3924i −0.571013 0.989023i −0.996462 0.0840409i \(-0.973217\pi\)
0.425450 0.904982i \(-0.360116\pi\)
\(158\) 3.37530 + 7.91388i 0.268524 + 0.629595i
\(159\) 11.2641 19.5099i 0.893299 1.54724i
\(160\) −6.66110 + 9.68905i −0.526606 + 0.765987i
\(161\) −14.4159 + 8.92306i −1.13614 + 0.703236i
\(162\) −0.945578 + 7.81200i −0.0742916 + 0.613769i
\(163\) −4.15679 + 7.19977i −0.325585 + 0.563929i −0.981631 0.190792i \(-0.938894\pi\)
0.656046 + 0.754721i \(0.272228\pi\)
\(164\) −10.6609 + 3.09663i −0.832475 + 0.241806i
\(165\) 6.32828 3.65363i 0.492656 0.284435i
\(166\) 0.427273 0.569041i 0.0331628 0.0441662i
\(167\) −2.50406 −0.193770 −0.0968848 0.995296i \(-0.530888\pi\)
−0.0968848 + 0.995296i \(0.530888\pi\)
\(168\) −18.5709 6.37581i −1.43278 0.491904i
\(169\) −6.72971 −0.517670
\(170\) −5.67004 + 7.55134i −0.434872 + 0.579161i
\(171\) 13.8071 7.97153i 1.05585 0.609598i
\(172\) 0 0
\(173\) 2.71682 4.70568i 0.206556 0.357766i −0.744071 0.668100i \(-0.767108\pi\)
0.950627 + 0.310334i \(0.100441\pi\)
\(174\) −2.07852 + 17.1719i −0.157572 + 1.30180i
\(175\) 1.79761 0.0551216i 0.135887 0.00416680i
\(176\) 4.74934 + 2.48357i 0.357995 + 0.187206i
\(177\) −9.53146 + 16.5090i −0.716428 + 1.24089i
\(178\) 0.960963 + 2.25312i 0.0720272 + 0.168879i
\(179\) −1.75915 3.04694i −0.131485 0.227739i 0.792764 0.609529i \(-0.208641\pi\)
−0.924249 + 0.381790i \(0.875308\pi\)
\(180\) 11.1773 11.6543i 0.833110 0.868662i
\(181\) −22.1981 −1.64997 −0.824985 0.565154i \(-0.808817\pi\)
−0.824985 + 0.565154i \(0.808817\pi\)
\(182\) −8.50150 + 3.93811i −0.630173 + 0.291912i
\(183\) 13.4980i 0.997801i
\(184\) 14.0266 11.4786i 1.03405 0.846216i
\(185\) 11.4356 6.60233i 0.840760 0.485413i
\(186\) −6.46046 15.1475i −0.473704 1.11067i
\(187\) 3.72770 + 2.15219i 0.272596 + 0.157383i
\(188\) −2.19857 0.540152i −0.160347 0.0393946i
\(189\) 5.40907 + 2.90562i 0.393452 + 0.211353i
\(190\) 11.9770 + 1.44972i 0.868905 + 0.105174i
\(191\) −1.13615 0.655958i −0.0822091 0.0474635i 0.458332 0.888781i \(-0.348447\pi\)
−0.540541 + 0.841318i \(0.681780\pi\)
\(192\) 20.5758 + 4.15241i 1.48493 + 0.299674i
\(193\) 5.64697 + 9.78084i 0.406478 + 0.704040i 0.994492 0.104810i \(-0.0334235\pi\)
−0.588014 + 0.808851i \(0.700090\pi\)
\(194\) 14.6254 19.4780i 1.05004 1.39844i
\(195\) 13.6563i 0.977950i
\(196\) 9.05329 10.6789i 0.646663 0.762776i
\(197\) 5.92149i 0.421889i 0.977498 + 0.210944i \(0.0676539\pi\)
−0.977498 + 0.210944i \(0.932346\pi\)
\(198\) −5.88603 4.41962i −0.418302 0.314089i
\(199\) −9.30560 16.1178i −0.659657 1.14256i −0.980704 0.195496i \(-0.937368\pi\)
0.321048 0.947063i \(-0.395965\pi\)
\(200\) −1.89739 + 0.310546i −0.134166 + 0.0219589i
\(201\) −17.8713 10.3180i −1.26055 0.727777i
\(202\) 0.208591 1.72330i 0.0146764 0.121251i
\(203\) −10.8649 5.83634i −0.762563 0.409631i
\(204\) 16.3713 + 4.02216i 1.14622 + 0.281607i
\(205\) 9.99164 + 5.76868i 0.697847 + 0.402902i
\(206\) −19.8457 + 8.46426i −1.38272 + 0.589733i
\(207\) −21.5570 + 12.4460i −1.49832 + 0.865054i
\(208\) 8.45758 5.36601i 0.586427 0.372066i
\(209\) 5.49925i 0.380391i
\(210\) 8.57696 + 18.5158i 0.591866 + 1.27771i
\(211\) 5.72971 0.394449 0.197225 0.980358i \(-0.436807\pi\)
0.197225 + 0.980358i \(0.436807\pi\)
\(212\) −12.3934 11.8861i −0.851180 0.816344i
\(213\) 6.94200 + 12.0239i 0.475658 + 0.823864i
\(214\) −14.4508 + 6.16332i −0.987838 + 0.421316i
\(215\) 0 0
\(216\) −6.14009 2.32073i −0.417780 0.157906i
\(217\) 11.7362 0.359875i 0.796704 0.0244299i
\(218\) −17.6882 2.14101i −1.19800 0.145008i
\(219\) −0.727697 + 1.26041i −0.0491732 + 0.0851704i
\(220\) −1.55366 5.34885i −0.104748 0.360619i
\(221\) 6.96658 4.02216i 0.468623 0.270560i
\(222\) −18.8510 14.1545i −1.26519 0.949989i
\(223\) 20.8668 1.39734 0.698672 0.715442i \(-0.253775\pi\)
0.698672 + 0.715442i \(0.253775\pi\)
\(224\) −8.09693 + 12.5873i −0.540999 + 0.841023i
\(225\) 2.64049 0.176033
\(226\) 22.6892 + 17.0365i 1.50926 + 1.13325i
\(227\) 14.2775 8.24309i 0.947628 0.547113i 0.0552847 0.998471i \(-0.482393\pi\)
0.892343 + 0.451357i \(0.149060\pi\)
\(228\) −6.00773 20.6831i −0.397872 1.36977i
\(229\) 4.24976 7.36079i 0.280832 0.486415i −0.690758 0.723086i \(-0.742723\pi\)
0.971590 + 0.236671i \(0.0760564\pi\)
\(230\) −18.6997 2.26345i −1.23302 0.149247i
\(231\) 7.90895 4.89542i 0.520371 0.322095i
\(232\) 12.3332 + 4.66151i 0.809715 + 0.306043i
\(233\) −2.23751 + 3.87548i −0.146584 + 0.253891i −0.929963 0.367653i \(-0.880161\pi\)
0.783379 + 0.621545i \(0.213495\pi\)
\(234\) −12.6532 + 5.39664i −0.827167 + 0.352789i
\(235\) 1.17642 + 2.03762i 0.0767410 + 0.132919i
\(236\) 10.4870 + 10.0578i 0.682649 + 0.654710i
\(237\) −15.9625 −1.03688
\(238\) −6.91940 + 9.82880i −0.448518 + 0.637107i
\(239\) 24.5675i 1.58914i 0.607171 + 0.794571i \(0.292304\pi\)
−0.607171 + 0.794571i \(0.707696\pi\)
\(240\) −11.6869 18.4201i −0.754383 1.18901i
\(241\) −5.02498 + 2.90117i −0.323687 + 0.186881i −0.653035 0.757328i \(-0.726505\pi\)
0.329348 + 0.944209i \(0.393171\pi\)
\(242\) 11.9739 5.10690i 0.769710 0.328284i
\(243\) −18.6731 10.7809i −1.19788 0.691596i
\(244\) 9.99164 + 2.45478i 0.639649 + 0.157151i
\(245\) −14.5223 + 0.891454i −0.927796 + 0.0569529i
\(246\) 2.47502 20.4477i 0.157802 1.30370i
\(247\) −8.90047 5.13869i −0.566323 0.326967i
\(248\) −12.3876 + 2.02748i −0.786612 + 0.128745i
\(249\) 0.660123 + 1.14337i 0.0418336 + 0.0724579i
\(250\) 13.3508 + 10.0247i 0.844381 + 0.634016i
\(251\) 18.8010i 1.18671i 0.804942 + 0.593353i \(0.202196\pi\)
−0.804942 + 0.593353i \(0.797804\pi\)
\(252\) 13.7663 15.2639i 0.867196 0.961536i
\(253\) 8.58598i 0.539796i
\(254\) 12.4100 16.5276i 0.778672 1.03703i
\(255\) −8.76002 15.1728i −0.548574 0.950157i
\(256\) 6.81571 14.4757i 0.425982 0.904732i
\(257\) 10.9106 + 6.29923i 0.680584 + 0.392935i 0.800075 0.599900i \(-0.204793\pi\)
−0.119491 + 0.992835i \(0.538126\pi\)
\(258\) 0 0
\(259\) 14.2919 8.84631i 0.888058 0.549683i
\(260\) −10.1088 2.48357i −0.626924 0.154024i
\(261\) −15.6816 9.05379i −0.970668 0.560415i
\(262\) −3.37766 7.91942i −0.208672 0.489264i
\(263\) −4.27292 + 2.46697i −0.263479 + 0.152120i −0.625921 0.779887i \(-0.715277\pi\)
