Properties

Label 1575.2.b.h.251.8
Level $1575$
Weight $2$
Character 1575.251
Analytic conductor $12.576$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,2,Mod(251,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 24x^{14} + 184x^{12} - 240x^{10} + 228x^{8} + 912x^{6} + 976x^{4} + 480x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.8
Root \(1.40513 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1575.251
Dual form 1575.2.b.h.251.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.741964i q^{2} +1.44949 q^{4} +(2.33441 + 1.24519i) q^{7} -2.55940i q^{8} +1.41421i q^{11} -5.54048i q^{13} +(0.923889 - 1.73205i) q^{14} +1.00000 q^{16} -6.07445 q^{17} -7.12018i q^{19} +1.04930 q^{22} -4.78529i q^{23} -4.11084 q^{26} +(3.38371 + 1.80490i) q^{28} +5.51399i q^{29} -1.30658i q^{31} -5.86076i q^{32} +4.50702i q^{34} +2.57024 q^{37} -5.28291 q^{38} +5.95862 q^{41} +6.76742 q^{43} +2.04989i q^{44} -3.55051 q^{46} +7.83542 q^{47} +(3.89898 + 5.81360i) q^{49} -8.03087i q^{52} -9.90408i q^{53} +(3.18695 - 5.97469i) q^{56} +4.09118 q^{58} +1.84778 q^{59} +11.6272i q^{61} -0.969433 q^{62} -2.34847 q^{64} -7.23907 q^{67} -8.80486 q^{68} +8.34242i q^{71} +0.559702i q^{73} -1.90702i q^{74} -10.3206i q^{76} +(-1.76097 + 3.30136i) q^{77} +4.00000 q^{79} -4.42108i q^{82} -7.83542 q^{83} -5.02118i q^{86} +3.61953 q^{88} +12.3325 q^{89} +(6.89898 - 12.9338i) q^{91} -6.93623i q^{92} -5.81360i q^{94} +5.54048i q^{97} +(4.31348 - 2.89290i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 16 q^{16} - 96 q^{46} - 16 q^{49} + 80 q^{64} + 64 q^{79} + 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.741964i 0.524648i −0.964980 0.262324i \(-0.915511\pi\)
0.964980 0.262324i \(-0.0844889\pi\)
\(3\) 0 0
\(4\) 1.44949 0.724745
\(5\) 0 0
\(6\) 0 0
\(7\) 2.33441 + 1.24519i 0.882326 + 0.470639i
\(8\) 2.55940i 0.904883i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) 0 0
\(13\) 5.54048i 1.53665i −0.640058 0.768327i \(-0.721090\pi\)
0.640058 0.768327i \(-0.278910\pi\)
\(14\) 0.923889 1.73205i 0.246920 0.462910i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −6.07445 −1.47327 −0.736636 0.676290i \(-0.763587\pi\)
−0.736636 + 0.676290i \(0.763587\pi\)
\(18\) 0 0
\(19\) 7.12018i 1.63348i −0.577005 0.816740i \(-0.695779\pi\)
0.577005 0.816740i \(-0.304221\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.04930 0.223710
\(23\) 4.78529i 0.997801i −0.866659 0.498901i \(-0.833737\pi\)
0.866659 0.498901i \(-0.166263\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.11084 −0.806201
\(27\) 0 0
\(28\) 3.38371 + 1.80490i 0.639461 + 0.341094i
\(29\) 5.51399i 1.02392i 0.859009 + 0.511961i \(0.171081\pi\)
−0.859009 + 0.511961i \(0.828919\pi\)
\(30\) 0 0
\(31\) 1.30658i 0.234668i −0.993092 0.117334i \(-0.962565\pi\)
0.993092 0.117334i \(-0.0374348\pi\)
\(32\) 5.86076i 1.03605i
\(33\) 0 0
\(34\) 4.50702i 0.772948i
\(35\) 0 0
\(36\) 0 0
\(37\) 2.57024 0.422545 0.211272 0.977427i \(-0.432239\pi\)
0.211272 + 0.977427i \(0.432239\pi\)
\(38\) −5.28291 −0.857002
\(39\) 0 0
\(40\) 0 0
\(41\) 5.95862 0.930579 0.465290 0.885158i \(-0.345950\pi\)
0.465290 + 0.885158i \(0.345950\pi\)
\(42\) 0 0
\(43\) 6.76742 1.03202 0.516011 0.856582i \(-0.327416\pi\)
0.516011 + 0.856582i \(0.327416\pi\)
\(44\) 2.04989i 0.309032i
\(45\) 0 0
\(46\) −3.55051 −0.523494
\(47\) 7.83542 1.14291 0.571457 0.820632i \(-0.306378\pi\)
0.571457 + 0.820632i \(0.306378\pi\)
\(48\) 0 0
\(49\) 3.89898 + 5.81360i 0.556997 + 0.830514i
\(50\) 0 0
\(51\) 0 0
\(52\) 8.03087i 1.11368i
\(53\) 9.90408i 1.36043i −0.733013 0.680215i \(-0.761886\pi\)
0.733013 0.680215i \(-0.238114\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.18695 5.97469i 0.425874 0.798402i
\(57\) 0 0
\(58\) 4.09118 0.537198
\(59\) 1.84778 0.240560 0.120280 0.992740i \(-0.461621\pi\)
0.120280 + 0.992740i \(0.461621\pi\)
\(60\) 0 0
\(61\) 11.6272i 1.48871i 0.667784 + 0.744355i \(0.267243\pi\)
−0.667784 + 0.744355i \(0.732757\pi\)
\(62\) −0.969433 −0.123118
\(63\) 0 0
\(64\) −2.34847 −0.293559
\(65\) 0 0
\(66\) 0 0
\(67\) −7.23907 −0.884393 −0.442196 0.896918i \(-0.645801\pi\)
−0.442196 + 0.896918i \(0.645801\pi\)
\(68\) −8.80486 −1.06775
\(69\) 0 0
\(70\) 0 0
\(71\) 8.34242i 0.990063i 0.868875 + 0.495031i \(0.164843\pi\)
−0.868875 + 0.495031i \(0.835157\pi\)
\(72\) 0 0
\(73\) 0.559702i 0.0655082i 0.999463 + 0.0327541i \(0.0104278\pi\)
−0.999463 + 0.0327541i \(0.989572\pi\)
\(74\) 1.90702i 0.221687i
\(75\) 0 0
\(76\) 10.3206i 1.18386i
\(77\) −1.76097 + 3.30136i −0.200681 + 0.376225i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4.42108i 0.488226i
\(83\) −7.83542 −0.860050 −0.430025 0.902817i \(-0.641495\pi\)
