Properties

Label 315.2.g.a.314.10
Level $315$
Weight $2$
Character 315.314
Analytic conductor $2.515$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(314,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.314");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 32x^{14} + 324x^{12} + 1328x^{10} + 2314x^{8} + 1920x^{6} + 780x^{4} + 144x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 314.10
Root \(1.06294i\) of defining polynomial
Character \(\chi\) \(=\) 315.314
Dual form 315.2.g.a.314.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.741964 q^{2} -1.44949 q^{4} +(-2.05542 + 0.880486i) q^{5} +(-1.24519 - 2.33441i) q^{7} -2.55940 q^{8} +(-1.52505 + 0.653289i) q^{10} -1.41421i q^{11} -5.54048 q^{13} +(-0.923889 - 1.73205i) q^{14} +1.00000 q^{16} +6.07445i q^{17} -7.12018i q^{19} +(2.97931 - 1.27626i) q^{20} -1.04930i q^{22} -4.78529 q^{23} +(3.44949 - 3.61953i) q^{25} -4.11084 q^{26} +(1.80490 + 3.38371i) q^{28} +5.51399i q^{29} +1.30658i q^{31} +5.86076 q^{32} +4.50702i q^{34} +(4.61481 + 3.70182i) q^{35} -2.57024i q^{37} -5.28291i q^{38} +(5.26063 - 2.25351i) q^{40} +5.95862 q^{41} +6.76742i q^{43} +2.04989i q^{44} -3.55051 q^{46} -7.83542i q^{47} +(-3.89898 + 5.81360i) q^{49} +(2.55940 - 2.68556i) q^{50} +8.03087 q^{52} -9.90408 q^{53} +(1.24519 + 2.90680i) q^{55} +(3.18695 + 5.97469i) q^{56} +4.09118i q^{58} -1.84778 q^{59} -11.6272i q^{61} +0.969433i q^{62} +2.34847 q^{64} +(11.3880 - 4.87832i) q^{65} +7.23907i q^{67} -8.80486i q^{68} +(3.42403 + 2.74662i) q^{70} -8.34242i q^{71} +0.559702 q^{73} -1.90702i q^{74} +10.3206i q^{76} +(-3.30136 + 1.76097i) q^{77} -4.00000 q^{79} +(-2.05542 + 0.880486i) q^{80} +4.42108 q^{82} -7.83542i q^{83} +(-5.34847 - 12.4855i) q^{85} +5.02118i q^{86} +3.61953i q^{88} -12.3325 q^{89} +(6.89898 + 12.9338i) q^{91} +6.93623 q^{92} -5.81360i q^{94} +(6.26922 + 14.6349i) q^{95} -5.54048 q^{97} +(-2.89290 + 4.31348i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4} + 16 q^{16} + 16 q^{25} - 96 q^{46} + 16 q^{49} - 80 q^{64} - 48 q^{70} - 64 q^{79} + 32 q^{85} + 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.741964 0.524648 0.262324 0.964980i \(-0.415511\pi\)
0.262324 + 0.964980i \(0.415511\pi\)
\(3\) 0 0
\(4\) −1.44949 −0.724745
\(5\) −2.05542 + 0.880486i −0.919211 + 0.393765i
\(6\) 0 0
\(7\) −1.24519 2.33441i −0.470639 0.882326i
\(8\) −2.55940 −0.904883
\(9\) 0 0
\(10\) −1.52505 + 0.653289i −0.482262 + 0.206588i
\(11\) 1.41421i 0.426401i −0.977008 0.213201i \(-0.931611\pi\)
0.977008 0.213201i \(-0.0683888\pi\)
\(12\) 0 0
\(13\) −5.54048 −1.53665 −0.768327 0.640058i \(-0.778910\pi\)
−0.768327 + 0.640058i \(0.778910\pi\)
\(14\) −0.923889 1.73205i −0.246920 0.462910i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.07445i 1.47327i 0.676290 + 0.736636i \(0.263587\pi\)
−0.676290 + 0.736636i \(0.736413\pi\)
\(18\) 0 0
\(19\) 7.12018i 1.63348i −0.577005 0.816740i \(-0.695779\pi\)
0.577005 0.816740i \(-0.304221\pi\)
\(20\) 2.97931 1.27626i 0.666194 0.285379i
\(21\) 0 0
\(22\) 1.04930i 0.223710i
\(23\) −4.78529 −0.997801 −0.498901 0.866659i \(-0.666263\pi\)
−0.498901 + 0.866659i \(0.666263\pi\)
\(24\) 0 0
\(25\) 3.44949 3.61953i 0.689898 0.723907i
\(26\) −4.11084 −0.806201
\(27\) 0 0
\(28\) 1.80490 + 3.38371i 0.341094 + 0.639461i
\(29\) 5.51399i 1.02392i 0.859009 + 0.511961i \(0.171081\pi\)
−0.859009 + 0.511961i \(0.828919\pi\)
\(30\) 0 0
\(31\) 1.30658i 0.234668i 0.993092 + 0.117334i \(0.0374348\pi\)
−0.993092 + 0.117334i \(0.962565\pi\)
\(32\) 5.86076 1.03605
\(33\) 0 0
\(34\) 4.50702i 0.772948i
\(35\) 4.61481 + 3.70182i 0.780046 + 0.625722i
\(36\) 0 0
\(37\) 2.57024i 0.422545i −0.977427 0.211272i \(-0.932239\pi\)
0.977427 0.211272i \(-0.0677607\pi\)
\(38\) 5.28291i 0.857002i
\(39\) 0 0
\(40\) 5.26063 2.25351i 0.831779 0.356312i
\(41\) 5.95862 0.930579 0.465290 0.885158i \(-0.345950\pi\)
0.465290 + 0.885158i \(0.345950\pi\)
\(42\) 0 0
\(43\) 6.76742i 1.03202i 0.856582 + 0.516011i \(0.172584\pi\)