0.362441 + 0.932007i \(0.381943\pi\)
\(264\) −7.69532 + 6.29747i −0.473614 + 0.387582i
\(265\) 17.8461i 1.09628i
\(266\) 15.2950 + 1.37722i 0.937795 + 0.0844426i
\(267\) −4.54461 −0.278125
\(268\) −10.8878 + 11.3525i −0.665081 + 0.693462i
\(269\) 13.1502 + 22.7769i 0.801783 + 1.38873i 0.918441 + 0.395558i \(0.129449\pi\)
−0.116658 + 0.993172i \(0.537218\pi\)
\(270\) 2.67624 + 6.27485i 0.162871 + 0.381875i
\(271\) −14.0490 + 24.3336i −0.853418 + 1.47816i 0.0246868 + 0.999695i \(0.492141\pi\)
−0.878105 + 0.478468i \(0.841192\pi\)
\(272\) 5.95465 11.3871i 0.361054 0.690444i
\(273\) −0.532782 17.3750i −0.0322454 1.05158i
\(274\) 2.37467 19.6186i 0.143459 1.18520i
\(275\) 0.455393 0.788764i 0.0274612 0.0475643i
\(276\) 9.37988 + 32.2925i 0.564602 + 1.94378i
\(277\) 23.3982 13.5090i 1.40586 0.811675i 0.410876 0.911691i \(-0.365223\pi\)
0.994986 + 0.100017i \(0.0318897\pi\)
\(278\) −0.427273 + 0.569041i −0.0256261 + 0.0341288i
\(279\) 17.2391 1.03208
\(280\) 15.2658 2.98162i 0.912304 0.178186i
\(281\) −20.0629 −1.19685 −0.598426 0.801178i \(-0.704207\pi\)
−0.598426 + 0.801178i \(0.704207\pi\)
\(282\) 2.52208 3.35890i 0.150188 0.200020i
\(283\) −4.75248 + 2.74385i −0.282506 + 0.163105i −0.634557 0.772876i \(-0.718817\pi\)
0.352052 + 0.935981i \(0.385484\pi\)
\(284\) 10.1630 2.95200i 0.603061 0.175169i
\(285\) −11.1918 + 19.3847i −0.662943 + 1.14825i
\(286\) −0.570165 + 4.71048i −0.0337146 + 0.278537i
\(287\) 12.9375 + 6.94970i 0.763674 + 0.410228i
\(288\) −12.4487 + 18.1076i −0.733548 + 1.06700i
\(289\) −3.33988 + 5.78484i −0.196463 + 0.340284i
\(290\) −5.37560 12.6039i −0.315666 0.740126i
\(291\) 22.5957 + 39.1369i 1.32458 + 2.29425i
\(292\) 0.800653 + 0.767885i 0.0468547 + 0.0449370i
\(293\) −13.6931 −0.799957 −0.399978 0.916525i \(-0.630982\pi\)
−0.399978 + 0.916525i \(0.630982\pi\)
\(294\) 11.6349 + 23.2230i 0.678559 + 1.35440i
\(295\) 15.1011i 0.879218i
\(296\) −13.9059 + 11.3799i −0.808264 + 0.661443i
\(297\) 2.69291 1.55475i 0.156258 0.0902157i
\(298\) 3.05635 + 7.16607i 0.177050 + 0.415119i
\(299\) 13.8963 + 8.02304i 0.803644 + 0.463984i
\(300\) 0.851071 3.46410i 0.0491366 0.200000i
\(301\) 0 0
\(302\) 9.88115 + 1.19603i 0.568596 + 0.0688238i
\(303\) 2.78914 + 1.61031i 0.160232 + 0.0925099i
\(304\) −16.4028 + 0.685643i −0.940768 + 0.0393243i
\(305\) −5.34636 9.26016i −0.306131 0.530235i
\(306\) −10.5966 + 14.1125i −0.605765 + 0.806756i
\(307\) 24.4197i 1.39371i −0.717213 0.696854i \(-0.754583\pi\)
0.717213 0.696854i \(-0.245417\pi\)
\(308\) −2.18540 6.74474i −0.124525 0.384317i
\(309\) 40.0294i 2.27719i
\(310\) 10.4318 + 7.83290i 0.592489 + 0.444879i
\(311\) −8.61539 14.9223i −0.488534 0.846165i 0.511379 0.859355i \(-0.329135\pi\)
−0.999913 + 0.0131898i \(0.995801\pi\)
\(312\) 3.00160 + 18.3394i 0.169932 + 1.03826i
\(313\) 15.0446 + 8.68601i 0.850371 + 0.490962i 0.860776 0.508984i \(-0.169979\pi\)
−0.0104047 + 0.999946i \(0.503312\pi\)
\(314\) 2.43174 20.0901i 0.137231 1.13375i
\(315\) −21.3517 + 0.654723i −1.20303 + 0.0368894i
\(316\) −2.90298 + 11.8160i −0.163305 + 0.664700i
\(317\) 16.7863 + 9.69155i 0.942810 + 0.544332i 0.890840 0.454317i \(-0.150117\pi\)
0.0519701 + 0.998649i \(0.483450\pi\)
\(318\) 29.3055 12.4989i 1.64337 0.700903i
\(319\) −5.40907 + 3.12293i −0.302850 + 0.174850i
\(320\) −15.7605 + 5.30106i −0.881041 + 0.296338i
\(321\) 29.1477i 1.62687i
\(322\) −23.8801 2.15025i −1.33078 0.119829i
\(323\) −13.1851 −0.733639
\(324\) −7.70295 + 8.03166i −0.427942 + 0.446203i
\(325\) −0.851071 1.47410i −0.0472089 0.0817682i
\(326\) −10.8146 + 4.61247i −0.598967 + 0.255461i
\(327\) 16.5285 28.6282i 0.914029 1.58314i
\(328\) −14.6859 5.55076i −0.810894 0.306489i
\(329\) 1.57625 + 2.54657i 0.0869018 + 0.140397i
\(330\) 10.2592 + 1.24179i 0.564748 + 0.0683580i
\(331\) 10.4008 18.0147i 0.571678 0.990176i −0.424715 0.905327i \(-0.639626\pi\)
0.996394 0.0848492i \(-0.0270409\pi\)
\(332\) 0.966408 0.280709i 0.0530385 0.0154059i
\(333\) 21.3716 12.3389i 1.17116 0.676167i
\(334\) −2.83184 2.12633i −0.154951 0.116348i
\(335\) 16.3473 0.893146
\(336\) −15.5879 22.9800i −0.850388 1.25366i
\(337\) 10.3332 0.562886 0.281443 0.959578i \(-0.409187\pi\)
0.281443 + 0.959578i \(0.409187\pi\)
\(338\) −7.61063 5.71456i −0.413964 0.310831i
\(339\) −45.5890 + 26.3208i −2.47606 + 1.42955i
\(340\) −12.8245 + 3.72508i −0.695506 + 0.202021i
\(341\) 2.97315 5.14965i 0.161005 0.278869i
\(342\) 22.3835 + 2.70934i 1.21036 + 0.146504i
\(343\) −18.4420 + 1.70077i −0.995774 + 0.0918328i
\(344\) 0 0
\(345\) 17.4737 30.2653i 0.940752 1.62943i
\(346\) 7.06830 3.01465i 0.379994 0.162069i
\(347\) −16.8169 29.1277i −0.902779 1.56366i −0.823871 0.566777i \(-0.808190\pi\)
−0.0789080 0.996882i \(-0.525143\pi\)
\(348\) −16.9322 + 17.6548i −0.907662 + 0.946395i
\(349\) −13.3546 −0.714858 −0.357429 0.933940i \(-0.616347\pi\)
−0.357429 + 0.933940i \(0.616347\pi\)
\(350\) 2.07973 + 1.46411i 0.111166 + 0.0782602i
\(351\) 5.81125i 0.310182i
\(352\) 3.26210 + 6.84159i 0.173870 + 0.364658i
\(353\) 6.80175 3.92699i 0.362021 0.209013i −0.307946 0.951404i \(-0.599642\pi\)
0.669967 + 0.742391i \(0.266308\pi\)
\(354\) −24.7978 + 10.5763i −1.31799 + 0.562126i
\(355\) −9.52498 5.49925i −0.505533 0.291870i
\(356\) −0.826492 + 3.36406i −0.0438040 + 0.178295i
\(357\) −11.7373 18.9626i −0.621206 1.00361i
\(358\) 0.597895 4.93958i 0.0315997 0.261065i
\(359\) −0.140453 0.0810905i −0.00741282 0.00427979i 0.496289 0.868157i \(-0.334696\pi\)
−0.503702 + 0.863878i \(0.668029\pi\)
\(360\) 22.5368 3.68860i 1.18779 0.194406i
\(361\) −1.07739 1.86609i −0.0567047 0.0982154i
\(362\) −25.1038 18.8496i −1.31943 0.990713i
\(363\) 24.1516i 1.26763i
\(364\) −12.9584 2.76547i −0.679205 0.144950i
\(365\) 1.15292i 0.0603466i
\(366\) −11.4619 + 15.2649i −0.599122 + 0.797909i
\(367\) 10.1321 + 17.5493i 0.528891 + 0.916066i 0.999432 + 0.0336883i \(0.0107254\pi\)
−0.470541 + 0.882378i \(0.655941\pi\)
\(368\) 25.6098 1.07050i 1.33500 0.0558034i
\(369\) 18.6731 + 10.7809i 0.972082 + 0.561232i
\(370\) 18.5389 + 2.24398i 0.963791 + 0.116659i
\(371\) 0.696241 + 22.7057i 0.0361470 + 1.17882i
\(372\) 5.55643 22.6163i 0.288088 1.17260i