−0.430025 + 0.902817i \(0.641495\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.02118i 0.541448i
\(87\) 0 0
\(88\) 3.61953 0.385844
\(89\) 12.3325 1.30724 0.653622 0.756821i \(-0.273249\pi\)
0.653622 + 0.756821i \(0.273249\pi\)
\(90\) 0 0
\(91\) 6.89898 12.9338i 0.723210 1.35583i
\(92\) 6.93623i 0.723152i
\(93\) 0 0
\(94\) 5.81360i 0.599627i
\(95\) 0 0
\(96\) 0 0
\(97\) 5.54048i 0.562551i 0.959627 + 0.281275i \(0.0907574\pi\)
−0.959627 + 0.281275i \(0.909243\pi\)
\(98\) 4.31348 2.89290i 0.435727 0.292227i
\(99\) 0 0
\(100\) 0 0
\(101\) −5.95862 −0.592904 −0.296452 0.955048i \(-0.595804\pi\)
−0.296452 + 0.955048i \(0.595804\pi\)
\(102\) 0 0
\(103\) 4.98078i 0.490771i 0.969426 + 0.245385i \(0.0789145\pi\)
−0.969426 + 0.245385i \(0.921085\pi\)
\(104\) −14.1803 −1.39049
\(105\) 0 0
\(106\) −7.34847 −0.713746
\(107\) 1.81743i 0.175698i 0.996134 + 0.0878489i \(0.0279993\pi\)
−0.996134 + 0.0878489i \(0.972001\pi\)
\(108\) 0 0
\(109\) −3.10102 −0.297024 −0.148512 0.988911i \(-0.547448\pi\)
−0.148512 + 0.988911i \(0.547448\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.33441 + 1.24519i 0.220581 + 0.117660i
\(113\) 0.333505i 0.0313735i −0.999877 0.0156868i \(-0.995007\pi\)
0.999877 0.0156868i \(-0.00499346\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 7.99247i 0.742082i
\(117\) 0 0
\(118\) 1.37099i 0.126209i
\(119\) −14.1803 7.56388i −1.29991 0.693380i
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 8.62696 0.781049
\(123\) 0 0
\(124\) 1.89387i 0.170075i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 9.97903i 0.882030i
\(129\) 0 0
\(130\) 0 0
\(131\) −6.37389 −0.556890 −0.278445 0.960452i \(-0.589819\pi\)
−0.278445 + 0.960452i \(0.589819\pi\)
\(132\) 0 0
\(133\) 8.86601 16.6214i 0.768781 1.44126i
\(134\) 5.37113i 0.463995i
\(135\) 0 0
\(136\) 15.5469i 1.33314i
\(137\) 3.30136i 0.282054i 0.990006 + 0.141027i \(0.0450405\pi\)
−0.990006 + 0.141027i \(0.954960\pi\)
\(138\) 0 0
\(139\) 1.30658i 0.110822i 0.998464 + 0.0554112i \(0.0176470\pi\)
−0.998464 + 0.0554112i \(0.982353\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.18977 0.519434
\(143\) 7.83542 0.655231
\(144\) 0 0
\(145\) 0 0
\(146\) 0.415279 0.0343687
\(147\) 0 0
\(148\) 3.72553 0.306237
\(149\) 9.89949i 0.810998i −0.914095 0.405499i \(-0.867098\pi\)
0.914095 0.405499i \(-0.132902\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) −18.2234 −1.47811
\(153\) 0 0
\(154\) 2.44949 + 1.30658i 0.197386 + 0.105287i
\(155\) 0 0
\(156\) 0 0
\(157\) 13.0117i 1.03844i 0.854640 + 0.519221i \(0.173778\pi\)
−0.854640 + 0.519221i \(0.826222\pi\)
\(158\) 2.96786i 0.236110i
\(159\) 0 0
\(160\) 0 0
\(161\) 5.95862 11.1708i 0.469605 0.880386i
\(162\) 0 0
\(163\) −17.7320 −1.38888 −0.694439 0.719551i \(-0.744348\pi\)
−0.694439 + 0.719551i \(0.744348\pi\)
\(164\) 8.63695 0.674433
\(165\) 0 0
\(166\) 5.81360i 0.451223i
\(167\) −5.10502 −0.395038 −0.197519 0.980299i \(-0.563288\pi\)
−0.197519 + 0.980299i \(0.563288\pi\)
\(168\) 0 0
\(169\) −17.6969 −1.36130
\(170\) 0 0
\(171\) 0 0
\(172\) 9.80930 0.747952
\(173\) 1.76097 0.133884 0.0669421 0.997757i \(-0.478676\pi\)
0.0669421 + 0.997757i \(0.478676\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.41421i 0.106600i
\(177\) 0 0
\(178\) 9.15028i 0.685842i
\(179\) 0.142865i 0.0106782i 0.999986 + 0.00533910i \(0.00169950\pi\)
−0.999986 + 0.00533910i \(0.998301\pi\)
\(180\) 0 0
\(181\) 3.20045i 0.237887i 0.992901 + 0.118944i \(0.0379508\pi\)
−0.992901 + 0.118944i \(0.962049\pi\)
\(182\) −9.59640 5.11879i −0.711332 0.379430i
\(183\) 0 0
\(184\) −12.2474 −0.902894
\(185\) 0 0
\(186\) 0 0
\(187\) 8.59057i 0.628205i
\(188\) 11.3574 0.828321
\(189\) 0 0
\(190\) 0 0
\(191\) 22.4846i 1.62693i −0.581617 0.813463i \(-0.697580\pi\)
0.581617 0.813463i \(-0.302420\pi\)
\(192\) 0 0
\(193\) −6.76742 −0.487129 −0.243565 0.969885i \(-0.578317\pi\)
−0.243565 + 0.969885i \(0.578317\pi\)
\(194\) 4.11084 0.295141
\(195\) 0 0
\(196\) 5.65153 + 8.42676i 0.403681 + 0.601911i
\(197\) 13.5389i 0.964610i 0.876003 + 0.482305i \(0.160200\pi\)
−0.876003 + 0.482305i \(0.839800\pi\)
\(198\) 0 0
\(199\) 7.12018i 0.504736i 0.967631 + 0.252368i \(0.0812094\pi\)
−0.967631 + 0.252368i \(0.918791\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4.42108i 0.311066i
\(203\) −6.86599 + 12.8719i −0.481898 + 0.903433i
\(204\) 0 0
\(205\) 0 0
\(206\) 3.69556 0.257482
\(207\) 0 0
\(208\) 5.54048i 0.384163i
\(209\) 10.0695 0.696519
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) 14.3559i 0.985965i
\(213\) 0 0
\(214\) 1.34847 0.0921795
\(215\) 0 0
\(216\) 0 0
\(217\) 1.62694 3.05009i 0.110444 0.207054i
\(218\) 2.30084i 0.155833i
\(219\) 0 0
\(220\) 0 0