−0.856582 + 0.516011i \(0.827416\pi\)
\(44\) 2.04989i 0.309032i
\(45\) 0 0
\(46\) −3.55051 −0.523494
\(47\) 7.83542i 1.14291i −0.820632 0.571457i \(-0.806378\pi\)
0.820632 0.571457i \(-0.193622\pi\)
\(48\) 0 0
\(49\) −3.89898 + 5.81360i −0.556997 + 0.830514i
\(50\) 2.55940 2.68556i 0.361953 0.379796i
\(51\) 0 0
\(52\) 8.03087 1.11368
\(53\) −9.90408 −1.36043 −0.680215 0.733013i \(-0.738114\pi\)
−0.680215 + 0.733013i \(0.738114\pi\)
\(54\) 0 0
\(55\) 1.24519 + 2.90680i 0.167902 + 0.391953i
\(56\) 3.18695 + 5.97469i 0.425874 + 0.798402i
\(57\) 0 0
\(58\) 4.09118i 0.537198i
\(59\) −1.84778 −0.240560 −0.120280 0.992740i \(-0.538379\pi\)
−0.120280 + 0.992740i \(0.538379\pi\)
\(60\) 0 0
\(61\) 11.6272i 1.48871i −0.667784 0.744355i \(-0.732757\pi\)
0.667784 0.744355i \(-0.267243\pi\)
\(62\) 0.969433i 0.123118i
\(63\) 0 0
\(64\) 2.34847 0.293559
\(65\) 11.3880 4.87832i 1.41251 0.605081i
\(66\) 0 0
\(67\) 7.23907i 0.884393i 0.896918 + 0.442196i \(0.145801\pi\)
−0.896918 + 0.442196i \(0.854199\pi\)
\(68\) 8.80486i 1.06775i
\(69\) 0 0
\(70\) 3.42403 + 2.74662i 0.409249 + 0.328284i
\(71\) 8.34242i 0.990063i −0.868875 0.495031i \(-0.835157\pi\)
0.868875 0.495031i \(-0.164843\pi\)
\(72\) 0 0
\(73\) 0.559702 0.0655082 0.0327541 0.999463i \(-0.489572\pi\)
0.0327541 + 0.999463i \(0.489572\pi\)
\(74\) 1.90702i 0.221687i
\(75\) 0 0
\(76\) 10.3206i 1.18386i
\(77\) −3.30136 + 1.76097i −0.376225 + 0.200681i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −2.05542 + 0.880486i −0.229803 + 0.0984413i
\(81\) 0 0
\(82\) 4.42108 0.488226
\(83\) 7.83542i 0.860050i −0.902817 0.430025i \(-0.858505\pi\)
0.902817 0.430025i \(-0.141495\pi\)
\(84\) 0 0
\(85\) −5.34847 12.4855i −0.580123 1.35425i
\(86\) 5.02118i 0.541448i
\(87\) 0 0
\(88\) 3.61953i 0.385844i
\(89\) −12.3325 −1.30724 −0.653622 0.756821i \(-0.726751\pi\)
−0.653622 + 0.756821i \(0.726751\pi\)
\(90\) 0 0
\(91\) 6.89898 + 12.9338i 0.723210 + 1.35583i
\(92\) 6.93623 0.723152
\(93\) 0 0
\(94\) 5.81360i 0.599627i
\(95\) 6.26922 + 14.6349i 0.643208 + 1.50151i
\(96\) 0 0
\(97\) −5.54048 −0.562551 −0.281275 0.959627i \(-0.590757\pi\)
−0.281275 + 0.959627i \(0.590757\pi\)
\(98\) −2.89290 + 4.31348i −0.292227 + 0.435727i
\(99\) 0 0
\(100\) −5.00000 + 5.24648i −0.500000 + 0.524648i
\(101\) −5.95862 −0.592904 −0.296452 0.955048i \(-0.595804\pi\)
−0.296452 + 0.955048i \(0.595804\pi\)
\(102\) 0 0
\(103\) 4.98078 0.490771 0.245385 0.969426i \(-0.421085\pi\)
0.245385 + 0.969426i \(0.421085\pi\)
\(104\) 14.1803 1.39049
\(105\) 0 0
\(106\) −7.34847 −0.713746
\(107\) −1.81743 −0.175698 −0.0878489 0.996134i \(-0.527999\pi\)
−0.0878489 + 0.996134i \(0.527999\pi\)
\(108\) 0 0
\(109\) 3.10102 0.297024 0.148512 0.988911i \(-0.452552\pi\)
0.148512 + 0.988911i \(0.452552\pi\)
\(110\) 0.923889 + 2.15674i 0.0880894 + 0.205637i
\(111\) 0 0
\(112\) −1.24519 2.33441i −0.117660 0.220581i
\(113\) −0.333505 −0.0313735 −0.0156868 0.999877i \(-0.504993\pi\)
−0.0156868 + 0.999877i \(0.504993\pi\)
\(114\) 0 0
\(115\) 9.83577 4.21338i 0.917190 0.392899i
\(116\) 7.99247i 0.742082i
\(117\) 0 0
\(118\) −1.37099 −0.126209
\(119\) 14.1803 7.56388i 1.29991 0.693380i
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 8.62696i 0.781049i
\(123\) 0 0
\(124\) 1.89387i 0.170075i
\(125\) −3.90320 + 10.4769i −0.349113 + 0.937081i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −9.97903 −0.882030
\(129\) 0 0
\(130\) 8.44949 3.61953i 0.741069 0.317454i
\(131\) −6.37389 −0.556890 −0.278445 0.960452i \(-0.589819\pi\)
−0.278445 + 0.960452i \(0.589819\pi\)
\(132\) 0 0
\(133\) −16.6214 + 8.86601i −1.44126 + 0.768781i
\(134\) 5.37113i 0.463995i
\(135\) 0 0
\(136\) 15.5469i 1.33314i
\(137\) −3.30136 −0.282054 −0.141027 0.990006i \(-0.545040\pi\)
−0.141027 + 0.990006i \(0.545040\pi\)
\(138\) 0 0
\(139\) 1.30658i 0.110822i 0.998464 + 0.0554112i \(0.0176470\pi\)
−0.998464 + 0.0554112i \(0.982353\pi\)
\(140\) −6.68913 5.36575i −0.565334 0.453489i
\(141\) 0 0
\(142\) 6.18977i 0.519434i
\(143\) 7.83542i 0.655231i