\(373\) −5.78269 3.33864i −0.299416 0.172868i 0.342764 0.939421i \(-0.388637\pi\)
−0.642181 + 0.766553i \(0.721970\pi\)
\(374\) 2.38812 + 5.59930i 0.123487 + 0.289533i
\(375\) −26.8256 + 15.4878i −1.38527 + 0.799786i
\(376\) −2.02770 2.47778i −0.104570 0.127782i
\(377\) 11.6727i 0.601174i
\(378\) 3.64980 + 7.87911i 0.187725 + 0.405257i
\(379\) −4.60350 −0.236466 −0.118233 0.992986i \(-0.537723\pi\)
−0.118233 + 0.992986i \(0.537723\pi\)
\(380\) 12.3138 + 11.8098i 0.631685 + 0.605832i
\(381\) 19.1730 + 33.2086i 0.982264 + 1.70133i
\(382\) −0.727867 1.70659i −0.0372409 0.0873169i
\(383\) 5.71038 9.89066i 0.291787 0.505389i −0.682446 0.730936i \(-0.739084\pi\)
0.974232 + 0.225547i \(0.0724170\pi\)
\(384\) 19.7432 + 22.1680i 1.00752 + 1.13126i
\(385\) −3.48685 + 6.49107i −0.177706 + 0.330815i
\(386\) −1.91928 + 15.8563i −0.0976885 + 0.807065i
\(387\) 0 0
\(388\) 33.0797 9.60852i 1.67937 0.487799i
\(389\) −26.0307 + 15.0288i −1.31981 + 0.761991i −0.983697 0.179832i \(-0.942445\pi\)
−0.336109 + 0.941823i \(0.609111\pi\)
\(390\) 11.5963 15.4440i 0.587203 0.782035i
\(391\) 20.5859 1.04107
\(392\) 19.3064 4.38910i 0.975119 0.221683i
\(393\) 15.9737 0.805766
\(394\) −5.02826 + 6.69662i −0.253320 + 0.337371i
\(395\) 10.9509 6.32252i 0.551001 0.318120i
\(396\) −2.90359 9.99630i −0.145911 0.502333i
\(397\) −2.17124 + 3.76069i −0.108971 + 0.188744i −0.915354 0.402651i \(-0.868089\pi\)
0.806383 + 0.591394i \(0.201422\pi\)
\(398\) 3.16276 26.1295i 0.158535 1.30975i
\(399\) −13.4830 + 25.0998i −0.674997 + 1.25656i
\(400\) −2.40946 1.25998i −0.120473 0.0629989i
\(401\) 9.98685 17.2977i 0.498719 0.863807i −0.501279 0.865285i \(-0.667137\pi\)
0.999999 + 0.00147805i \(0.000470479\pi\)
\(402\) −11.4491 26.8442i −0.571030 1.33887i
\(403\) −5.55643 9.62402i −0.276786 0.479407i
\(404\) 1.69924 1.77175i 0.0845404 0.0881480i
\(405\) 11.5654 0.574688
\(406\) −7.33112 15.8263i −0.363837 0.785444i
\(407\) 8.51212i 0.421930i
\(408\) 15.0989 + 18.4504i 0.747508 + 0.913433i
\(409\) −26.4356 + 15.2626i −1.30715 + 0.754686i −0.981620 0.190844i \(-0.938878\pi\)
−0.325534 + 0.945530i \(0.605544\pi\)
\(410\) 6.40106 + 15.0082i 0.316126 + 0.741205i
\(411\) 31.7525 + 18.3323i 1.56623 + 0.904266i
\(412\) −29.6310 7.27983i −1.45981 0.358652i
\(413\) −0.589147 19.2131i −0.0289900 0.945417i
\(414\) −34.9474 4.23009i −1.71757 0.207898i
\(415\) −0.905741 0.522930i −0.0444611 0.0256696i
\(416\) 14.1213 + 1.11336i 0.692351 + 0.0545867i
\(417\) −0.660123 1.14337i −0.0323264 0.0559909i
\(418\) 4.66971 6.21911i 0.228403 0.304186i
\(419\) 2.08070i 0.101649i −0.998708 0.0508245i \(-0.983815\pi\)
0.998708 0.0508245i \(-0.0161849\pi\)
\(420\) −6.02304 + 28.2226i −0.293894 + 1.37712i
\(421\) 30.4039i 1.48180i 0.671618 + 0.740898i \(0.265600\pi\)
−0.671618 + 0.740898i \(0.734400\pi\)
\(422\) 6.47973 + 4.86540i 0.315428 + 0.236844i
\(423\) 2.19857 + 3.80804i 0.106898 + 0.185153i
\(424\) −3.92251 23.9659i −0.190494 1.16389i
\(425\) −1.89116 1.09186i −0.0917345 0.0529630i
\(426\) −2.35943 + 19.4927i −0.114315 + 0.944423i
\(427\) −7.16346 11.5732i −0.346664 0.560064i
\(428\) −21.5761 5.30087i −1.04292 0.256227i
\(429\) −7.62386 4.40164i −0.368084 0.212513i
\(430\) 0 0
\(431\) 2.32280 1.34107i 0.111885 0.0645970i −0.443013 0.896515i \(-0.646090\pi\)
0.554898 + 0.831918i \(0.312757\pi\)
\(432\) −4.97317 7.83840i −0.239272 0.377125i
\(433\) 29.4673i 1.41611i 0.706158 + 0.708054i \(0.250427\pi\)
−0.706158 + 0.708054i \(0.749573\pi\)
\(434\) 13.5781 + 9.55885i 0.651767 + 0.458839i
\(435\) 25.4224 1.21891
\(436\) −18.1856 17.4413i −0.870932 0.835288i
\(437\) −13.1502 22.7769i −0.629061 1.08957i
\(438\) −1.89323 + 0.807470i −0.0904622 + 0.0385824i
\(439\) −3.77648 + 6.54106i −0.180242 + 0.312188i −0.941963 0.335717i \(-0.891021\pi\)
0.761721 + 0.647905i \(0.224355\pi\)
\(440\) 2.78496 7.36831i 0.132768 0.351271i
\(441\) −27.1403 + 1.66601i −1.29240 + 0.0793339i
\(442\) 11.2939 + 1.36704i 0.537198 + 0.0650234i
\(443\) 3.75915 6.51104i 0.178603 0.309349i −0.762799 0.646635i \(-0.776176\pi\)
0.941402 + 0.337286i \(0.109509\pi\)
\(444\) −9.29919 32.0147i −0.441320 1.51935i
\(445\) 3.11778 1.80005i 0.147797 0.0853306i
\(446\) 23.5983 + 17.7191i 1.11741 + 0.839025i
\(447\) −14.4542 −0.683659
\(448\) −19.8454 + 7.35943i −0.937606 + 0.347700i
\(449\) −14.3332 −0.676426 −0.338213 0.941070i \(-0.609822\pi\)
−0.338213 + 0.941070i \(0.609822\pi\)
\(450\) 2.98614 + 2.24218i 0.140768 + 0.105698i
\(451\) 6.44092 3.71866i 0.303291 0.175105i
\(452\) 11.1926 + 38.5332i 0.526455 + 1.81245i
\(453\) −9.23329 + 15.9925i −0.433818 + 0.751394i
\(454\) 23.1460 + 2.80164i 1.08630 + 0.131487i
\(455\) 7.24749 + 11.7089i 0.339767 + 0.548922i
\(456\) 10.7690 28.4920i 0.504303 1.33426i
\(457\) −6.48037 + 11.2243i −0.303139 + 0.525052i −0.976845 0.213947i \(-0.931368\pi\)
0.673706 + 0.738999i \(0.264701\pi\)
\(458\) 11.0565 4.71563i 0.516636 0.220347i
\(459\) −3.72770 6.45656i −0.173994 0.301366i
\(460\) −19.2255 18.4387i −0.896396 0.859709i
\(461\) 33.3871 1.55499 0.777496 0.628888i \(-0.216490\pi\)
0.777496 + 0.628888i \(0.216490\pi\)
\(462\) 13.1012 + 1.17968i 0.609523 + 0.0548837i
\(463\) 29.7739i 1.38371i −0.722036 0.691855i \(-0.756794\pi\)
0.722036 0.691855i \(-0.243206\pi\)
\(464\) 9.98929 + 15.7445i 0.463741 + 0.730920i
\(465\) −20.9605 + 12.1016i −0.972022 + 0.561197i
\(466\) −5.82129 + 2.48280i −0.269666 + 0.115013i
\(467\) 23.5399 + 13.5908i 1.08930 + 0.628907i 0.933390 0.358865i \(-0.116836\pi\)
0.155909 + 0.987771i \(0.450169\pi\)
\(468\) −18.8921 4.64147i −0.873288 0.214552i
\(469\) 20.7987 0.637765i 0.960393 0.0294492i
\(470\) −0.399837 + 3.30330i −0.0184431 + 0.152370i
\(471\) 32.5156 + 18.7729i 1.49824 + 0.865009i
\(472\) 3.31915 + 20.2795i 0.152776 + 0.933442i
\(473\) 0 0
\(474\) −18.0520 13.5546i −0.829157 0.622585i
\(475\) 2.78991i 0.128010i
\(476\) −16.1713 + 5.23977i −0.741211 + 0.240164i
\(477\) 33.3521i 1.52709i
\(478\) −20.8616 + 27.7835i −0.954189 + 1.27079i
\(479\) −17.2187 29.8237i −0.786744 1.36268i −0.927952 0.372700i \(-0.878432\pi\)
0.141208 0.989980i \(-0.454901\pi\)
\(480\) 2.42482 30.7553i 0.110677 1.40378i