\(221\) 33.6554i 2.26391i
\(222\) 0 0
\(223\) 18.5521i 1.24234i 0.783675 + 0.621171i \(0.213343\pi\)
−0.783675 + 0.621171i \(0.786657\pi\)
\(224\) 7.29778 13.6814i 0.487604 0.914129i
\(225\) 0 0
\(226\) −0.247449 −0.0164600
\(227\) 18.4013 1.22133 0.610667 0.791887i \(-0.290901\pi\)
0.610667 + 0.791887i \(0.290901\pi\)
\(228\) 0 0
\(229\) 5.81360i 0.384174i −0.981378 0.192087i \(-0.938474\pi\)
0.981378 0.192087i \(-0.0615255\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 14.1125 0.926530
\(233\) 2.63435i 0.172582i −0.996270 0.0862910i \(-0.972499\pi\)
0.996270 0.0862910i \(-0.0275015\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.67834 0.174345
\(237\) 0 0
\(238\) −5.61212 + 10.5213i −0.363780 + 0.681992i
\(239\) 13.9993i 0.905538i 0.891628 + 0.452769i \(0.149564\pi\)
−0.891628 + 0.452769i \(0.850436\pi\)
\(240\) 0 0
\(241\) 20.0540i 1.29179i −0.763427 0.645894i \(-0.776485\pi\)
0.763427 0.645894i \(-0.223515\pi\)
\(242\) 6.67767i 0.429257i
\(243\) 0 0
\(244\) 16.8535i 1.07894i
\(245\) 0 0
\(246\) 0 0
\(247\) −39.4492 −2.51009
\(248\) −3.34405 −0.212347
\(249\) 0 0
\(250\) 0 0
\(251\) −10.0695 −0.635578 −0.317789 0.948161i \(-0.602940\pi\)
−0.317789 + 0.948161i \(0.602940\pi\)
\(252\) 0 0
\(253\) 6.76742 0.425464
\(254\) 0 0
\(255\) 0 0
\(256\) −12.1010 −0.756314
\(257\) 13.1183 0.818299 0.409150 0.912467i \(-0.365825\pi\)
0.409150 + 0.912467i \(0.365825\pi\)
\(258\) 0 0
\(259\) 6.00000 + 3.20045i 0.372822 + 0.198866i
\(260\) 0 0
\(261\) 0 0
\(262\) 4.72920i 0.292171i
\(263\) 28.2283i 1.74063i 0.492493 + 0.870316i \(0.336086\pi\)
−0.492493 + 0.870316i \(0.663914\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −12.3325 6.57826i −0.756155 0.403339i
\(267\) 0 0
\(268\) −10.4930 −0.640959
\(269\) −22.4020 −1.36587 −0.682936 0.730478i \(-0.739297\pi\)
−0.682936 + 0.730478i \(0.739297\pi\)
\(270\) 0 0
\(271\) 10.3206i 0.626933i −0.949599 0.313467i \(-0.898510\pi\)
0.949599 0.313467i \(-0.101490\pi\)
\(272\) −6.07445 −0.368318
\(273\) 0 0
\(274\) 2.44949 0.147979
\(275\) 0 0
\(276\) 0 0
\(277\) 7.23907 0.434953 0.217477 0.976066i \(-0.430217\pi\)
0.217477 + 0.976066i \(0.430217\pi\)
\(278\) 0.969433 0.0581427
\(279\) 0 0
\(280\) 0 0
\(281\) 1.41421i 0.0843649i 0.999110 + 0.0421825i \(0.0134311\pi\)
−0.999110 + 0.0421825i \(0.986569\pi\)
\(282\) 0 0
\(283\) 18.5521i 1.10281i 0.834238 + 0.551405i \(0.185908\pi\)
−0.834238 + 0.551405i \(0.814092\pi\)
\(284\) 12.0922i 0.717543i
\(285\) 0 0
\(286\) 5.81360i 0.343765i
\(287\) 13.9099 + 7.41964i 0.821074 + 0.437967i
\(288\) 0 0
\(289\) 19.8990 1.17053
\(290\) 0 0
\(291\) 0 0
\(292\) 0.811283i 0.0474767i
\(293\) 14.7014 0.858866 0.429433 0.903099i \(-0.358713\pi\)
0.429433 + 0.903099i \(0.358713\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6.57826i 0.382353i
\(297\) 0 0
\(298\) −7.34507 −0.425488
\(299\) −26.5128 −1.53327
\(300\) 0 0
\(301\) 15.7980 + 8.42676i 0.910579 + 0.485710i
\(302\) 7.41964i 0.426952i
\(303\) 0 0
\(304\) 7.12018i 0.408370i
\(305\) 0 0
\(306\) 0 0
\(307\) 24.6523i 1.40698i −0.710704 0.703491i \(-0.751624\pi\)
0.710704 0.703491i \(-0.248376\pi\)
\(308\) −2.55251 + 4.78529i −0.145443 + 0.272667i
\(309\) 0 0
\(310\) 0 0
\(311\) 18.2911 1.03719 0.518597 0.855019i \(-0.326454\pi\)
0.518597 + 0.855019i \(0.326454\pi\)
\(312\) 0 0
\(313\) 14.1311i 0.798734i 0.916791 + 0.399367i \(0.130770\pi\)
−0.916791 + 0.399367i \(0.869230\pi\)
\(314\) 9.65417 0.544817
\(315\) 0 0
\(316\) 5.79796 0.326161
\(317\) 3.30136i 0.185423i 0.995693 + 0.0927114i \(0.0295534\pi\)
−0.995693 + 0.0927114i \(0.970447\pi\)
\(318\) 0 0
\(319\) −7.79796 −0.436602
\(320\) 0 0
\(321\) 0 0
\(322\) −8.28836 4.42108i −0.461892 0.246377i
\(323\) 43.2512i 2.40656i
\(324\) 0 0
\(325\) 0 0
\(326\) 13.1565i 0.728672i
\(327\) 0 0
\(328\) 15.2505i 0.842066i
\(329\) 18.2911 + 9.75663i 1.00842 + 0.537900i
\(330\) 0 0
\(331\) 31.3939 1.72556 0.862782 0.505577i \(-0.168720\pi\)
0.862782 + 0.505577i \(0.168720\pi\)
\(332\) −11.3574 −0.623317
\(333\) 0 0
\(334\) 3.78774i 0.207256i
\(335\) 0 0
\(336\) 0 0
\(337\) −22.4008 −1.22025 −0.610126 0.792304i \(-0.708881\pi\)
−0.610126 + 0.792304i \(0.708881\pi\)
\(338\) 13.1305i 0.714204i
\(339\) 0 0
\(340\) 0 0
\(341\) 1.84778 0.100063
\(342\) 0 0
\(343\) 1.86277 + 18.4263i 0.100580 + 0.994929i
\(344\) 17.3205i 0.933859i
\(345\) 0 0
\(346\) 1.30658i 0.0702420i
\(347\) 37.1319i 1.99334i 0.0815179 + 0.996672i \(0.474023\pi\)
−0.0815179 + 0.996672i \(0.525977\pi\)
\(348\) 0 0
\(349\) 25.8676i 1.38466i −0.721582 0.692329i \(-0.756585\pi\)
0.721582 0.692329i \(-0.243415\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 8.28836 0.441771