\(144\) 0 0
\(145\) −4.85499 11.3336i −0.403185 0.941201i
\(146\) 0.415279 0.0343687
\(147\) 0 0
\(148\) 3.72553i 0.306237i
\(149\) 9.89949i 0.810998i −0.914095 0.405499i \(-0.867098\pi\)
0.914095 0.405499i \(-0.132902\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 18.2234i 1.47811i
\(153\) 0 0
\(154\) −2.44949 + 1.30658i −0.197386 + 0.105287i
\(155\) −1.15042 2.68556i −0.0924042 0.215710i
\(156\) 0 0
\(157\) −13.0117 −1.03844 −0.519221 0.854640i \(-0.673778\pi\)
−0.519221 + 0.854640i \(0.673778\pi\)
\(158\) −2.96786 −0.236110
\(159\) 0 0
\(160\) −12.0463 + 5.16031i −0.952344 + 0.407959i
\(161\) 5.95862 + 11.1708i 0.469605 + 0.880386i
\(162\) 0 0
\(163\) 17.7320i 1.38888i −0.719551 0.694439i \(-0.755652\pi\)
0.719551 0.694439i \(-0.244348\pi\)
\(164\) −8.63695 −0.674433
\(165\) 0 0
\(166\) 5.81360i 0.451223i
\(167\) 5.10502i 0.395038i 0.980299 + 0.197519i \(0.0632885\pi\)
−0.980299 + 0.197519i \(0.936712\pi\)
\(168\) 0 0
\(169\) 17.6969 1.36130
\(170\) −3.96837 9.26382i −0.304360 0.710503i
\(171\) 0 0
\(172\) 9.80930i 0.747952i
\(173\) 1.76097i 0.133884i 0.997757 + 0.0669421i \(0.0213243\pi\)
−0.997757 + 0.0669421i \(0.978676\pi\)
\(174\) 0 0
\(175\) −12.7448 3.54551i −0.963415 0.268016i
\(176\) 1.41421i 0.106600i
\(177\) 0 0
\(178\) −9.15028 −0.685842
\(179\) 0.142865i 0.0106782i 0.999986 + 0.00533910i \(0.00169950\pi\)
−0.999986 + 0.00533910i \(0.998301\pi\)
\(180\) 0 0
\(181\) 3.20045i 0.237887i −0.992901 0.118944i \(-0.962049\pi\)
0.992901 0.118944i \(-0.0379508\pi\)
\(182\) 5.11879 + 9.59640i 0.379430 + 0.711332i
\(183\) 0 0
\(184\) 12.2474 0.902894
\(185\) 2.26306 + 5.28291i 0.166383 + 0.388408i
\(186\) 0 0
\(187\) 8.59057 0.628205
\(188\) 11.3574i 0.828321i
\(189\) 0 0
\(190\) 4.65153 + 10.8586i 0.337458 + 0.787766i
\(191\) 22.4846i 1.62693i 0.581617 + 0.813463i \(0.302420\pi\)
−0.581617 + 0.813463i \(0.697580\pi\)
\(192\) 0 0
\(193\) 6.76742i 0.487129i −0.969885 0.243565i \(-0.921683\pi\)
0.969885 0.243565i \(-0.0783168\pi\)
\(194\) −4.11084 −0.295141
\(195\) 0 0
\(196\) 5.65153 8.42676i 0.403681 0.601911i
\(197\) −13.5389 −0.964610 −0.482305 0.876003i \(-0.660200\pi\)
−0.482305 + 0.876003i \(0.660200\pi\)
\(198\) 0 0
\(199\) 7.12018i 0.504736i 0.967631 + 0.252368i \(0.0812094\pi\)
−0.967631 + 0.252368i \(0.918791\pi\)
\(200\) −8.82861 + 9.26382i −0.624277 + 0.655051i
\(201\) 0 0
\(202\) −4.42108 −0.311066
\(203\) 12.8719 6.86599i 0.903433 0.481898i
\(204\) 0 0
\(205\) −12.2474 + 5.24648i −0.855399 + 0.366430i
\(206\) 3.69556 0.257482
\(207\) 0 0
\(208\) −5.54048 −0.384163
\(209\) −10.0695 −0.696519
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) 14.3559 0.985965
\(213\) 0 0
\(214\) −1.34847 −0.0921795
\(215\) −5.95862 13.9099i −0.406374 0.948646i
\(216\) 0 0
\(217\) 3.05009 1.62694i 0.207054 0.110444i
\(218\) 2.30084 0.155833
\(219\) 0 0
\(220\) −1.80490 4.21338i −0.121686 0.284066i
\(221\) 33.6554i 2.26391i
\(222\) 0 0
\(223\) 18.5521 1.24234 0.621171 0.783675i \(-0.286657\pi\)
0.621171 + 0.783675i \(0.286657\pi\)
\(224\) −7.29778 13.6814i −0.487604 0.914129i
\(225\) 0 0
\(226\) −0.247449 −0.0164600
\(227\) 18.4013i 1.22133i −0.791887 0.610667i \(-0.790901\pi\)
0.791887 0.610667i \(-0.209099\pi\)
\(228\) 0 0
\(229\) 5.81360i 0.384174i −0.981378 0.192087i \(-0.938474\pi\)
0.981378 0.192087i \(-0.0615255\pi\)
\(230\) 7.29778 3.12617i 0.481202 0.206134i
\(231\) 0 0
\(232\) 14.1125i 0.926530i
\(233\) −2.63435 −0.172582 −0.0862910 0.996270i \(-0.527501\pi\)
−0.0862910 + 0.996270i \(0.527501\pi\)
\(234\) 0 0
\(235\) 6.89898 + 16.1051i 0.450040 + 1.05058i
\(236\) 2.67834 0.174345
\(237\) 0 0
\(238\) 10.5213 5.61212i 0.681992 0.363780i
\(239\) 13.9993i 0.905538i 0.891628 + 0.452769i \(0.149564\pi\)
−0.891628 + 0.452769i \(0.850436\pi\)
\(240\) 0 0
\(241\) 20.0540i 1.29179i 0.763427 + 0.645894i \(0.223515\pi\)
−0.763427 + 0.645894i \(0.776485\pi\)
\(242\) 6.67767 0.429257
\(243\) 0 0
\(244\) 16.8535i 1.07894i
\(245\) 2.89524 15.3824i 0.184970 0.982744i