\(481\) −13.7768 7.95402i −0.628167 0.362672i
\(482\) −8.14629 0.986041i −0.371053 0.0449129i
\(483\) 21.0511 39.1884i 0.957858 1.78313i
\(484\) 17.8778 + 4.39227i 0.812628 + 0.199649i
\(485\) −31.0031 17.8996i −1.40778 0.812781i
\(486\) −11.9628 28.0485i −0.542642 1.27230i
\(487\) −6.82613 + 3.94107i −0.309321 + 0.178587i −0.646623 0.762810i \(-0.723819\pi\)
0.337301 + 0.941397i \(0.390486\pi\)
\(488\) 9.21508 + 11.2606i 0.417147 + 0.509741i
\(489\) 21.8134i 0.986436i
\(490\) −17.1803 11.3235i −0.776126 0.511545i
\(491\) −8.06291 −0.363874 −0.181937 0.983310i \(-0.558237\pi\)
−0.181937 + 0.983310i \(0.558237\pi\)
\(492\) 20.1623 21.0226i 0.908985 0.947774i
\(493\) 7.48759 + 12.9689i 0.337224 + 0.584089i
\(494\) −5.70201 13.3692i −0.256546 0.601510i
\(495\) −5.40907 + 9.36878i −0.243120 + 0.421095i
\(496\) −15.7308 8.22609i −0.706333 0.369362i
\(497\) −12.3332 6.62511i −0.553220 0.297177i
\(498\) −0.224361 + 1.85358i −0.0100538 + 0.0830610i
\(499\) 12.0216 20.8221i 0.538163 0.932125i −0.460841 0.887483i \(-0.652452\pi\)
0.999003 0.0446419i \(-0.0142147\pi\)
\(500\) 6.58598 + 22.6738i 0.294534 + 1.01400i
\(501\) 5.68997 3.28511i 0.254209 0.146768i
\(502\) −15.9649 + 21.2620i −0.712549 + 0.948971i
\(503\) −40.8993 −1.82361 −0.911804 0.410626i \(-0.865310\pi\)
−0.911804 + 0.410626i \(0.865310\pi\)
\(504\) 28.5297 5.57226i 1.27082 0.248208i
\(505\) −2.55128 −0.113530
\(506\) −7.29082 + 9.70989i −0.324116 + 0.431657i
\(507\) 15.2919 8.82880i 0.679139 0.392101i
\(508\) 28.0689 8.15308i 1.24536 0.361734i
\(509\) −2.02661 + 3.51019i −0.0898278 + 0.155586i −0.907438 0.420186i \(-0.861965\pi\)
0.817610 + 0.575772i \(0.195298\pi\)
\(510\) 2.97733 24.5975i 0.131838 1.08920i
\(511\) −0.0449795 1.46686i −0.00198978 0.0648902i
\(512\) 20.0000 10.5830i 0.883883 0.467707i
\(513\) −4.76249 + 8.24887i −0.210269 + 0.364197i
\(514\) 6.98978 + 16.3886i 0.308306 + 0.722870i
\(515\) 15.8550 + 27.4617i 0.698656 + 1.21011i
\(516\) 0 0
\(517\) 1.51671 0.0667048
\(518\) 23.6746 + 2.13175i 1.04020 + 0.0936639i
\(519\) 14.2570i 0.625811i
\(520\) −9.32317 11.3926i −0.408848 0.499600i
\(521\) 27.1927 15.6997i 1.19133 0.687817i 0.232725 0.972543i \(-0.425236\pi\)
0.958609 + 0.284725i \(0.0919024\pi\)
\(522\) −10.0463 23.5550i −0.439715 1.03098i
\(523\) −11.7132 6.76263i −0.512183 0.295709i 0.221547 0.975150i \(-0.428889\pi\)
−0.733731 + 0.679440i \(0.762223\pi\)
\(524\) 2.90501 11.8242i 0.126906 0.516544i
\(525\) −4.01241 + 2.48357i −0.175116 + 0.108392i
\(526\) −6.92708 0.838466i −0.302035 0.0365588i
\(527\) −12.3469 7.12848i −0.537839 0.310522i
\(528\) −14.0502 + 0.587301i −0.611455 + 0.0255590i
\(529\) 9.03146 + 15.6429i 0.392672 + 0.680128i
\(530\) −15.1541 + 20.1822i −0.658253 + 0.876659i
\(531\) 28.2219i 1.22473i
\(532\) 16.1276 + 14.5453i 0.699222 + 0.630618i
\(533\) 13.8994i 0.602050i
\(534\) −5.13950 3.85907i −0.222408 0.166998i
\(535\) 11.5450 + 19.9965i 0.499133 + 0.864524i
\(536\) −21.9531 + 3.59306i −0.948228 + 0.155197i
\(537\) 7.99465 + 4.61572i 0.344995 + 0.199183i
\(538\) −4.46946 + 36.9249i −0.192692 + 1.59195i
\(539\) −4.18309 + 8.39464i −0.180178 + 0.361583i
\(540\) −2.30175 + 9.36878i −0.0990515 + 0.403168i
\(541\) −27.1543 15.6775i −1.16745 0.674030i −0.214375 0.976751i \(-0.568771\pi\)
−0.953079 + 0.302722i \(0.902105\pi\)
\(542\) −36.5511 + 15.5891i −1.57000 + 0.669611i
\(543\) 50.4408 29.1220i 2.16462 1.24974i
\(544\) 16.4035 7.82126i 0.703295 0.335334i
\(545\) 26.1868i 1.12172i
\(546\) 14.1515 20.1018i 0.605629 0.860278i
\(547\) −44.7293 −1.91249 −0.956244 0.292571i \(-0.905489\pi\)
−0.956244 + 0.292571i \(0.905489\pi\)
\(548\) 19.3447 20.1702i 0.826366 0.861630i
\(549\) −9.99164 17.3060i −0.426433 0.738604i
\(550\) 1.18479 0.505315i 0.0505195 0.0215467i
\(551\) 9.56611 16.5690i 0.407530 0.705863i
\(552\) −16.8136 + 44.4846i −0.715634 + 1.89339i
\(553\) 13.6862 8.47140i 0.581998 0.360240i
\(554\) 37.9322 + 4.59138i 1.61159 + 0.195069i
\(555\) −17.3234 + 30.0050i −0.735337 + 1.27364i
\(556\) −0.966408 + 0.280709i −0.0409848 + 0.0119047i
\(557\) 10.5345 6.08208i 0.446360 0.257706i −0.259932 0.965627i \(-0.583700\pi\)
0.706292 + 0.707921i \(0.250367\pi\)
\(558\) 19.4958 + 14.6387i 0.825321 + 0.619705i
\(559\) 0 0
\(560\) 19.7959 + 9.59107i 0.836531 + 0.405297i
\(561\) −11.2939 −0.476831
\(562\) −22.6892 17.0365i −0.957085 0.718641i
\(563\) −31.4311 + 18.1468i −1.32466 + 0.764794i −0.984469 0.175561i \(-0.943826\pi\)
−0.340194 + 0.940355i \(0.610493\pi\)
\(564\) 5.70445 1.65695i 0.240201 0.0697702i
\(565\) 20.8506 36.1143i 0.877191 1.51934i
\(566\) −7.70453 0.932570i −0.323846 0.0391988i
\(567\) 14.7147 0.451207i 0.617958 0.0189489i
\(568\) 14.0000 + 5.29150i 0.587427 + 0.222027i
\(569\) −6.01830 + 10.4240i −0.252300 + 0.436997i −0.964159 0.265326i \(-0.914520\pi\)
0.711858 + 0.702323i \(0.247854\pi\)
\(570\) −29.1174 + 12.4186i −1.21959 + 0.520160i
\(571\) −4.10570 7.11128i −0.171818 0.297598i 0.767237 0.641363i \(-0.221631\pi\)
−0.939056 + 0.343765i \(0.888298\pi\)
\(572\) −4.64473 + 4.84293i −0.194206 + 0.202493i
\(573\) 3.44225 0.143802
\(574\) 8.72962 + 18.8453i 0.364367 + 0.786588i
\(575\) 4.35589i 0.181653i
\(576\) −29.4544 + 9.90699i −1.22727 + 0.412791i
\(577\) 14.5500 8.40042i 0.605722 0.349714i −0.165567 0.986199i \(-0.552945\pi\)
0.771289 + 0.636485i \(0.219612\pi\)
\(578\) −8.68929 + 3.70601i −0.361427 + 0.154150i
\(579\) −25.6633 14.8167i −1.06653 0.615761i
\(580\) 4.62338 18.8185i 0.191975 0.781395i
\(581\) −1.17278 0.629989i −0.0486551 0.0261364i
\(582\) −7.67975 + 63.4472i −0.318336 + 2.62997i
\(583\) 9.96289 + 5.75208i 0.412621 + 0.238227i
\(584\) 0.253407 + 1.54828i 0.0104861 + 0.0640682i
\(585\) 10.1088 + 17.5090i 0.417949 + 0.723909i
\(586\) −15.4855 11.6275i −0.639700 0.480328i
\(587\) 25.4261i 1.04945i 0.851273 + 0.524723i \(0.175831\pi\)
−0.851273 + 0.524723i \(0.824169\pi\)
\(588\) −6.56206 + 36.1427i −0.270615 + 1.49050i
\(589\) 18.2146i 0.750521i
\(590\) 12.8231 17.0778i 0.527920 0.703083i
\(591\) −7.76849 13.4554i −0.319553 0.553482i
\(592\) −25.3895 + 1.06129i −1.04350 + 0.0436186i