\(353\) 1.76097 0.0937271 0.0468635 0.998901i \(-0.485077\pi\)
0.0468635 + 0.998901i \(0.485077\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 17.8758 0.947418
\(357\) 0 0
\(358\) 0.106000 0.00560229
\(359\) 9.89949i 0.522475i −0.965275 0.261238i \(-0.915869\pi\)
0.965275 0.261238i \(-0.0841306\pi\)
\(360\) 0 0
\(361\) −31.6969 −1.66826
\(362\) 2.37462 0.124807
\(363\) 0 0
\(364\) 10.0000 18.7474i 0.524142 0.982630i
\(365\) 0 0
\(366\) 0 0
\(367\) 3.60979i 0.188430i −0.995552 0.0942149i \(-0.969966\pi\)
0.995552 0.0942149i \(-0.0300341\pi\)
\(368\) 4.78529i 0.249450i
\(369\) 0 0
\(370\) 0 0
\(371\) 12.3325 23.1202i 0.640272 1.20034i
\(372\) 0 0
\(373\) −32.2102 −1.66778 −0.833889 0.551932i \(-0.813891\pi\)
−0.833889 + 0.551932i \(0.813891\pi\)
\(374\) −6.37389 −0.329586
\(375\) 0 0
\(376\) 20.0540i 1.03420i
\(377\) 30.5502 1.57341
\(378\) 0 0
\(379\) 17.5959 0.903842 0.451921 0.892058i \(-0.350739\pi\)
0.451921 + 0.892058i \(0.350739\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −16.6827 −0.853562
\(383\) 26.2367 1.34063 0.670316 0.742076i \(-0.266159\pi\)
0.670316 + 0.742076i \(0.266159\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5.02118i 0.255571i
\(387\) 0 0
\(388\) 8.03087i 0.407706i
\(389\) 19.3704i 0.982118i 0.871126 + 0.491059i \(0.163390\pi\)
−0.871126 + 0.491059i \(0.836610\pi\)
\(390\) 0 0
\(391\) 29.0680i 1.47003i
\(392\) 14.8793 9.97903i 0.751519 0.504017i
\(393\) 0 0
\(394\) 10.0454 0.506080
\(395\) 0 0
\(396\) 0 0
\(397\) 31.3122i 1.57151i 0.618535 + 0.785757i \(0.287726\pi\)
−0.618535 + 0.785757i \(0.712274\pi\)
\(398\) 5.28291 0.264809
\(399\) 0 0
\(400\) 0 0
\(401\) 22.4846i 1.12282i −0.827536 0.561412i \(-0.810258\pi\)
0.827536 0.561412i \(-0.189742\pi\)
\(402\) 0 0
\(403\) −7.23907 −0.360604
\(404\) −8.63695 −0.429704
\(405\) 0 0
\(406\) 9.55051 + 5.09432i 0.473984 + 0.252827i
\(407\) 3.63487i 0.180174i
\(408\) 0 0
\(409\) 14.8276i 0.733180i 0.930383 + 0.366590i \(0.119475\pi\)
−0.930383 + 0.366590i \(0.880525\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 7.21959i 0.355684i
\(413\) 4.31348 + 2.30084i 0.212253 + 0.113217i
\(414\) 0 0
\(415\) 0 0
\(416\) −32.4714 −1.59204
\(417\) 0 0
\(418\) 7.47117i 0.365427i
\(419\) 16.4433 0.803310 0.401655 0.915791i \(-0.368435\pi\)
0.401655 + 0.915791i \(0.368435\pi\)
\(420\) 0 0
\(421\) −12.6969 −0.618811 −0.309405 0.950930i \(-0.600130\pi\)
−0.309405 + 0.950930i \(0.600130\pi\)
\(422\) 7.41964i 0.361182i
\(423\) 0 0
\(424\) −25.3485 −1.23103
\(425\) 0 0
\(426\) 0 0
\(427\) −14.4781 + 27.1427i −0.700646 + 1.31353i
\(428\) 2.63435i 0.127336i
\(429\) 0 0
\(430\) 0 0
\(431\) 37.6123i 1.81172i 0.423576 + 0.905861i \(0.360775\pi\)
−0.423576 + 0.905861i \(0.639225\pi\)
\(432\) 0 0
\(433\) 1.93069i 0.0927829i 0.998923 + 0.0463915i \(0.0147722\pi\)
−0.998923 + 0.0463915i \(0.985228\pi\)
\(434\) −2.26306 1.20713i −0.108630 0.0579442i
\(435\) 0 0
\(436\) −4.49490 −0.215267
\(437\) −34.0721 −1.62989
\(438\) 0 0
\(439\) 30.3746i 1.44970i 0.688907 + 0.724850i \(0.258091\pi\)
−0.688907 + 0.724850i \(0.741909\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24.9711 1.18775
\(443\) 4.78529i 0.227356i 0.993518 + 0.113678i \(0.0362632\pi\)
−0.993518 + 0.113678i \(0.963737\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 13.7650 0.651792
\(447\) 0 0
\(448\) −5.48230 2.92430i −0.259014 0.138160i
\(449\) 5.22826i 0.246737i −0.992361 0.123368i \(-0.960630\pi\)
0.992361 0.123368i \(-0.0393697\pi\)
\(450\) 0 0
\(451\) 8.42676i 0.396800i
\(452\) 0.483412i 0.0227378i
\(453\) 0 0
\(454\) 13.6531i 0.640770i
\(455\) 0 0
\(456\) 0 0
\(457\) 4.66883 0.218399 0.109199 0.994020i \(-0.465171\pi\)
0.109199 + 0.994020i \(0.465171\pi\)
\(458\) −4.31348 −0.201556
\(459\) 0 0
\(460\) 0 0
\(461\) −40.6931 −1.89527 −0.947633 0.319361i \(-0.896532\pi\)
−0.947633 + 0.319361i \(0.896532\pi\)
\(462\) 0 0
\(463\) −32.2102 −1.49693 −0.748466 0.663173i \(-0.769209\pi\)
−0.748466 + 0.663173i \(0.769209\pi\)
\(464\) 5.51399i 0.255981i
\(465\) 0 0
\(466\) −1.95459 −0.0905447
\(467\) −0.791539 −0.0366280 −0.0183140 0.999832i \(-0.505830\pi\)
−0.0183140 + 0.999832i \(0.505830\pi\)
\(468\) 0 0
\(469\) −16.8990 9.01405i −0.780322 0.416230i
\(470\) 0 0
\(471\) 0 0
\(472\) 4.72920i 0.217679i
\(473\) 9.57058i 0.440056i
\(474\) 0 0
\(475\) 0 0
\(476\) −20.5542 10.9638i −0.942099 0.502523i
\(477\) 0 0
\(478\) 10.3870 0.475088
\(479\) 38.4300 1.75591 0.877956 0.478740i \(-0.158907\pi\)
0.877956 + 0.478740i \(0.158907\pi\)
\(480\) 0 0
\(481\) 14.2404i 0.649304i
\(482\) −14.8793 −0.677734
\(483\) 0 0
\(484\) 13.0454 0.592973
\(485\) 0 0
\(486\) 0 0
\(487\) 15.1618 0.687046 0.343523 0.939144i \(-0.388380\pi\)