\(246\) 0 0
\(247\) 39.4492i 2.51009i
\(248\) 3.34405i 0.212347i
\(249\) 0 0
\(250\) −2.89603 + 7.77347i −0.183161 + 0.491637i
\(251\) −10.0695 −0.635578 −0.317789 0.948161i \(-0.602940\pi\)
−0.317789 + 0.948161i \(0.602940\pi\)
\(252\) 0 0
\(253\) 6.76742i 0.425464i
\(254\) 0 0
\(255\) 0 0
\(256\) −12.1010 −0.756314
\(257\) 13.1183i 0.818299i −0.912467 0.409150i \(-0.865825\pi\)
0.912467 0.409150i \(-0.134175\pi\)
\(258\) 0 0
\(259\) −6.00000 + 3.20045i −0.372822 + 0.198866i
\(260\) −16.5068 + 7.07107i −1.02371 + 0.438529i
\(261\) 0 0
\(262\) −4.72920 −0.292171
\(263\) 28.2283 1.74063 0.870316 0.492493i \(-0.163914\pi\)
0.870316 + 0.492493i \(0.163914\pi\)
\(264\) 0 0
\(265\) 20.3570 8.72040i 1.25052 0.535690i
\(266\) −12.3325 + 6.57826i −0.756155 + 0.403339i
\(267\) 0 0
\(268\) 10.4930i 0.640959i
\(269\) 22.4020 1.36587 0.682936 0.730478i \(-0.260703\pi\)
0.682936 + 0.730478i \(0.260703\pi\)
\(270\) 0 0
\(271\) 10.3206i 0.626933i 0.949599 + 0.313467i \(0.101490\pi\)
−0.949599 + 0.313467i \(0.898510\pi\)
\(272\) 6.07445i 0.368318i
\(273\) 0 0
\(274\) −2.44949 −0.147979
\(275\) −5.11879 4.87832i −0.308675 0.294173i
\(276\) 0 0
\(277\) 7.23907i 0.434953i −0.976066 0.217477i \(-0.930217\pi\)
0.976066 0.217477i \(-0.0697826\pi\)
\(278\) 0.969433i 0.0581427i
\(279\) 0 0
\(280\) −11.8111 9.47443i −0.705851 0.566205i
\(281\) 1.41421i 0.0843649i −0.999110 0.0421825i \(-0.986569\pi\)
0.999110 0.0421825i \(-0.0134311\pi\)
\(282\) 0 0
\(283\) 18.5521 1.10281 0.551405 0.834238i \(-0.314092\pi\)
0.551405 + 0.834238i \(0.314092\pi\)
\(284\) 12.0922i 0.717543i
\(285\) 0 0
\(286\) 5.81360i 0.343765i
\(287\) −7.41964 13.9099i −0.437967 0.821074i
\(288\) 0 0
\(289\) −19.8990 −1.17053
\(290\) −3.60223 8.40909i −0.211530 0.493799i
\(291\) 0 0
\(292\) −0.811283 −0.0474767
\(293\) 14.7014i 0.858866i 0.903099 + 0.429433i \(0.141287\pi\)
−0.903099 + 0.429433i \(0.858713\pi\)
\(294\) 0 0
\(295\) 3.79796 1.62694i 0.221126 0.0947243i
\(296\) 6.57826i 0.382353i
\(297\) 0 0
\(298\) 7.34507i 0.425488i
\(299\) 26.5128 1.53327
\(300\) 0 0
\(301\) 15.7980 8.42676i 0.910579 0.485710i
\(302\) −7.41964 −0.426952
\(303\) 0 0
\(304\) 7.12018i 0.408370i
\(305\) 10.2376 + 23.8988i 0.586202 + 1.36844i
\(306\) 0 0
\(307\) 24.6523 1.40698 0.703491 0.710704i \(-0.251624\pi\)
0.703491 + 0.710704i \(0.251624\pi\)
\(308\) 4.78529 2.55251i 0.272667 0.145443i
\(309\) 0 0
\(310\) −0.853572 1.99259i −0.0484796 0.113172i
\(311\) 18.2911 1.03719 0.518597 0.855019i \(-0.326454\pi\)
0.518597 + 0.855019i \(0.326454\pi\)
\(312\) 0 0
\(313\) 14.1311 0.798734 0.399367 0.916791i \(-0.369230\pi\)
0.399367 + 0.916791i \(0.369230\pi\)
\(314\) −9.65417 −0.544817
\(315\) 0 0
\(316\) 5.79796 0.326161
\(317\) −3.30136 −0.185423 −0.0927114 0.995693i \(-0.529553\pi\)
−0.0927114 + 0.995693i \(0.529553\pi\)
\(318\) 0 0
\(319\) 7.79796 0.436602
\(320\) −4.82709 + 2.06779i −0.269842 + 0.115593i
\(321\) 0 0
\(322\) 4.42108 + 8.28836i 0.246377 + 0.461892i
\(323\) 43.2512 2.40656
\(324\) 0 0
\(325\) −19.1118 + 20.0540i −1.06013 + 1.11239i
\(326\) 13.1565i 0.728672i
\(327\) 0 0
\(328\) −15.2505 −0.842066
\(329\) −18.2911 + 9.75663i −1.00842 + 0.537900i
\(330\) 0 0
\(331\) 31.3939 1.72556 0.862782 0.505577i \(-0.168720\pi\)
0.862782 + 0.505577i \(0.168720\pi\)
\(332\) 11.3574i 0.623317i
\(333\) 0 0
\(334\) 3.78774i 0.207256i
\(335\) −6.37389 14.8793i −0.348243 0.812944i
\(336\) 0 0
\(337\) 22.4008i 1.22025i 0.792304 + 0.610126i \(0.208881\pi\)
−0.792304 + 0.610126i \(0.791119\pi\)
\(338\) 13.1305 0.714204
\(339\) 0 0
\(340\) 7.75255 + 18.0977i 0.420441 + 0.981484i
\(341\) 1.84778 0.100063
\(342\) 0 0
\(343\) 18.4263 + 1.86277i 0.994929 + 0.100580i
\(344\) 17.3205i 0.933859i
\(345\) 0 0
\(346\) 1.30658i 0.0702420i
\(347\) −37.1319 −1.99334 −0.996672 0.0815179i \(-0.974023\pi\)
−0.996672 + 0.0815179i \(0.974023\pi\)
\(348\) 0 0
\(349\) 25.8676i 1.38466i −0.721582 0.692329i \(-0.756585\pi\)
0.721582 0.692329i \(-0.243415\pi\)