\(593\) −19.0694 11.0097i −0.783086 0.452115i 0.0544368 0.998517i \(-0.482664\pi\)
−0.837523 + 0.546402i \(0.815997\pi\)
\(594\) 4.36563 + 0.528423i 0.179124 + 0.0216815i
\(595\) 15.5631 + 8.36013i 0.638025 + 0.342732i
\(596\) −2.62867 + 10.6994i −0.107674 + 0.438266i
\(597\) 42.2903 + 24.4163i 1.73083 + 0.999294i
\(598\) 8.90256 + 20.8734i 0.364053 + 0.853576i
\(599\) −0.500607 + 0.289026i −0.0204543 + 0.0118093i −0.510192 0.860060i \(-0.670426\pi\)
0.489738 + 0.871870i \(0.337092\pi\)
\(600\) 3.90403 3.19487i 0.159381 0.130430i
\(601\) 27.3186i 1.11435i −0.830395 0.557175i \(-0.811885\pi\)
0.830395 0.557175i \(-0.188115\pi\)
\(602\) 0 0
\(603\) 30.5509 1.24413
\(604\) 10.1590 + 9.74321i 0.413363 + 0.396446i
\(605\) −9.56611 16.5690i −0.388918 0.673625i
\(606\) 1.78684 + 4.18951i 0.0725853 + 0.170187i
\(607\) 5.99963 10.3917i 0.243518 0.421785i −0.718196 0.695841i \(-0.755032\pi\)
0.961714 + 0.274056i \(0.0883653\pi\)
\(608\) −19.1322 13.1532i −0.775914 0.533431i
\(609\) 32.3450 0.991819i 1.31069 0.0401905i
\(610\) 1.81710 15.0122i 0.0735723 0.607826i
\(611\) 1.41727 2.45478i 0.0573364 0.0993096i
\(612\) −23.9673 + 6.96170i −0.968821 + 0.281410i
\(613\) −3.96050 + 2.28659i −0.159963 + 0.0923547i −0.577845 0.816147i \(-0.696106\pi\)
0.417882 + 0.908501i \(0.362773\pi\)
\(614\) 20.7361 27.6163i 0.836841 1.11450i
\(615\) −30.2721 −1.22069
\(616\) 3.25585 9.48338i 0.131182 0.382096i
\(617\) 5.12621 0.206373 0.103187 0.994662i \(-0.467096\pi\)
0.103187 + 0.994662i \(0.467096\pi\)
\(618\) 33.9911 45.2693i 1.36732 1.82100i
\(619\) 39.5293 22.8222i 1.58881 0.917303i 0.595312 0.803495i \(-0.297028\pi\)
0.993503 0.113808i \(-0.0363049\pi\)
\(620\) 5.14604 + 17.7165i 0.206670 + 0.711511i
\(621\) 7.43567 12.8790i 0.298383 0.516815i
\(622\) 2.92817 24.1914i 0.117409 0.969988i
\(623\) 3.89654 2.41185i 0.156111 0.0966286i
\(624\) −12.1784 + 23.2888i −0.487527 + 0.932299i
\(625\) 10.5696 18.3071i 0.422783 0.732282i
\(626\) 9.63820 + 22.5982i 0.385220 + 0.903206i
\(627\) 7.21455 + 12.4960i 0.288121 + 0.499041i
\(628\) 19.8097 20.6550i 0.790491 0.824224i
\(629\) −20.4088 −0.813753
\(630\) −24.7026 17.3905i −0.984176 0.692852i
\(631\) 17.1345i 0.682113i 0.940043 + 0.341057i \(0.110785\pi\)
−0.940043 + 0.341057i \(0.889215\pi\)
\(632\) −13.3166 + 10.8976i −0.529704 + 0.433484i
\(633\) −13.0196 + 7.51689i −0.517484 + 0.298769i
\(634\) 10.7540 + 25.2143i 0.427095 + 1.00139i
\(635\) −26.3069 15.1883i −1.04396 0.602729i
\(636\) 43.7551 + 10.7499i 1.73500 + 0.426261i
\(637\) 9.67781 + 14.6145i 0.383449 + 0.579049i
\(638\) −8.76897 1.06141i −0.347167 0.0420217i
\(639\) −17.8009 10.2774i −0.704194 0.406567i
\(640\) −22.3250 7.38815i −0.882474 0.292042i
\(641\) −4.02498 6.97146i −0.158977 0.275356i 0.775523 0.631319i \(-0.217486\pi\)
−0.934500 + 0.355963i \(0.884153\pi\)
\(642\) 24.7509 32.9632i 0.976840 1.30095i
\(643\) 22.2710i 0.878283i 0.898418 + 0.439142i \(0.144717\pi\)
−0.898418 + 0.439142i \(0.855283\pi\)
\(644\) −25.1801 22.7096i −0.992235 0.894882i
\(645\) 0 0
\(646\) −14.9110 11.1962i −0.586667 0.440508i
\(647\) 18.9125 + 32.7574i 0.743528 + 1.28783i 0.950879 + 0.309561i \(0.100182\pi\)
−0.207352 + 0.978266i \(0.566484\pi\)
\(648\) −15.5314 + 2.54202i −0.610131 + 0.0998601i
\(649\) −8.43042 4.86730i −0.330923 0.191058i
\(650\) 0.289259 2.38975i 0.0113457 0.0937337i
\(651\) −26.1960 + 16.2146i −1.02670 + 0.635501i
\(652\) −16.1470 3.96704i −0.632364 0.155361i
\(653\) 25.6130 + 14.7877i 1.00231 + 0.578686i 0.908932 0.416944i \(-0.136899\pi\)
0.0933818 + 0.995630i \(0.470232\pi\)
\(654\) 43.0019 18.3404i 1.68151 0.717168i
\(655\) −10.9586 + 6.32694i −0.428188 + 0.247214i
\(656\) −11.8949 18.7480i −0.464417 0.731985i
\(657\) 2.15466i 0.0840611i
\(658\) −0.379841 + 4.21840i −0.0148077 + 0.164450i
\(659\) 18.3961 0.716611 0.358305 0.933604i \(-0.383355\pi\)
0.358305 + 0.933604i \(0.383355\pi\)
\(660\) 10.5476 + 10.1159i 0.410566 + 0.393762i
\(661\) 5.92732 + 10.2664i 0.230546 + 0.399317i 0.957969 0.286872i \(-0.0926154\pi\)
−0.727423 + 0.686189i \(0.759282\pi\)
\(662\) 27.0595 11.5410i 1.05170 0.448552i
\(663\) −10.5535 + 18.2791i −0.409862 + 0.709902i
\(664\) 1.33128 + 0.503175i 0.0516635 + 0.0195270i
\(665\) −0.691771 22.5599i −0.0268257 0.874836i
\(666\) 34.6468 + 4.19370i 1.34254 + 0.162503i
\(667\) −14.9356 + 25.8692i −0.578308 + 1.00166i
\(668\) −1.39695 4.80934i −0.0540496 0.186079i
\(669\) −47.4157 + 27.3755i −1.83320 + 1.05840i
\(670\) 18.4871 + 13.8813i 0.714220 + 0.536283i
\(671\) −6.89285 −0.266095
\(672\) 1.88524 39.2246i 0.0727246 1.51312i
\(673\) 10.8738 0.419154 0.209577 0.977792i \(-0.432791\pi\)
0.209577 + 0.977792i \(0.432791\pi\)
\(674\) 11.6858 + 8.77448i 0.450121 + 0.337980i
\(675\) −1.36618 + 0.788764i −0.0525843 + 0.0303595i
\(676\) −3.75433 12.9252i −0.144397 0.497123i
\(677\) −22.7163 + 39.3458i −0.873060 + 1.51218i −0.0142443 + 0.999899i \(0.504534\pi\)
−0.858815 + 0.512285i \(0.828799\pi\)
\(678\) −73.9071 8.94584i −2.83839 0.343563i
\(679\) −40.1437 21.5642i −1.54057 0.827559i
\(680\) −17.6664 6.67728i −0.677476 0.256062i
\(681\) −21.6285 + 37.4616i −0.828805 + 1.43553i
\(682\) 7.73518 3.29908i 0.296196 0.126328i
\(683\) −12.3693 21.4243i −0.473299 0.819778i 0.526234 0.850340i \(-0.323604\pi\)
−0.999533 + 0.0305620i \(0.990270\pi\)
\(684\) 23.0129 + 22.0710i 0.879920 + 0.843908i
\(685\) −29.0446 −1.10974
\(686\) −22.3003 13.7367i −0.851429 0.524470i
\(687\) 22.3013i 0.850847i
\(688\) 0 0
\(689\) 18.6193 10.7499i 0.709340 0.409538i
\(690\) 45.4610 19.3892i 1.73067 0.738136i
\(691\) −4.10457 2.36977i −0.156145 0.0901504i 0.419892 0.907574i \(-0.362068\pi\)
−0.576037 + 0.817424i \(0.695401\pi\)
\(692\) 10.5535 + 2.59280i 0.401182 + 0.0985636i
\(693\) −6.51647 + 12.1310i −0.247540 + 0.460817i
\(694\) 5.71568 47.2207i 0.216964 1.79247i
\(695\) 0.905741 + 0.522930i 0.0343567 + 0.0198359i
\(696\) −34.1403 + 5.58774i −1.29408 + 0.211803i
\(697\) −8.91594 15.4429i −0.337715 0.584940i
\(698\) −15.1028 11.3401i −0.571649 0.429231i
\(699\) 11.7417i 0.444112i
\(700\) 1.10871 + 3.42178i 0.0419053 + 0.129331i
\(701\) 39.8121i 1.50368i −0.659345 0.751840i \(-0.729166\pi\)
0.659345 0.751840i \(-0.270834\pi\)