0.343523 + 0.939144i \(0.388380\pi\)
\(488\) 29.7586 1.34711
\(489\) 0 0
\(490\) 0 0
\(491\) 26.8701i 1.21263i 0.795225 + 0.606314i \(0.207353\pi\)
−0.795225 + 0.606314i \(0.792647\pi\)
\(492\) 0 0
\(493\) 33.4945i 1.50852i
\(494\) 29.2699i 1.31691i
\(495\) 0 0
\(496\) 1.30658i 0.0586670i
\(497\) −10.3879 + 19.4747i −0.465963 + 0.873558i
\(498\) 0 0
\(499\) 10.0000 0.447661 0.223831 0.974628i \(-0.428144\pi\)
0.223831 + 0.974628i \(0.428144\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 7.47117i 0.333455i
\(503\) −20.7759 −0.926350 −0.463175 0.886267i \(-0.653290\pi\)
−0.463175 + 0.886267i \(0.653290\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 5.02118i 0.223219i
\(507\) 0 0
\(508\) 0 0
\(509\) 14.1803 0.628530 0.314265 0.949335i \(-0.398242\pi\)
0.314265 + 0.949335i \(0.398242\pi\)
\(510\) 0 0
\(511\) −0.696938 + 1.30658i −0.0308307 + 0.0577996i
\(512\) 10.9795i 0.485232i
\(513\) 0 0
\(514\) 9.73333i 0.429319i
\(515\) 0 0
\(516\) 0 0
\(517\) 11.0810i 0.487340i
\(518\) 2.37462 4.45178i 0.104335 0.195600i
\(519\) 0 0
\(520\) 0 0
\(521\) 26.9281 1.17974 0.589870 0.807498i \(-0.299179\pi\)
0.589870 + 0.807498i \(0.299179\pi\)
\(522\) 0 0
\(523\) 34.3623i 1.50256i −0.659985 0.751279i \(-0.729437\pi\)
0.659985 0.751279i \(-0.270563\pi\)
\(524\) −9.23889 −0.403603
\(525\) 0 0
\(526\) 20.9444 0.913219
\(527\) 7.93674i 0.345730i
\(528\) 0 0
\(529\) 0.101021 0.00439220
\(530\) 0 0
\(531\) 0 0
\(532\) 12.8512 24.0926i 0.557170 1.04455i
\(533\) 33.0136i 1.42998i
\(534\) 0 0
\(535\) 0 0
\(536\) 18.5276i 0.800272i
\(537\) 0 0
\(538\) 16.6214i 0.716601i
\(539\) −8.22167 + 5.51399i −0.354133 + 0.237504i
\(540\) 0 0
\(541\) 21.1010 0.907204 0.453602 0.891204i \(-0.350139\pi\)
0.453602 + 0.891204i \(0.350139\pi\)
\(542\) −7.65753 −0.328919
\(543\) 0 0
\(544\) 35.6009i 1.52638i
\(545\) 0 0
\(546\) 0 0
\(547\) −10.4930 −0.448646 −0.224323 0.974515i \(-0.572017\pi\)
−0.224323 + 0.974515i \(0.572017\pi\)
\(548\) 4.78529i 0.204417i
\(549\) 0 0
\(550\) 0 0
\(551\) 39.2606 1.67256
\(552\) 0 0
\(553\) 9.33766 + 4.98078i 0.397078 + 0.211804i
\(554\) 5.37113i 0.228197i
\(555\) 0 0
\(556\) 1.89387i 0.0803180i
\(557\) 29.7122i 1.25895i −0.777022 0.629474i \(-0.783270\pi\)
0.777022 0.629474i \(-0.216730\pi\)
\(558\) 0 0
\(559\) 37.4948i 1.58586i
\(560\) 0 0
\(561\) 0 0
\(562\) 1.04930 0.0442618
\(563\) 26.2367 1.10574 0.552872 0.833266i \(-0.313532\pi\)
0.552872 + 0.833266i \(0.313532\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.7650 0.578587
\(567\) 0 0
\(568\) 21.3516 0.895891
\(569\) 39.1694i 1.64207i −0.570881 0.821033i \(-0.693398\pi\)
0.570881 0.821033i \(-0.306602\pi\)
\(570\) 0 0
\(571\) −33.3939 −1.39749 −0.698745 0.715371i \(-0.746258\pi\)
−0.698745 + 0.715371i \(0.746258\pi\)
\(572\) 11.3574 0.474875
\(573\) 0 0
\(574\) 5.50510 10.3206i 0.229779 0.430775i
\(575\) 0 0
\(576\) 0 0
\(577\) 26.3314i 1.09619i −0.836416 0.548096i \(-0.815353\pi\)
0.836416 0.548096i \(-0.184647\pi\)
\(578\) 14.7643i 0.614115i
\(579\) 0 0
\(580\) 0 0
\(581\) −18.2911 9.75663i −0.758844 0.404773i
\(582\) 0 0
\(583\) 14.0065 0.580089
\(584\) 1.43250 0.0592773
\(585\) 0 0
\(586\) 10.9079i 0.450602i
\(587\) 3.52194 0.145366 0.0726831 0.997355i \(-0.476844\pi\)
0.0726831 + 0.997355i \(0.476844\pi\)
\(588\) 0 0
\(589\) −9.30306 −0.383326
\(590\) 0 0
\(591\) 0 0
\(592\) 2.57024 0.105636
\(593\) −47.1904 −1.93788 −0.968940 0.247298i \(-0.920457\pi\)
−0.968940 + 0.247298i \(0.920457\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 14.3492i 0.587767i
\(597\) 0 0
\(598\) 19.6715i 0.804429i
\(599\) 10.8851i 0.444754i 0.974961 + 0.222377i \(0.0713815\pi\)
−0.974961 + 0.222377i \(0.928618\pi\)
\(600\) 0 0
\(601\) 19.4667i 0.794062i 0.917805 + 0.397031i \(0.129959\pi\)
−0.917805 + 0.397031i \(0.870041\pi\)
\(602\) 6.25235 11.7215i 0.254827 0.477733i
\(603\) 0 0
\(604\) −14.4949 −0.589789
\(605\) 0 0
\(606\) 0 0
\(607\) 17.4327i 0.707573i 0.935326 + 0.353786i \(0.115106\pi\)
−0.935326 + 0.353786i \(0.884894\pi\)
\(608\) −41.7296 −1.69236
\(609\) 0 0
\(610\) 0 0
\(611\) 43.4120i 1.75626i
\(612\) 0 0
\(613\) 17.7320 0.716189 0.358095 0.933685i \(-0.383426\pi\)
0.358095 + 0.933685i \(0.383426\pi\)
\(614\) −18.2911 −0.738170
\(615\) 0 0
\(616\) 8.44949 + 4.50702i 0.340440 + 0.181593i
\(617\) 15.8398i 0.637686i −0.947808 0.318843i \(-0.896706\pi\)
0.947808 0.318843i \(-0.103294\pi\)
\(618\) 0 0
\(619\) 6.53289i 0.262579i 0.991344 + 0.131289i \(0.0419117\pi\)
−0.991344 + 0.131289i \(0.958088\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 13.5714i 0.544162i
\(623\) 28.7892 + 15.3564i 1.15341 + 0.615240i
\(624\) 0 0
\(625\) 0 0
\(626\) 10.4847 0.419054
\(627\) 0 0