\(350\) −9.45616 2.63064i −0.505453 0.140614i
\(351\) 0 0
\(352\) 8.28836i 0.441771i
\(353\) 1.76097i 0.0937271i 0.998901 + 0.0468635i \(0.0149226\pi\)
−0.998901 + 0.0468635i \(0.985077\pi\)
\(354\) 0 0
\(355\) 7.34538 + 17.1472i 0.389852 + 0.910077i
\(356\) 17.8758 0.947418
\(357\) 0 0
\(358\) 0.106000i 0.00560229i
\(359\) 9.89949i 0.522475i −0.965275 0.261238i \(-0.915869\pi\)
0.965275 0.261238i \(-0.0841306\pi\)
\(360\) 0 0
\(361\) −31.6969 −1.66826
\(362\) 2.37462i 0.124807i
\(363\) 0 0
\(364\) −10.0000 18.7474i −0.524142 0.982630i
\(365\) −1.15042 + 0.492810i −0.0602159 + 0.0257948i
\(366\) 0 0
\(367\) 3.60979 0.188430 0.0942149 0.995552i \(-0.469966\pi\)
0.0942149 + 0.995552i \(0.469966\pi\)
\(368\) −4.78529 −0.249450
\(369\) 0 0
\(370\) 1.67911 + 3.91973i 0.0872926 + 0.203777i
\(371\) 12.3325 + 23.1202i 0.640272 + 1.20034i
\(372\) 0 0
\(373\) 32.2102i 1.66778i −0.551932 0.833889i \(-0.686109\pi\)
0.551932 0.833889i \(-0.313891\pi\)
\(374\) 6.37389 0.329586
\(375\) 0 0
\(376\) 20.0540i 1.03420i
\(377\) 30.5502i 1.57341i
\(378\) 0 0
\(379\) −17.5959 −0.903842 −0.451921 0.892058i \(-0.649261\pi\)
−0.451921 + 0.892058i \(0.649261\pi\)
\(380\) −9.08716 21.2132i −0.466162 1.08821i
\(381\) 0 0
\(382\) 16.6827i 0.853562i
\(383\) 26.2367i 1.34063i 0.742076 + 0.670316i \(0.233841\pi\)
−0.742076 + 0.670316i \(0.766159\pi\)
\(384\) 0 0
\(385\) 5.23517 6.52633i 0.266809 0.332613i
\(386\) 5.02118i 0.255571i
\(387\) 0 0
\(388\) 8.03087 0.407706
\(389\) 19.3704i 0.982118i 0.871126 + 0.491059i \(0.163390\pi\)
−0.871126 + 0.491059i \(0.836610\pi\)
\(390\) 0 0
\(391\) 29.0680i 1.47003i
\(392\) 9.97903 14.8793i 0.504017 0.751519i
\(393\) 0 0
\(394\) −10.0454 −0.506080
\(395\) 8.22167 3.52194i 0.413677 0.177208i
\(396\) 0 0
\(397\) −31.3122 −1.57151 −0.785757 0.618535i \(-0.787726\pi\)
−0.785757 + 0.618535i \(0.787726\pi\)
\(398\) 5.28291i 0.264809i
\(399\) 0 0
\(400\) 3.44949 3.61953i 0.172474 0.180977i
\(401\) 22.4846i 1.12282i 0.827536 + 0.561412i \(0.189742\pi\)
−0.827536 + 0.561412i \(0.810258\pi\)
\(402\) 0 0
\(403\) 7.23907i 0.360604i
\(404\) 8.63695 0.429704
\(405\) 0 0
\(406\) 9.55051 5.09432i 0.473984 0.252827i
\(407\) −3.63487 −0.180174
\(408\) 0 0
\(409\) 14.8276i 0.733180i 0.930383 + 0.366590i \(0.119475\pi\)
−0.930383 + 0.366590i \(0.880525\pi\)
\(410\) −9.08716 + 3.89270i −0.448783 + 0.192247i
\(411\) 0 0
\(412\) −7.21959 −0.355684
\(413\) 2.30084 + 4.31348i 0.113217 + 0.212253i
\(414\) 0 0
\(415\) 6.89898 + 16.1051i 0.338658 + 0.790567i
\(416\) −32.4714 −1.59204
\(417\) 0 0
\(418\) −7.47117 −0.365427
\(419\) −16.4433 −0.803310 −0.401655 0.915791i \(-0.631565\pi\)
−0.401655 + 0.915791i \(0.631565\pi\)
\(420\) 0 0
\(421\) −12.6969 −0.618811 −0.309405 0.950930i \(-0.600130\pi\)
−0.309405 + 0.950930i \(0.600130\pi\)
\(422\) −7.41964 −0.361182
\(423\) 0 0
\(424\) 25.3485 1.23103
\(425\) 21.9867 + 20.9538i 1.06651 + 1.01641i
\(426\) 0 0
\(427\) −27.1427 + 14.4781i −1.31353 + 0.700646i
\(428\) 2.63435 0.127336
\(429\) 0 0
\(430\) −4.42108 10.3206i −0.213203 0.497705i
\(431\) 37.6123i 1.81172i −0.423576 0.905861i \(-0.639225\pi\)
0.423576 0.905861i \(-0.360775\pi\)
\(432\) 0 0
\(433\) 1.93069 0.0927829 0.0463915 0.998923i \(-0.485228\pi\)
0.0463915 + 0.998923i \(0.485228\pi\)
\(434\) 2.26306 1.20713i 0.108630 0.0579442i
\(435\) 0 0
\(436\) −4.49490 −0.215267
\(437\) 34.0721i 1.62989i
\(438\) 0 0
\(439\) 30.3746i 1.44970i 0.688907 + 0.724850i \(0.258091\pi\)
−0.688907 + 0.724850i \(0.741909\pi\)
\(440\) −3.18695 7.43966i −0.151932 0.354672i
\(441\) 0 0
\(442\) 24.9711i 1.18775i
\(443\) 4.78529 0.227356 0.113678 0.993518i \(-0.463737\pi\)
0.113678 + 0.993518i \(0.463737\pi\)
\(444\) 0 0
\(445\) 25.3485 10.8586i 1.20163 0.514747i
\(446\) 13.7650 0.651792
\(447\) 0 0
\(448\) −2.92430 5.48230i −0.138160 0.259014i
\(449\) 5.22826i 0.246737i −0.992361 0.123368i \(-0.960630\pi\)
0.992361 0.123368i \(-0.0393697\pi\)
\(450\) 0 0
\(451\) 8.42676i 0.396800i
\(452\) 0.483412 0.0227378
\(453\) 0 0