\(702\) 4.93465 6.57195i 0.186246 0.248042i
\(703\) 13.0371 + 22.5809i 0.491704 + 0.851656i
\(704\) −2.12046 + 10.5072i −0.0799177 + 0.396004i
\(705\) −5.34636 3.08672i −0.201355 0.116253i
\(706\) 11.0267 + 1.33469i 0.414996 + 0.0502319i
\(707\) −3.24600 + 0.0995345i −0.122078 + 0.00374338i
\(708\) −37.0248 9.09636i −1.39148 0.341862i
\(709\) 4.97242 + 2.87083i 0.186743 + 0.107816i 0.590457 0.807069i \(-0.298948\pi\)
−0.403714 + 0.914885i \(0.632281\pi\)
\(710\) −6.10210 14.3073i −0.229008 0.536943i
\(711\) 20.4659 11.8160i 0.767529 0.443133i
\(712\) −3.79129 + 3.10260i −0.142085 + 0.116275i
\(713\) 28.4385i 1.06503i
\(714\) 2.82843 31.4117i 0.105851 1.17555i
\(715\) 6.97370 0.260801
\(716\) 4.87062 5.07847i 0.182024 0.189791i
\(717\) −32.2305 55.8249i −1.20367 2.08482i
\(718\) −0.0899800 0.210971i −0.00335802 0.00787338i
\(719\) −7.62804 + 13.2122i −0.284478 + 0.492730i −0.972482 0.232976i \(-0.925154\pi\)
0.688005 + 0.725706i \(0.258487\pi\)
\(720\) 28.6191 + 14.9658i 1.06657 + 0.557741i
\(721\) 21.2438 + 34.3211i 0.791160 + 1.27818i
\(722\) 0.366180 3.02523i 0.0136278 0.112588i
\(723\) 7.61218 13.1847i 0.283100 0.490344i
\(724\) −12.3837 42.6341i −0.460238 1.58448i
\(725\) 2.74416 1.58434i 0.101915 0.0588409i
\(726\) −20.5085 + 27.3131i −0.761141 + 1.01369i
\(727\) 40.8993 1.51687 0.758435 0.651749i \(-0.225964\pi\)
0.758435 + 0.651749i \(0.225964\pi\)
\(728\) −12.3064 14.1312i −0.456104 0.523736i
\(729\) 39.8818 1.47710
\(730\) 0.979006 1.30384i 0.0362346 0.0482572i
\(731\) 0 0
\(732\) −25.9245 + 7.53019i −0.958197 + 0.278324i
\(733\) 12.2037 21.1374i 0.450753 0.780728i −0.547680 0.836688i \(-0.684489\pi\)
0.998433 + 0.0559605i \(0.0178221\pi\)
\(734\) −3.44367 + 28.4502i −0.127108 + 1.05012i
\(735\) 31.8296 21.0777i 1.17405 0.777462i
\(736\) 29.8711 + 20.5360i 1.10106 + 0.756968i
\(737\) 5.26897 9.12612i 0.194085 0.336165i
\(738\) 11.9628 + 28.0485i 0.440355 + 1.03248i
\(739\) 15.3996 + 26.6730i 0.566485 + 0.981181i 0.996910 + 0.0785545i \(0.0250305\pi\)
−0.430425 + 0.902626i \(0.641636\pi\)
\(740\) 19.0602 + 18.2801i 0.700666 + 0.671990i
\(741\) 26.9661 0.990624
\(742\) −18.4932 + 26.2691i −0.678909 + 0.964369i
\(743\) 23.9376i 0.878184i 0.898442 + 0.439092i \(0.144700\pi\)
−0.898442 + 0.439092i \(0.855300\pi\)
\(744\) 25.4885 20.8585i 0.934453 0.764710i
\(745\) 9.91613 5.72508i 0.363299 0.209751i
\(746\) −3.70463 8.68606i −0.135636 0.318019i
\(747\) −1.69271 0.977288i −0.0619331 0.0357571i
\(748\) −2.05394 + 8.36013i −0.0750996 + 0.305677i
\(749\) 15.4689 + 24.9912i 0.565219 + 0.913158i
\(750\) −43.4887 5.26394i −1.58798 0.192212i
\(751\) −11.9543 6.90181i −0.436218 0.251851i 0.265774 0.964035i \(-0.414373\pi\)
−0.701992 + 0.712185i \(0.747706\pi\)
\(752\) −0.189102 4.52395i −0.00689586 0.164972i
\(753\) −24.6653 42.7215i −0.898853 1.55686i
\(754\) −9.91191 + 13.2007i −0.360970 + 0.480740i
\(755\) 14.6287i 0.532392i
\(756\) −2.56301 + 12.0097i −0.0932159 + 0.436790i
\(757\) 2.14156i 0.0778362i 0.999242 + 0.0389181i \(0.0123911\pi\)
−0.999242 + 0.0389181i \(0.987609\pi\)
\(758\) −5.20610 3.90908i −0.189094 0.141984i
\(759\) −11.2641 19.5099i −0.408860 0.708166i
\(760\) 3.89732 + 23.8121i 0.141371 + 0.863755i
\(761\) 36.8321 + 21.2650i 1.33516 + 0.770856i 0.986086 0.166239i \(-0.0531622\pi\)
0.349076 + 0.937094i \(0.386496\pi\)
\(762\) −6.51647 + 53.8365i −0.236067 + 1.95029i
\(763\) 1.02164 + 33.3175i 0.0369859 + 1.20618i
\(764\) 0.626015 2.54806i 0.0226484 0.0921855i
\(765\) 22.4628 + 12.9689i 0.812143 + 0.468891i
\(766\) 14.8566 6.33637i 0.536789 0.228942i
\(767\) −15.7554 + 9.09636i −0.568893 + 0.328450i
\(768\) 3.50354 + 41.8348i 0.126423 + 1.50958i
\(769\) 15.6459i 0.564206i 0.959384 + 0.282103i \(0.0910320\pi\)
−0.959384 + 0.282103i \(0.908968\pi\)
\(770\) −9.45520 + 4.37988i −0.340742 + 0.157840i
\(771\) −33.0562 −1.19049
\(772\) −15.6350 + 16.3022i −0.562715 + 0.586728i
\(773\) 15.2125 + 26.3489i 0.547156 + 0.947703i 0.998468 + 0.0553362i \(0.0176230\pi\)
−0.451311 + 0.892367i \(0.649044\pi\)
\(774\) 0 0
\(775\) −1.50836 + 2.61255i −0.0541817 + 0.0938455i
\(776\) 45.5689 + 17.2234i 1.63583 + 0.618286i
\(777\) −20.8700 + 38.8513i −0.748707 + 1.39378i
\(778\) −42.1999 5.10794i −1.51294 0.183129i
\(779\) −11.3910 + 19.7297i −0.408124 + 0.706891i
\(780\) 26.2286 7.61852i 0.939134 0.272787i
\(781\) −6.14009 + 3.54498i −0.219710 + 0.126849i
\(782\) 23.2806 + 17.4806i 0.832513 + 0.625105i
\(783\) 10.8181 0.386609
\(784\) 25.5606 + 11.4304i 0.912879 + 0.408230i
\(785\) −29.7427 −1.06156
\(786\) 18.0647 + 13.5641i 0.644346 + 0.483817i
\(787\) −28.3722 + 16.3807i −1.01136 + 0.583909i −0.911590 0.411102i \(-0.865144\pi\)
−0.0997704 + 0.995010i \(0.531811\pi\)
\(788\) −11.3729 + 3.30345i −0.405144 + 0.117681i
\(789\) 6.47291 11.2114i 0.230442 0.399137i
\(790\) 17.7532 + 2.14888i 0.631631 + 0.0764536i
\(791\) 25.1193 46.7618i 0.893140 1.66266i
\(792\) 5.20473 13.7704i 0.184942 0.489311i
\(793\) −6.44092 + 11.1560i −0.228724 + 0.396161i
\(794\) −5.64886 + 2.40926i −0.200471 + 0.0855013i
\(795\) −23.4126 40.5518i −0.830359 1.43822i
\(796\) 25.7647 26.8642i 0.913207 0.952177i
\(797\) 28.3790 1.00523 0.502617 0.864509i \(-0.332370\pi\)
0.502617 + 0.864509i \(0.332370\pi\)
\(798\) −36.5616 + 16.9363i −1.29427 + 0.599537i
\(799\) 3.63649i 0.128650i
\(800\) −1.65494 3.47091i −0.0585111 0.122715i
\(801\) 5.82673 3.36406i 0.205877 0.118863i
\(802\) 25.9826 11.0816i 0.917477 0.391307i
\(803\) −0.643636 0.371603i −0.0227134 0.0131136i
\(804\) 9.84701 40.0802i 0.347277 1.41352i
\(805\) 1.08006 + 35.2228i 0.0380672 + 1.24144i
\(806\) 1.88850 15.6021i 0.0665197 0.549560i
\(807\) −59.7626 34.5040i −2.10374 1.21460i
\(808\) 3.42617 0.560761i 0.120532 0.0197275i
\(809\) 4.08387 + 7.07347i 0.143581 + 0.248690i 0.928843 0.370474i \(-0.120805\pi\)
−0.785262 + 0.619164i \(0.787472\pi\)
\(810\) 13.0793 + 9.82079i 0.459560 + 0.345067i
\(811\) 22.2710i 0.782041i −0.920382 0.391021i \(-0.872122\pi\)
0.920382 0.391021i \(-0.127878\pi\)
\(812\) 5.14816 24.1232i 0.180665 0.846558i
\(813\) 73.7246i 2.58563i
\(814\) 7.22810 9.62637i 0.253345 0.337404i