\(628\) 18.8603i 0.752606i
\(629\) −15.6128 −0.622523
\(630\) 0 0
\(631\) 5.79796 0.230813 0.115407 0.993318i \(-0.463183\pi\)
0.115407 + 0.993318i \(0.463183\pi\)
\(632\) 10.2376i 0.407229i
\(633\) 0 0
\(634\) 2.44949 0.0972817
\(635\) 0 0
\(636\) 0 0
\(637\) 32.2102 21.6022i 1.27621 0.855911i
\(638\) 5.78580i 0.229062i
\(639\) 0 0
\(640\) 0 0
\(641\) 32.2412i 1.27345i 0.771091 + 0.636725i \(0.219711\pi\)
−0.771091 + 0.636725i \(0.780289\pi\)
\(642\) 0 0
\(643\) 18.5521i 0.731625i 0.930689 + 0.365812i \(0.119209\pi\)
−0.930689 + 0.365812i \(0.880791\pi\)
\(644\) 8.63695 16.1920i 0.340344 0.638055i
\(645\) 0 0
\(646\) 32.0908 1.26260
\(647\) 31.3417 1.23217 0.616085 0.787680i \(-0.288718\pi\)
0.616085 + 0.787680i \(0.288718\pi\)
\(648\) 0 0
\(649\) 2.61315i 0.102575i
\(650\) 0 0
\(651\) 0 0
\(652\) −25.7024 −1.00658
\(653\) 32.6801i 1.27887i −0.768845 0.639436i \(-0.779168\pi\)
0.768845 0.639436i \(-0.220832\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 5.95862 0.232645
\(657\) 0 0
\(658\) 7.23907 13.5714i 0.282208 0.529066i
\(659\) 3.25702i 0.126876i 0.997986 + 0.0634378i \(0.0202064\pi\)
−0.997986 + 0.0634378i \(0.979794\pi\)
\(660\) 0 0
\(661\) 18.0281i 0.701212i −0.936523 0.350606i \(-0.885976\pi\)
0.936523 0.350606i \(-0.114024\pi\)
\(662\) 23.2931i 0.905313i
\(663\) 0 0
\(664\) 20.0540i 0.778244i
\(665\) 0 0
\(666\) 0 0
\(667\) 26.3860 1.02167
\(668\) −7.39967 −0.286302
\(669\) 0 0
\(670\) 0 0
\(671\) −16.4433 −0.634788
\(672\) 0 0
\(673\) 22.1888 0.855317 0.427659 0.903940i \(-0.359339\pi\)
0.427659 + 0.903940i \(0.359339\pi\)
\(674\) 16.6206i 0.640202i
\(675\) 0 0
\(676\) −25.6515 −0.986597
\(677\) −44.4600 −1.70874 −0.854369 0.519667i \(-0.826056\pi\)
−0.854369 + 0.519667i \(0.826056\pi\)
\(678\) 0 0
\(679\) −6.89898 + 12.9338i −0.264759 + 0.496353i
\(680\) 0 0
\(681\) 0 0
\(682\) 1.37099i 0.0524977i
\(683\) 25.2605i 0.966565i −0.875465 0.483282i \(-0.839444\pi\)
0.875465 0.483282i \(-0.160556\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 13.6717 1.38211i 0.521987 0.0527690i
\(687\) 0 0
\(688\) 6.76742 0.258005
\(689\) −54.8734 −2.09051
\(690\) 0 0
\(691\) 12.9338i 0.492024i −0.969267 0.246012i \(-0.920880\pi\)
0.969267 0.246012i \(-0.0791203\pi\)
\(692\) 2.55251 0.0970319
\(693\) 0 0
\(694\) 27.5505 1.04580
\(695\) 0 0
\(696\) 0 0
\(697\) −36.1953 −1.37100
\(698\) −19.1928 −0.726458
\(699\) 0 0
\(700\) 0 0
\(701\) 20.9275i 0.790420i −0.918591 0.395210i \(-0.870672\pi\)
0.918591 0.395210i \(-0.129328\pi\)
\(702\) 0 0
\(703\) 18.3006i 0.690218i
\(704\) 3.32124i 0.125174i
\(705\) 0 0
\(706\) 1.30658i 0.0491737i
\(707\) −13.9099 7.41964i −0.523135 0.279044i
\(708\) 0 0
\(709\) 13.7980 0.518193 0.259097 0.965851i \(-0.416575\pi\)
0.259097 + 0.965851i \(0.416575\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 31.5638i 1.18290i
\(713\) −6.25235 −0.234152
\(714\) 0 0
\(715\) 0 0
\(716\) 0.207081i 0.00773897i
\(717\) 0 0
\(718\) −7.34507 −0.274115
\(719\) −5.54334 −0.206732 −0.103366 0.994643i \(-0.532961\pi\)
−0.103366 + 0.994643i \(0.532961\pi\)
\(720\) 0 0
\(721\) −6.20204 + 11.6272i −0.230976 + 0.433020i
\(722\) 23.5180i 0.875249i
\(723\) 0 0
\(724\) 4.63902i 0.172408i
\(725\) 0 0
\(726\) 0 0
\(727\) 7.21959i 0.267760i 0.990998 + 0.133880i \(0.0427436\pi\)
−0.990998 + 0.133880i \(0.957256\pi\)
\(728\) −33.1027 17.6572i −1.22687 0.654420i
\(729\) 0 0
\(730\) 0 0
\(731\) −41.1084 −1.52045
\(732\) 0 0
\(733\) 6.65989i 0.245989i 0.992407 + 0.122994i \(0.0392497\pi\)
−0.992407 + 0.122994i \(0.960750\pi\)
\(734\) −2.67834 −0.0988592
\(735\) 0 0
\(736\) −28.0454 −1.03377
\(737\) 10.2376i 0.377106i
\(738\) 0 0
\(739\) −37.3939 −1.37556 −0.687778 0.725921i \(-0.741414\pi\)
−0.687778 + 0.725921i \(0.741414\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −17.1544 9.15028i −0.629757 0.335917i
\(743\) 28.2283i 1.03560i −0.855503 0.517798i \(-0.826752\pi\)
0.855503 0.517798i \(-0.173248\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 23.8988i 0.874996i
\(747\) 0 0
\(748\) 12.4519i 0.455288i
\(749\) −2.26306 + 4.24264i −0.0826903 + 0.155023i
\(750\) 0 0
\(751\) −25.1918 −0.919263 −0.459632 0.888110i \(-0.652019\pi\)
−0.459632 + 0.888110i \(0.652019\pi\)
\(752\) 7.83542 0.285729
\(753\) 0 0
\(754\) 22.6671i 0.825488i
\(755\) 0 0
\(756\) 0 0
\(757\) 24.2874 0.882742 0.441371 0.897325i \(-0.354492\pi\)
0.441371 + 0.897325i \(0.354492\pi\)
\(758\) 13.0555i 0.474198i
\(759\) 0 0
\(760\) 0 0
\(761\) −44.3886 −1.60909 −0.804544 0.593894i \(-0.797590\pi\)
−0.804544 + 0.593894i \(0.797590\pi\)
\(762\) 0 0
\(763\) −7.23907 3.86137i −0.262072 0.139791i
\(764\) 32.5911i 1.17911i
\(765\) 0 0
\(766\) 19.4667i 0.703359i
\(767\) 10.2376i 0.369658i