\(454\) 13.6531i 0.640770i
\(455\) −25.5683 20.5099i −1.19866 0.961518i
\(456\) 0 0
\(457\) 4.66883i 0.218399i −0.994020 0.109199i \(-0.965171\pi\)
0.994020 0.109199i \(-0.0348287\pi\)
\(458\) 4.31348i 0.201556i
\(459\) 0 0
\(460\) −14.2568 + 6.10725i −0.664729 + 0.284752i
\(461\) −40.6931 −1.89527 −0.947633 0.319361i \(-0.896532\pi\)
−0.947633 + 0.319361i \(0.896532\pi\)
\(462\) 0 0
\(463\) 32.2102i 1.49693i −0.663173 0.748466i \(-0.730791\pi\)
0.663173 0.748466i \(-0.269209\pi\)
\(464\) 5.51399i 0.255981i
\(465\) 0 0
\(466\) −1.95459 −0.0905447
\(467\) 0.791539i 0.0366280i 0.999832 + 0.0183140i \(0.00582986\pi\)
−0.999832 + 0.0183140i \(0.994170\pi\)
\(468\) 0 0
\(469\) 16.8990 9.01405i 0.780322 0.416230i
\(470\) 5.11879 + 11.9494i 0.236112 + 0.551184i
\(471\) 0 0
\(472\) 4.72920 0.217679
\(473\) 9.57058 0.440056
\(474\) 0 0
\(475\) −25.7717 24.5610i −1.18249 1.12694i
\(476\) −20.5542 + 10.9638i −0.942099 + 0.502523i
\(477\) 0 0
\(478\) 10.3870i 0.475088i
\(479\) −38.4300 −1.75591 −0.877956 0.478740i \(-0.841093\pi\)
−0.877956 + 0.478740i \(0.841093\pi\)
\(480\) 0 0
\(481\) 14.2404i 0.649304i
\(482\) 14.8793i 0.677734i
\(483\) 0 0
\(484\) −13.0454 −0.592973
\(485\) 11.3880 4.87832i 0.517103 0.221513i
\(486\) 0 0
\(487\) 15.1618i 0.687046i −0.939144 0.343523i \(-0.888380\pi\)
0.939144 0.343523i \(-0.111620\pi\)
\(488\) 29.7586i 1.34711i
\(489\) 0 0
\(490\) 2.14816 11.4132i 0.0970442 0.515594i
\(491\) 26.8701i 1.21263i −0.795225 0.606314i \(-0.792647\pi\)
0.795225 0.606314i \(-0.207353\pi\)
\(492\) 0 0
\(493\) −33.4945 −1.50852
\(494\) 29.2699i 1.31691i
\(495\) 0 0
\(496\) 1.30658i 0.0586670i
\(497\) −19.4747 + 10.3879i −0.873558 + 0.465963i
\(498\) 0 0
\(499\) −10.0000 −0.447661 −0.223831 0.974628i \(-0.571856\pi\)
−0.223831 + 0.974628i \(0.571856\pi\)
\(500\) 5.65764 15.1861i 0.253018 0.679144i
\(501\) 0 0
\(502\) −7.47117 −0.333455
\(503\) 20.7759i 0.926350i −0.886267 0.463175i \(-0.846710\pi\)
0.886267 0.463175i \(-0.153290\pi\)
\(504\) 0 0
\(505\) 12.2474 5.24648i 0.545004 0.233465i
\(506\) 5.02118i 0.223219i
\(507\) 0 0
\(508\) 0 0
\(509\) −14.1803 −0.628530 −0.314265 0.949335i \(-0.601758\pi\)
−0.314265 + 0.949335i \(0.601758\pi\)
\(510\) 0 0
\(511\) −0.696938 1.30658i −0.0308307 0.0577996i
\(512\) 10.9795 0.485232
\(513\) 0 0
\(514\) 9.73333i 0.429319i
\(515\) −10.2376 + 4.38551i −0.451122 + 0.193248i
\(516\) 0 0
\(517\) −11.0810 −0.487340
\(518\) −4.45178 + 2.37462i −0.195600 + 0.104335i
\(519\) 0 0
\(520\) −29.1464 + 12.4855i −1.27816 + 0.547527i
\(521\) 26.9281 1.17974 0.589870 0.807498i \(-0.299179\pi\)
0.589870 + 0.807498i \(0.299179\pi\)
\(522\) 0 0
\(523\) −34.3623 −1.50256 −0.751279 0.659985i \(-0.770563\pi\)
−0.751279 + 0.659985i \(0.770563\pi\)
\(524\) 9.23889 0.403603
\(525\) 0 0
\(526\) 20.9444 0.913219
\(527\) −7.93674 −0.345730
\(528\) 0 0
\(529\) −0.101021 −0.00439220
\(530\) 15.1042 6.47022i 0.656084 0.281048i
\(531\) 0 0
\(532\) 24.0926 12.8512i 1.04455 0.557170i
\(533\) −33.0136 −1.42998
\(534\) 0 0
\(535\) 3.73558 1.60022i 0.161503 0.0691837i
\(536\) 18.5276i 0.800272i
\(537\) 0 0
\(538\) 16.6214 0.716601
\(539\) 8.22167 + 5.51399i 0.354133 + 0.237504i
\(540\) 0 0
\(541\) 21.1010 0.907204 0.453602 0.891204i \(-0.350139\pi\)
0.453602 + 0.891204i \(0.350139\pi\)
\(542\) 7.65753i 0.328919i
\(543\) 0 0
\(544\) 35.6009i 1.52638i
\(545\) −6.37389 + 2.73040i −0.273028 + 0.116958i
\(546\) 0 0
\(547\) 10.4930i 0.448646i 0.974515 + 0.224323i \(0.0720171\pi\)
−0.974515 + 0.224323i \(0.927983\pi\)
\(548\) 4.78529 0.204417
\(549\) 0 0
\(550\) −3.79796 3.61953i −0.161946 0.154337i
\(551\) 39.2606 1.67256
\(552\) 0 0
\(553\) 4.98078 + 9.33766i 0.211804 + 0.397078i
\(554\) 5.37113i 0.228197i
\(555\) 0 0
\(556\) 1.89387i 0.0803180i
\(557\) 29.7122 1.25895 0.629474 0.777022i \(-0.283270\pi\)
0.629474 + 0.777022i \(0.283270\pi\)
\(558\) 0 0
\(559\) 37.4948i 1.58586i
\(560\) 4.61481 + 3.70182i 0.195012 + 0.156431i
\(561\) 0 0
\(562\) 1.04930i 0.0442618i