\(815\) 8.63997 + 14.9649i 0.302645 + 0.524196i
\(816\) 1.40812 + 33.6869i 0.0492942 + 1.17928i
\(817\) 0 0
\(818\) −42.8563 5.18740i −1.49844 0.181373i
\(819\) 13.5446 + 21.8824i 0.473287 + 0.764634i
\(820\) −5.50535 + 22.4083i −0.192255 + 0.782533i
\(821\) −4.52231 2.61096i −0.157830 0.0911230i 0.419005 0.907984i \(-0.362379\pi\)
−0.576835 + 0.816861i \(0.695712\pi\)
\(822\) 20.3420 + 47.6948i 0.709508 + 1.66355i
\(823\) 8.29368 4.78836i 0.289099 0.166912i −0.348436 0.937333i \(-0.613287\pi\)
0.637536 + 0.770421i \(0.279954\pi\)
\(824\) −27.3280 33.3941i −0.952017 1.16334i
\(825\) 2.38975i 0.0832004i
\(826\) 15.6487 22.2284i 0.544486 0.773426i
\(827\) 40.6664 1.41411 0.707055 0.707159i \(-0.250023\pi\)
0.707055 + 0.707159i \(0.250023\pi\)
\(828\) −35.9300 34.4595i −1.24866 1.19755i
\(829\) −16.6171 28.7816i −0.577134 0.999625i −0.995806 0.0914880i \(-0.970838\pi\)
0.418672 0.908137i \(-0.362496\pi\)
\(830\) −0.580256 1.36050i −0.0201410 0.0472235i
\(831\) −35.4452 + 61.3929i −1.22958 + 2.12970i
\(832\) 15.0243 + 13.2502i 0.520875 + 0.459369i
\(833\) 20.1271 + 10.0295i 0.697364 + 0.347500i
\(834\) 0.224361 1.85358i 0.00776897 0.0641843i
\(835\) −2.60236 + 4.50743i −0.0900586 + 0.155986i
\(836\) 10.5620 3.06789i 0.365293 0.106105i
\(837\) −8.91945 + 5.14965i −0.308301 + 0.177998i
\(838\) 1.76684 2.35307i 0.0610344 0.0812855i
\(839\) 15.0243 0.518698 0.259349 0.965784i \(-0.416492\pi\)
0.259349 + 0.965784i \(0.416492\pi\)
\(840\) −30.7768 + 26.8025i −1.06190 + 0.924775i
\(841\) 7.27029 0.250700
\(842\) −25.8176 + 34.3838i −0.889733 + 1.18494i
\(843\) 45.5890 26.3208i 1.57017 0.906538i
\(844\) 3.19646 + 11.0046i 0.110027 + 0.378793i
\(845\) −6.99392 + 12.1138i −0.240598 + 0.416728i
\(846\) −0.747244 + 6.17344i −0.0256908 + 0.212247i
\(847\) −12.8174 20.7076i −0.440411 0.711521i
\(848\) 15.9148 30.4339i 0.546517 1.04510i
\(849\) 7.19938 12.4697i 0.247082 0.427959i
\(850\) −1.21155 2.84067i −0.0415559 0.0974341i
\(851\) −20.3548 35.2556i −0.697755 1.20855i
\(852\) −19.2206 + 20.0408i −0.658485 + 0.686585i
\(853\) 12.5203 0.428686 0.214343 0.976758i \(-0.431239\pi\)
0.214343 + 0.976758i \(0.431239\pi\)
\(854\) 1.72623 19.1710i 0.0590703 0.656017i
\(855\) 33.1380i 1.13329i
\(856\) −19.8991 24.3162i −0.680139 0.831109i
\(857\) −46.8265 + 27.0353i −1.59956 + 0.923509i −0.607993 + 0.793942i \(0.708025\pi\)
−0.991571 + 0.129566i \(0.958641\pi\)
\(858\) −4.88417 11.4517i −0.166743 0.390953i
\(859\) 17.0990 + 9.87213i 0.583411 + 0.336833i 0.762488 0.647002i \(-0.223978\pi\)
−0.179077 + 0.983835i \(0.557311\pi\)
\(860\) 0 0
\(861\) −38.5152 + 1.18102i −1.31260 + 0.0402491i
\(862\) 3.76563 + 0.455798i 0.128258 + 0.0155246i
\(863\) 26.3755 + 15.2279i 0.897833 + 0.518364i 0.876497 0.481408i \(-0.159874\pi\)
0.0213367 + 0.999772i \(0.493208\pi\)
\(864\) 1.03185 13.0874i 0.0351042 0.445244i
\(865\) −5.64697 9.78084i −0.192003 0.332559i
\(866\) −25.0223 + 33.3246i −0.850292 + 1.13242i
\(867\) 17.5265i 0.595232i
\(868\) 7.23850 + 22.3400i 0.245691 + 0.758268i
\(869\) 8.15137i 0.276516i
\(870\) 28.7502 + 21.5876i 0.974724 + 0.731887i
\(871\) −9.84701 17.0555i −0.333653 0.577905i
\(872\) −5.75575 35.1668i −0.194914 1.19090i
\(873\) −57.9407 33.4521i −1.96100 1.13218i
\(874\) 4.46946 36.9249i 0.151182 1.24900i
\(875\) 14.7808 27.5157i 0.499682 0.930201i
\(876\) −2.82673 0.694478i −0.0955062 0.0234642i
\(877\) −18.3275 10.5814i −0.618877 0.357309i 0.157555 0.987510i \(-0.449639\pi\)
−0.776432 + 0.630201i \(0.782972\pi\)
\(878\) −9.82520 + 4.19048i −0.331584 + 0.141422i
\(879\) 31.1148 17.9641i 1.04948 0.605915i
\(880\) 9.40635 5.96797i 0.317088 0.201180i
\(881\) 11.5367i 0.388681i 0.980934 + 0.194340i \(0.0622566\pi\)
−0.980934 + 0.194340i \(0.937743\pi\)
\(882\) −32.1077 21.1622i −1.08112 0.712568i
\(883\) 49.8555 1.67777 0.838886 0.544307i \(-0.183207\pi\)
0.838886 + 0.544307i \(0.183207\pi\)
\(884\) 11.6115 + 11.1363i 0.390537 + 0.374554i
\(885\) 19.8113 + 34.3142i 0.665950 + 1.15346i
\(886\) 9.78011 4.17125i 0.328569 0.140136i
\(887\) 5.56575 9.64015i 0.186879 0.323685i −0.757329 0.653034i \(-0.773496\pi\)
0.944208 + 0.329349i \(0.106829\pi\)
\(888\) 16.6690 44.1019i 0.559374 1.47996i
\(889\) −34.0629 18.2978i −1.14243 0.613688i
\(890\) 5.05442 + 0.611796i 0.169425 + 0.0205074i
\(891\) 3.72770 6.45656i 0.124883 0.216303i
\(892\) 11.6411 + 40.0772i 0.389772 + 1.34188i
\(893\) −4.02352 + 2.32298i −0.134642 + 0.0777356i
\(894\) −16.3462 12.2738i −0.546700 0.410498i
\(895\) −7.31287 −0.244442
\(896\) −28.6924 8.52899i −0.958547 0.284934i
\(897\) −42.1022 −1.40575
\(898\) −16.2094 12.1711i −0.540916 0.406155i
\(899\) 17.9159 10.3438i 0.597530 0.344984i
\(900\) 1.47306 + 5.07138i 0.0491021 + 0.169046i
\(901\) 13.7913 23.8872i 0.459454 0.795798i
\(902\) 10.4418 + 1.26389i 0.347672 + 0.0420829i
\(903\) 0 0
\(904\) −20.0629 + 53.0815i −0.667282 + 1.76546i
\(905\) −23.0696 + 39.9577i −0.766859 + 1.32824i
\(906\) −24.0221 + 10.2455i −0.798079 + 0.340383i
\(907\) 7.20674 + 12.4824i 0.239296 + 0.414473i 0.960512 0.278237i \(-0.0897501\pi\)
−0.721217 + 0.692710i \(0.756417\pi\)
\(908\) 23.7969 + 22.8229i 0.789727 + 0.757406i
\(909\) −4.76801 −0.158145
\(910\) −1.74647 + 19.3958i −0.0578951 + 0.642966i
\(911\) 19.1909i 0.635823i 0.948120 + 0.317911i \(0.102981\pi\)
−0.948120 + 0.317911i \(0.897019\pi\)
\(912\) 36.3727 23.0771i 1.20442 0.764160i
\(913\) −0.583868 + 0.337096i −0.0193232 + 0.0111563i
\(914\) −16.8598 + 7.19077i −0.557674 + 0.237850i
\(915\) 24.2971 + 14.0279i 0.803237 + 0.463749i
\(916\) 16.5081 + 4.05576i 0.545443 + 0.134006i
\(917\) −13.6958 + 8.47733i −0.452276 + 0.279946i
\(918\) 1.26696 10.4671i 0.0418158 0.345466i
\(919\) 22.4285 + 12.9491i 0.739848 + 0.427151i 0.822014 0.569467i \(-0.192850\pi\)
−0.0821662 + 0.996619i \(0.526184\pi\)
\(920\) −6.08489 37.1778i −0.200613 1.22572i
\(921\) 32.0366 + 55.4890i 1.05564 + 1.82843i
\(922\) 37.7575 + 28.3508i 1.24348 + 0.933683i
\(923\) 13.2502i 0.436136i
\(924\) 13.8144 + 12.4590i 0.454461 + 0.409872i
\(925\) 4.31842i 0.141989i
\(926\) 25.2826 33.6713i 0.830839 1.10651i
\(927\) 29.6310 + 51.3224i 0.973210 + 1.68565i