\(768\) 0 0
\(769\) 19.4667i 0.701986i 0.936378 + 0.350993i \(0.114156\pi\)
−0.936378 + 0.350993i \(0.885844\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −9.80930 −0.353045
\(773\) −17.4318 −0.626979 −0.313490 0.949592i \(-0.601498\pi\)
−0.313490 + 0.949592i \(0.601498\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 14.1803 0.509043
\(777\) 0 0
\(778\) 14.3721 0.515266
\(779\) 42.4264i 1.52008i
\(780\) 0 0
\(781\) −11.7980 −0.422164
\(782\) 21.5674 0.771249
\(783\) 0 0
\(784\) 3.89898 + 5.81360i 0.139249 + 0.207629i
\(785\) 0 0
\(786\) 0 0
\(787\) 40.4625i 1.44233i 0.692762 + 0.721166i \(0.256393\pi\)
−0.692762 + 0.721166i \(0.743607\pi\)
\(788\) 19.6246i 0.699096i
\(789\) 0 0
\(790\) 0 0
\(791\) 0.415279 0.778539i 0.0147656 0.0276817i
\(792\) 0 0
\(793\) 64.4203 2.28763
\(794\) 23.2325 0.824491
\(795\) 0 0
\(796\) 10.3206i 0.365805i
\(797\) 15.4930 0.548789 0.274394 0.961617i \(-0.411523\pi\)
0.274394 + 0.961617i \(0.411523\pi\)
\(798\) 0 0
\(799\) −47.5959 −1.68382
\(800\) 0 0
\(801\) 0 0
\(802\) −16.6827 −0.589087
\(803\) −0.791539 −0.0279328
\(804\) 0 0
\(805\) 0 0
\(806\) 5.37113i 0.189190i
\(807\) 0 0
\(808\) 15.2505i 0.536509i
\(809\) 8.62815i 0.303349i 0.988430 + 0.151675i \(0.0484666\pi\)
−0.988430 + 0.151675i \(0.951533\pi\)
\(810\) 0 0
\(811\) 10.3206i 0.362406i −0.983446 0.181203i \(-0.942001\pi\)
0.983446 0.181203i \(-0.0579991\pi\)
\(812\) −9.95218 + 18.6577i −0.349253 + 0.654758i
\(813\) 0 0
\(814\) 2.69694 0.0945276
\(815\) 0 0
\(816\) 0 0
\(817\) 48.1852i 1.68579i
\(818\) 11.0016 0.384661
\(819\) 0 0
\(820\) 0 0
\(821\) 27.8557i 0.972170i −0.873912 0.486085i \(-0.838425\pi\)
0.873912 0.486085i \(-0.161575\pi\)
\(822\) 0 0
\(823\) −14.4781 −0.504676 −0.252338 0.967639i \(-0.581199\pi\)
−0.252338 + 0.967639i \(0.581199\pi\)
\(824\) 12.7478 0.444090
\(825\) 0 0
\(826\) 1.70714 3.20045i 0.0593991 0.111358i
\(827\) 10.7210i 0.372806i −0.982473 0.186403i \(-0.940317\pi\)
0.982473 0.186403i \(-0.0596829\pi\)
\(828\) 0 0
\(829\) 17.4408i 0.605744i 0.953031 + 0.302872i \(0.0979455\pi\)
−0.953031 + 0.302872i \(0.902055\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 13.0117i 0.451098i
\(833\) −23.6842 35.3144i −0.820608 1.22357i
\(834\) 0 0
\(835\) 0 0
\(836\) 14.5956 0.504798
\(837\) 0 0
\(838\) 12.2004i 0.421455i
\(839\) 28.3606 0.979116 0.489558 0.871971i \(-0.337158\pi\)
0.489558 + 0.871971i \(0.337158\pi\)
\(840\) 0 0
\(841\) −1.40408 −0.0484166
\(842\) 9.42067i 0.324658i
\(843\) 0 0
\(844\) −14.4949 −0.498935
\(845\) 0 0
\(846\) 0 0
\(847\) 21.0097 + 11.2068i 0.721903 + 0.385069i
\(848\) 9.90408i 0.340108i
\(849\) 0 0
\(850\) 0 0
\(851\) 12.2993i 0.421616i
\(852\) 0 0
\(853\) 34.0542i 1.16599i −0.812475 0.582996i \(-0.801880\pi\)
0.812475 0.582996i \(-0.198120\pi\)
\(854\) 20.1389 + 10.7423i 0.689139 + 0.367592i
\(855\) 0 0
\(856\) 4.65153 0.158986
\(857\) 15.4930 0.529229 0.264615 0.964354i \(-0.414755\pi\)
0.264615 + 0.964354i \(0.414755\pi\)
\(858\) 0 0
\(859\) 30.3746i 1.03637i −0.855269 0.518184i \(-0.826608\pi\)
0.855269 0.518184i \(-0.173392\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 27.9070 0.950515
\(863\) 37.7989i 1.28669i 0.765577 + 0.643345i \(0.222454\pi\)
−0.765577 + 0.643345i \(0.777546\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.43250 0.0486783
\(867\) 0 0
\(868\) 2.35824 4.42108i 0.0800438 0.150061i
\(869\) 5.65685i 0.191896i
\(870\) 0 0
\(871\) 40.1079i 1.35900i
\(872\) 7.93674i 0.268772i
\(873\) 0 0
\(874\) 25.2803i 0.855118i
\(875\) 0 0
\(876\) 0 0
\(877\) 14.4781 0.488892 0.244446 0.969663i \(-0.421394\pi\)
0.244446 + 0.969663i \(0.421394\pi\)
\(878\) 22.5368 0.760582
\(879\) 0 0
\(880\) 0 0
\(881\) 36.9975 1.24648 0.623239 0.782031i \(-0.285816\pi\)
0.623239 + 0.782031i \(0.285816\pi\)
\(882\) 0 0
\(883\) −14.0065 −0.471356 −0.235678 0.971831i \(-0.575731\pi\)
−0.235678 + 0.971831i \(0.575731\pi\)
\(884\) 48.7832i 1.64075i
\(885\) 0 0
\(886\) 3.55051 0.119282
\(887\) −30.5502 −1.02577 −0.512887 0.858456i \(-0.671424\pi\)
−0.512887 + 0.858456i \(0.671424\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 26.8911i 0.900382i
\(893\) 55.7896i 1.86693i
\(894\) 0 0
\(895\) 0 0
\(896\) 12.4258 23.2952i 0.415118 0.778238i
\(897\) 0 0
\(898\) −3.87918 −0.129450
\(899\) 7.20445 0.240282
\(900\) 0 0
\(901\) 60.1619i 2.00428i
\(902\) 6.25235 0.208180
\(903\) 0 0
\(904\) −0.853572 −0.0283894
\(905\) 0 0
\(906\) 0 0
\(907\) 22.4008 0.743808 0.371904 0.928271i \(-0.378705\pi\)
0.371904 + 0.928271i \(0.378705\pi\)
\(908\) 26.6724 0.885156
\(909\) 0 0
\(910\) 0 0
\(911\) 26.8701i 0.890245i 0.895470 + 0.445122i \(0.146840\pi\)
−0.895470 + 0.445122i \(0.853160\pi\)