\(563\) 26.2367i 1.10574i 0.833266 + 0.552872i \(0.186468\pi\)
−0.833266 + 0.552872i \(0.813532\pi\)
\(564\) 0 0
\(565\) 0.685493 0.293646i 0.0288389 0.0123538i
\(566\) 13.7650 0.578587
\(567\) 0 0
\(568\) 21.3516i 0.895891i
\(569\) 39.1694i 1.64207i −0.570881 0.821033i \(-0.693398\pi\)
0.570881 0.821033i \(-0.306602\pi\)
\(570\) 0 0
\(571\) −33.3939 −1.39749 −0.698745 0.715371i \(-0.746258\pi\)
−0.698745 + 0.715371i \(0.746258\pi\)
\(572\) 11.3574i 0.474875i
\(573\) 0 0
\(574\) −5.50510 10.3206i −0.229779 0.430775i
\(575\) −16.5068 + 17.3205i −0.688381 + 0.722315i
\(576\) 0 0
\(577\) 26.3314 1.09619 0.548096 0.836416i \(-0.315353\pi\)
0.548096 + 0.836416i \(0.315353\pi\)
\(578\) −14.7643 −0.614115
\(579\) 0 0
\(580\) 7.03726 + 16.4279i 0.292206 + 0.682130i
\(581\) −18.2911 + 9.75663i −0.758844 + 0.404773i
\(582\) 0 0
\(583\) 14.0065i 0.580089i
\(584\) −1.43250 −0.0592773
\(585\) 0 0
\(586\) 10.9079i 0.450602i
\(587\) 3.52194i 0.145366i −0.997355 0.0726831i \(-0.976844\pi\)
0.997355 0.0726831i \(-0.0231562\pi\)
\(588\) 0 0
\(589\) 9.30306 0.383326
\(590\) 2.81795 1.20713i 0.116013 0.0496969i
\(591\) 0 0
\(592\) 2.57024i 0.105636i
\(593\) 47.1904i 1.93788i −0.247298 0.968940i \(-0.579543\pi\)
0.247298 0.968940i \(-0.420457\pi\)
\(594\) 0 0
\(595\) −22.4865 + 28.0325i −0.921858 + 1.14922i
\(596\) 14.3492i 0.587767i
\(597\) 0 0
\(598\) 19.6715 0.804429
\(599\) 10.8851i 0.444754i 0.974961 + 0.222377i \(0.0713815\pi\)
−0.974961 + 0.222377i \(0.928618\pi\)
\(600\) 0 0
\(601\) 19.4667i 0.794062i −0.917805 0.397031i \(-0.870041\pi\)
0.917805 0.397031i \(-0.129959\pi\)
\(602\) 11.7215 6.25235i 0.477733 0.254827i
\(603\) 0 0
\(604\) 14.4949 0.589789
\(605\) −18.4988 + 7.92437i −0.752082 + 0.322172i
\(606\) 0 0
\(607\) −17.4327 −0.707573 −0.353786 0.935326i \(-0.615106\pi\)
−0.353786 + 0.935326i \(0.615106\pi\)
\(608\) 41.7296i 1.69236i
\(609\) 0 0
\(610\) 7.59592 + 17.7320i 0.307550 + 0.717948i
\(611\) 43.4120i 1.75626i
\(612\) 0 0
\(613\) 17.7320i 0.716189i 0.933685 + 0.358095i \(0.116574\pi\)
−0.933685 + 0.358095i \(0.883426\pi\)
\(614\) 18.2911 0.738170
\(615\) 0 0
\(616\) 8.44949 4.50702i 0.340440 0.181593i
\(617\) 15.8398 0.637686 0.318843 0.947808i \(-0.396706\pi\)
0.318843 + 0.947808i \(0.396706\pi\)
\(618\) 0 0
\(619\) 6.53289i 0.262579i 0.991344 + 0.131289i \(0.0419117\pi\)
−0.991344 + 0.131289i \(0.958088\pi\)
\(620\) 1.66753 + 3.89270i 0.0669694 + 0.156334i
\(621\) 0 0
\(622\) 13.5714 0.544162
\(623\) 15.3564 + 28.7892i 0.615240 + 1.15341i
\(624\) 0 0
\(625\) −1.20204 24.9711i −0.0480816 0.998843i
\(626\) 10.4847 0.419054
\(627\) 0 0
\(628\) 18.8603 0.752606
\(629\) 15.6128 0.622523
\(630\) 0 0
\(631\) 5.79796 0.230813 0.115407 0.993318i \(-0.463183\pi\)
0.115407 + 0.993318i \(0.463183\pi\)
\(632\) 10.2376 0.407229
\(633\) 0 0
\(634\) −2.44949 −0.0972817
\(635\) 0 0
\(636\) 0 0
\(637\) 21.6022 32.2102i 0.855911 1.27621i
\(638\) 5.78580 0.229062
\(639\) 0 0
\(640\) 20.5111 8.78640i 0.810772 0.347313i
\(641\) 32.2412i 1.27345i −0.771091 0.636725i \(-0.780289\pi\)
0.771091 0.636725i \(-0.219711\pi\)
\(642\) 0 0
\(643\) 18.5521 0.731625 0.365812 0.930689i \(-0.380791\pi\)
0.365812 + 0.930689i \(0.380791\pi\)
\(644\) −8.63695 16.1920i −0.340344 0.638055i
\(645\) 0 0
\(646\) 32.0908 1.26260
\(647\) 31.3417i 1.23217i −0.787680 0.616085i \(-0.788718\pi\)
0.787680 0.616085i \(-0.211282\pi\)
\(648\) 0 0
\(649\) 2.61315i 0.102575i
\(650\) −14.1803 + 14.8793i −0.556197 + 0.583615i
\(651\) 0 0
\(652\) 25.7024i 1.00658i
\(653\) −32.6801 −1.27887 −0.639436 0.768845i \(-0.720832\pi\)
−0.639436 + 0.768845i \(0.720832\pi\)
\(654\) 0 0
\(655\) 13.1010 5.61212i 0.511899 0.219284i
\(656\) 5.95862 0.232645
\(657\) 0 0
\(658\) −13.5714 + 7.23907i −0.529066 + 0.282208i
\(659\) 3.25702i 0.126876i 0.997986 + 0.0634378i \(0.0202064\pi\)
−0.997986 + 0.0634378i \(0.979794\pi\)
\(660\) 0 0
\(661\) 18.0281i 0.701212i 0.936523 + 0.350606i \(0.114024\pi\)
−0.936523 + 0.350606i \(0.885976\pi\)
\(662\) 23.2931 0.905313