\(928\) −2.07261 + 26.2879i −0.0680366 + 0.862943i
\(929\) −36.7480 21.2165i −1.20566 0.696090i −0.243854 0.969812i \(-0.578412\pi\)
−0.961809 + 0.273722i \(0.911745\pi\)
\(930\) −33.9804 4.11305i −1.11426 0.134872i
\(931\) −1.76029 28.6761i −0.0576910 0.939820i
\(932\) −8.69158 2.13537i −0.284702 0.0699464i
\(933\) 39.1536 + 22.6053i 1.28183 + 0.740065i
\(934\) 15.0807 + 35.3589i 0.493455 + 1.15698i
\(935\) 7.74809 4.47336i 0.253390 0.146295i
\(936\) −17.4238 21.2914i −0.569514 0.695930i
\(937\) 46.5547i 1.52088i −0.649410 0.760439i \(-0.724984\pi\)
0.649410 0.760439i \(-0.275016\pi\)
\(938\) 24.0628 + 16.9400i 0.785678 + 0.553111i
\(939\) −45.5812 −1.48749
\(940\) −3.25719 + 3.39618i −0.106238 + 0.110771i
\(941\) −1.48937 2.57967i −0.0485522 0.0840949i 0.840728 0.541458i \(-0.182127\pi\)
−0.889280 + 0.457363i \(0.848794\pi\)
\(942\) 20.8309 + 48.8411i 0.678706 + 1.59133i
\(943\) 17.7847 30.8040i 0.579150 1.00312i
\(944\) −13.4668 + 25.7526i −0.438308 + 0.838177i
\(945\) 10.8517 6.71690i 0.353006 0.218501i
\(946\) 0 0
\(947\) 13.5270 23.4294i 0.439568 0.761354i −0.558088 0.829782i \(-0.688465\pi\)
0.997656 + 0.0684276i \(0.0217982\pi\)
\(948\) −8.90509 30.6579i −0.289224 0.995723i
\(949\) −1.20287 + 0.694478i −0.0390469 + 0.0225437i
\(950\) −2.36906 + 3.15511i −0.0768625 + 0.102365i
\(951\) −50.8580 −1.64918
\(952\) −22.7375 7.80629i −0.736928 0.253003i
\(953\) 28.7293 0.930634 0.465317 0.885144i \(-0.345940\pi\)
0.465317 + 0.885144i \(0.345940\pi\)
\(954\) −28.3211 + 37.7179i −0.916928 + 1.22116i
\(955\) −2.36152 + 1.36342i −0.0764169 + 0.0441193i
\(956\) −47.1849 + 13.7056i −1.52607 + 0.443271i
\(957\) 8.19403 14.1925i 0.264875 0.458778i
\(958\) 5.85225 48.3490i 0.189078 1.56209i
\(959\) −36.9536 + 1.13313i −1.19329 + 0.0365908i
\(960\) 28.8582 32.7221i 0.931394 1.05610i
\(961\) 5.65232 9.79010i 0.182333 0.315810i
\(962\) −8.82598 20.6938i −0.284561 0.667195i
\(963\) 21.5761 + 37.3708i 0.695279 + 1.20426i
\(964\) −8.37535 8.03257i −0.269752 0.258712i
\(965\) 23.4747 0.755677
\(966\) 57.0837 26.4426i 1.83664 0.850776i
\(967\) 13.3546i 0.429453i −0.976674 0.214727i \(-0.931114\pi\)
0.976674 0.214727i \(-0.0688861\pi\)
\(968\) 16.4883 + 20.1482i 0.529955 + 0.647589i
\(969\) 29.9605 17.2977i 0.962471 0.555683i
\(970\) −19.8619 46.5691i −0.637726 1.49524i
\(971\) −1.71876 0.992325i −0.0551575 0.0318452i 0.472168 0.881509i \(-0.343472\pi\)
−0.527325 + 0.849664i \(0.676805\pi\)
\(972\) 10.2888 41.8783i 0.330013 1.34325i
\(973\) 1.17278 + 0.629989i 0.0375976 + 0.0201965i
\(974\) −11.0662 1.33948i −0.354585 0.0429196i
\(975\) 3.86778 + 2.23306i 0.123868 + 0.0715153i
\(976\) 0.859396 + 20.5596i 0.0275086 + 0.658097i
\(977\) 31.2242 + 54.0818i 0.998950 + 1.73023i 0.539158 + 0.842205i \(0.318743\pi\)
0.459792 + 0.888027i \(0.347924\pi\)
\(978\) 18.5229 24.6688i 0.592298 0.788821i
\(979\) 2.32073i 0.0741710i
\(980\) −9.81377 27.3945i −0.313489 0.875085i
\(981\) 48.9397i 1.56252i
\(982\) −9.11836 6.84665i −0.290978 0.218486i
\(983\) −3.64021 6.30503i −0.116105 0.201099i 0.802116 0.597168i \(-0.203707\pi\)
−0.918221 + 0.396069i \(0.870374\pi\)
\(984\) 40.6530 6.65368i 1.29597 0.212111i
\(985\) 10.6590 + 6.15397i 0.339624 + 0.196082i
\(986\) −2.54486 + 21.0246i −0.0810448 + 0.669561i
\(987\) −6.92261 3.71866i −0.220349 0.118366i
\(988\) 4.90411 19.9612i 0.156021 0.635049i
\(989\) 0 0
\(990\) −14.0727 + 6.00203i −0.447258 + 0.190757i
\(991\) −31.3345 + 18.0910i −0.995373 + 0.574679i −0.906876 0.421398i \(-0.861540\pi\)
−0.0884967 + 0.996076i \(0.528206\pi\)
\(992\) −10.8047 22.6607i −0.343051 0.719479i
\(993\) 54.5797i 1.73204i
\(994\) −8.32190 17.9651i −0.263955 0.569819i
\(995\) −38.6838 −1.22636
\(996\) −1.82771 + 1.90570i −0.0579131 + 0.0603844i
\(997\) −17.1218 29.6559i −0.542254 0.939211i −0.998774 0.0494984i \(-0.984238\pi\)
0.456520 0.889713i \(-0.349096\pi\)
\(998\) 31.2765 13.3395i 0.990039 0.422255i
\(999\) −7.37171 + 12.7682i −0.233231 + 0.403967i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 56.2.m.a.19.6 yes 12
3.2 odd 2 504.2.bk.a.19.1 12
4.3 odd 2 224.2.q.a.47.6 12
7.2 even 3 392.2.e.e.195.5 12
7.3 odd 6 inner 56.2.m.a.3.2 12
7.4 even 3 392.2.m.g.227.2 12
7.5 odd 6 392.2.e.e.195.6 12
7.6 odd 2 392.2.m.g.19.6 12
8.3 odd 2 inner 56.2.m.a.19.1 yes 12
8.5 even 2 224.2.q.a.47.5 12
12.11 even 2 2016.2.bs.a.271.2 12
21.17 even 6 504.2.bk.a.451.5 12
24.5 odd 2 2016.2.bs.a.271.5 12
24.11 even 2 504.2.bk.a.19.6 12
28.3 even 6 224.2.q.a.143.5 12
28.11 odd 6 1568.2.q.g.815.2 12
28.19 even 6 1568.2.e.e.783.2 12
28.23 odd 6 1568.2.e.e.783.11 12
28.27 even 2 1568.2.q.g.1391.1 12
56.3 even 6 inner 56.2.m.a.3.5 yes 12
56.5 odd 6 1568.2.e.e.783.1 12
56.11 odd 6 392.2.m.g.227.5 12
56.13 odd 2 1568.2.q.g.1391.2 12
56.19 even 6 392.2.e.e.195.8 12
56.27 even 2 392.2.m.g.19.1 12
56.37 even 6 1568.2.e.e.783.12 12
56.45 odd 6 224.2.q.a.143.6 12
56.51 odd 6 392.2.e.e.195.7 12
56.53 even 6 1568.2.q.g.815.1 12
84.59 odd 6 2016.2.bs.a.1711.5 12
168.59 odd 6 504.2.bk.a.451.2 12
168.101 even 6 2016.2.bs.a.1711.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.m.a.3.2 12 7.3 odd 6 inner
56.2.m.a.3.5 yes 12 56.3 even 6 inner
56.2.m.a.19.1 yes 12 8.3 odd 2 inner
56.2.m.a.19.6 yes 12 1.1 even 1 trivial
224.2.q.a.47.5 12 8.5 even 2
224.2.q.a.47.6 12 4.3 odd 2
224.2.q.a.143.5 12 28.3 even 6
224.2.q.a.143.6 12 56.45 odd 6
392.2.e.e.195.5 12 7.2 even 3
392.2.e.e.195.6 12 7.5 odd 6
392.2.e.e.195.7 12 56.51 odd 6
392.2.e.e.195.8 12 56.19 even 6
392.2.m.g.19.1 12 56.27 even 2
392.2.m.g.19.6 12 7.6 odd 2
392.2.m.g.227.2 12 7.4 even 3
392.2.m.g.227.5 12 56.11 odd 6
504.2.bk.a.19.1 12 3.2 odd 2
504.2.bk.a.19.6 12 24.11 even 2
504.2.bk.a.451.2 12 168.59 odd 6
504.2.bk.a.451.5 12 21.17 even 6
1568.2.e.e.783.1 12 56.5 odd 6
1568.2.e.e.783.2 12 28.19 even 6
1568.2.e.e.783.11 12 28.23 odd 6
1568.2.e.e.783.12 12 56.37 even 6
1568.2.q.g.815.1 12 56.53 even 6
1568.2.q.g.815.2 12 28.11 odd 6
1568.2.q.g.1391.1 12 28.27 even 2
1568.2.q.g.1391.2 12 56.13 odd 2
2016.2.bs.a.271.2 12 12.11 even 2
2016.2.bs.a.271.5 12 24.5 odd 2
2016.2.bs.a.1711.2 12 168.101 even 6
2016.2.bs.a.1711.5 12 84.59 odd 6