\(912\) 0 0
\(913\) 11.0810i 0.366726i
\(914\) 3.46410i 0.114582i
\(915\) 0 0
\(916\) 8.42676i 0.278428i
\(917\) −14.8793 7.93674i −0.491358 0.262094i
\(918\) 0 0
\(919\) 10.0000 0.329870 0.164935 0.986304i \(-0.447259\pi\)
0.164935 + 0.986304i \(0.447259\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 30.1928i 0.994347i
\(923\) 46.2210 1.52138
\(924\) 0 0
\(925\) 0 0
\(926\) 23.8988i 0.785362i
\(927\) 0 0
\(928\) 32.3162 1.06083
\(929\) −8.63695 −0.283369 −0.141685 0.989912i \(-0.545252\pi\)
−0.141685 + 0.989912i \(0.545252\pi\)
\(930\) 0 0
\(931\) 41.3939 27.7614i 1.35663 0.909844i
\(932\) 3.81846i 0.125078i
\(933\) 0 0
\(934\) 0.587293i 0.0192168i
\(935\) 0 0
\(936\) 0 0
\(937\) 8.03087i 0.262357i −0.991359 0.131179i \(-0.958124\pi\)
0.991359 0.131179i \(-0.0418761\pi\)
\(938\) −6.68810 + 12.5384i −0.218374 + 0.409394i
\(939\) 0 0
\(940\) 0 0
\(941\) 36.1670 1.17901 0.589505 0.807765i \(-0.299323\pi\)
0.589505 + 0.807765i \(0.299323\pi\)
\(942\) 0 0
\(943\) 28.5137i 0.928534i
\(944\) 1.84778 0.0601401
\(945\) 0 0
\(946\) 7.10102 0.230874
\(947\) 13.0218i 0.423153i 0.977361 + 0.211577i \(0.0678598\pi\)
−0.977361 + 0.211577i \(0.932140\pi\)
\(948\) 0 0
\(949\) 3.10102 0.100663
\(950\) 0 0
\(951\) 0 0
\(952\) −19.3590 + 36.2930i −0.627428 + 1.17626i
\(953\) 27.7112i 0.897654i −0.893619 0.448827i \(-0.851842\pi\)
0.893619 0.448827i \(-0.148158\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 20.2918i 0.656284i
\(957\) 0 0
\(958\) 28.5137i 0.921236i
\(959\) −4.11084 + 7.70674i −0.132746 + 0.248864i
\(960\) 0 0
\(961\) 29.2929 0.944931
\(962\) −10.5658 −0.340656
\(963\) 0 0
\(964\) 29.0680i 0.936217i
\(965\) 0 0
\(966\) 0 0
\(967\) −42.7031 −1.37324 −0.686620 0.727017i \(-0.740906\pi\)
−0.686620 + 0.727017i \(0.740906\pi\)
\(968\) 23.0346i 0.740359i
\(969\) 0 0
\(970\) 0 0
\(971\) −40.2778 −1.29258 −0.646288 0.763093i \(-0.723680\pi\)
−0.646288 + 0.763093i \(0.723680\pi\)
\(972\) 0 0
\(973\) −1.62694 + 3.05009i −0.0521574 + 0.0977815i
\(974\) 11.2495i 0.360457i
\(975\) 0 0
\(976\) 11.6272i 0.372178i
\(977\) 34.3139i 1.09780i 0.835888 + 0.548900i \(0.184953\pi\)
−0.835888 + 0.548900i \(0.815047\pi\)
\(978\) 0 0
\(979\) 17.4408i 0.557411i
\(980\) 0 0
\(981\) 0 0
\(982\) 19.9366 0.636203
\(983\) −54.8480 −1.74938 −0.874689 0.484684i \(-0.838935\pi\)
−0.874689 + 0.484684i \(0.838935\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −24.8517 −0.791439
\(987\) 0 0
\(988\) −57.1812 −1.81918
\(989\) 32.3840i 1.02975i
\(990\) 0 0
\(991\) 23.7980 0.755967 0.377984 0.925812i \(-0.376618\pi\)
0.377984 + 0.925812i \(0.376618\pi\)
\(992\) −7.65753 −0.243127
\(993\) 0 0
\(994\) 14.4495 + 7.70747i 0.458310 + 0.244466i
\(995\) 0 0
\(996\) 0 0
\(997\) 4.16950i 0.132049i 0.997818 + 0.0660246i \(0.0210316\pi\)
−0.997818 + 0.0660246i \(0.978968\pi\)
\(998\) 7.41964i 0.234865i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.b.h.251.8 16
3.2 odd 2 inner 1575.2.b.h.251.12 16
5.2 odd 4 315.2.g.a.314.9 yes 16
5.3 odd 4 315.2.g.a.314.6 yes 16
5.4 even 2 inner 1575.2.b.h.251.9 16
7.6 odd 2 inner 1575.2.b.h.251.7 16
15.2 even 4 315.2.g.a.314.8 yes 16
15.8 even 4 315.2.g.a.314.11 yes 16
15.14 odd 2 inner 1575.2.b.h.251.5 16
20.3 even 4 5040.2.k.g.1889.3 16
20.7 even 4 5040.2.k.g.1889.2 16
21.20 even 2 inner 1575.2.b.h.251.11 16
35.13 even 4 315.2.g.a.314.7 yes 16
35.27 even 4 315.2.g.a.314.12 yes 16
35.34 odd 2 inner 1575.2.b.h.251.10 16
60.23 odd 4 5040.2.k.g.1889.13 16
60.47 odd 4 5040.2.k.g.1889.16 16
105.62 odd 4 315.2.g.a.314.5 16
105.83 odd 4 315.2.g.a.314.10 yes 16
105.104 even 2 inner 1575.2.b.h.251.6 16
140.27 odd 4 5040.2.k.g.1889.15 16
140.83 odd 4 5040.2.k.g.1889.14 16
420.83 even 4 5040.2.k.g.1889.4 16
420.167 even 4 5040.2.k.g.1889.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.g.a.314.5 16 105.62 odd 4
315.2.g.a.314.6 yes 16 5.3 odd 4
315.2.g.a.314.7 yes 16 35.13 even 4
315.2.g.a.314.8 yes 16 15.2 even 4
315.2.g.a.314.9 yes 16 5.2 odd 4
315.2.g.a.314.10 yes 16 105.83 odd 4
315.2.g.a.314.11 yes 16 15.8 even 4
315.2.g.a.314.12 yes 16 35.27 even 4
1575.2.b.h.251.5 16 15.14 odd 2 inner
1575.2.b.h.251.6 16 105.104 even 2 inner
1575.2.b.h.251.7 16 7.6 odd 2 inner
1575.2.b.h.251.8 16 1.1 even 1 trivial
1575.2.b.h.251.9 16 5.4 even 2 inner
1575.2.b.h.251.10 16 35.34 odd 2 inner
1575.2.b.h.251.11 16 21.20 even 2 inner
1575.2.b.h.251.12 16 3.2 odd 2 inner
5040.2.k.g.1889.1 16 420.167 even 4
5040.2.k.g.1889.2 16 20.7 even 4
5040.2.k.g.1889.3 16 20.3 even 4
5040.2.k.g.1889.4 16 420.83 even 4
5040.2.k.g.1889.13 16 60.23 odd 4
5040.2.k.g.1889.14 16 140.83 odd 4
5040.2.k.g.1889.15 16 140.27 odd 4
5040.2.k.g.1889.16 16 60.47 odd 4