\(663\) 0 0
\(664\) 20.0540i 0.778244i
\(665\) 26.3576 32.8583i 1.02211 1.27419i
\(666\) 0 0
\(667\) 26.3860i 1.02167i
\(668\) 7.39967i 0.286302i
\(669\) 0 0
\(670\) −4.72920 11.0399i −0.182705 0.426509i
\(671\) −16.4433 −0.634788
\(672\) 0 0
\(673\) 22.1888i 0.855317i 0.903940 + 0.427659i \(0.140661\pi\)
−0.903940 + 0.427659i \(0.859339\pi\)
\(674\) 16.6206i 0.640202i
\(675\) 0 0
\(676\) −25.6515 −0.986597
\(677\) 44.4600i 1.70874i 0.519667 + 0.854369i \(0.326056\pi\)
−0.519667 + 0.854369i \(0.673944\pi\)
\(678\) 0 0
\(679\) 6.89898 + 12.9338i 0.264759 + 0.496353i
\(680\) 13.6889 + 31.9555i 0.524944 + 1.22544i
\(681\) 0 0
\(682\) 1.37099 0.0524977
\(683\) −25.2605 −0.966565 −0.483282 0.875465i \(-0.660556\pi\)
−0.483282 + 0.875465i \(0.660556\pi\)
\(684\) 0 0
\(685\) 6.78568 2.90680i 0.259267 0.111063i
\(686\) 13.6717 + 1.38211i 0.521987 + 0.0527690i
\(687\) 0 0
\(688\) 6.76742i 0.258005i
\(689\) 54.8734 2.09051
\(690\) 0 0
\(691\) 12.9338i 0.492024i 0.969267 + 0.246012i \(0.0791203\pi\)
−0.969267 + 0.246012i \(0.920880\pi\)
\(692\) 2.55251i 0.0970319i
\(693\) 0 0
\(694\) −27.5505 −1.04580
\(695\) −1.15042 2.68556i −0.0436380 0.101869i
\(696\) 0 0
\(697\) 36.1953i 1.37100i
\(698\) 19.1928i 0.726458i
\(699\) 0 0
\(700\) 18.4734 + 5.13919i 0.698230 + 0.194243i
\(701\) 20.9275i 0.790420i 0.918591 + 0.395210i \(0.129328\pi\)
−0.918591 + 0.395210i \(0.870672\pi\)
\(702\) 0 0
\(703\) −18.3006 −0.690218
\(704\) 3.32124i 0.125174i
\(705\) 0 0
\(706\) 1.30658i 0.0491737i
\(707\) 7.41964 + 13.9099i 0.279044 + 0.523135i
\(708\) 0 0
\(709\) −13.7980 −0.518193 −0.259097 0.965851i \(-0.583425\pi\)
−0.259097 + 0.965851i \(0.583425\pi\)
\(710\) 5.45001 + 12.7226i 0.204535 + 0.477470i
\(711\) 0 0
\(712\) 31.5638 1.18290
\(713\) 6.25235i 0.234152i
\(714\) 0 0
\(715\) −6.89898 16.1051i −0.258007 0.602296i
\(716\) 0.207081i 0.00773897i
\(717\) 0 0
\(718\) 7.34507i 0.274115i
\(719\) 5.54334 0.206732 0.103366 0.994643i \(-0.467039\pi\)
0.103366 + 0.994643i \(0.467039\pi\)
\(720\) 0 0
\(721\) −6.20204 11.6272i −0.230976 0.433020i
\(722\) −23.5180 −0.875249
\(723\) 0 0
\(724\) 4.63902i 0.172408i
\(725\) 19.9581 + 19.0205i 0.741224 + 0.706402i
\(726\) 0 0
\(727\) −7.21959 −0.267760 −0.133880 0.990998i \(-0.542744\pi\)
−0.133880 + 0.990998i \(0.542744\pi\)
\(728\) −17.6572 33.1027i −0.654420 1.22687i
\(729\) 0 0
\(730\) −0.853572 + 0.365647i −0.0315921 + 0.0135332i
\(731\) −41.1084 −1.52045
\(732\) 0 0
\(733\) 6.65989 0.245989 0.122994 0.992407i \(-0.460750\pi\)
0.122994 + 0.992407i \(0.460750\pi\)
\(734\) 2.67834 0.0988592
\(735\) 0 0
\(736\) −28.0454 −1.03377
\(737\) 10.2376 0.377106
\(738\) 0 0
\(739\) 37.3939 1.37556 0.687778 0.725921i \(-0.258586\pi\)
0.687778 + 0.725921i \(0.258586\pi\)
\(740\) −3.28028 7.65753i −0.120585 0.281496i
\(741\) 0 0
\(742\) 9.15028 + 17.1544i 0.335917 + 0.629757i
\(743\) −28.2283 −1.03560 −0.517798 0.855503i \(-0.673248\pi\)
−0.517798 + 0.855503i \(0.673248\pi\)
\(744\) 0 0
\(745\) 8.71636 + 20.3476i 0.319343 + 0.745479i
\(746\) 23.8988i 0.874996i
\(747\) 0 0
\(748\) −12.4519 −0.455288
\(749\) 2.26306 + 4.24264i 0.0826903 + 0.155023i
\(750\) 0 0
\(751\) −25.1918 −0.919263 −0.459632 0.888110i \(-0.652019\pi\)
−0.459632 + 0.888110i \(0.652019\pi\)
\(752\) 7.83542i 0.285729i
\(753\) 0 0
\(754\) 22.6671i 0.825488i
\(755\) 20.5542 8.80486i 0.748043 0.320442i
\(756\) 0 0
\(757\) 24.2874i 0.882742i −0.897325 0.441371i \(-0.854492\pi\)
0.897325 0.441371i \(-0.145508\pi\)
\(758\) −13.0555 −0.474198
\(759\) 0 0
\(760\) −16.0454 37.4566i −0.582028 1.35869i
\(761\) −44.3886 −1.60909 −0.804544 0.593894i \(-0.797590\pi\)
−0.804544 + 0.593894i \(0.797590\pi\)
\(762\) 0 0
\(763\) −3.86137 7.23907i −0.139791 0.262072i
\(764\) 32.5911i 1.17911i
\(765\) 0 0
\(766\) 19.4667i 0.703359i
\(767\) 10.2376 0.369658
\(768\) 0 0
\(769\) 19.4667i 0.701986i 0.936378 + 0.350993i \(0.114156\pi\)
−0.936378 + 0.350993i \(0.885844\pi\)
\(770\) 3.88430 4.84230i 0.139981 0.174504i
\(771\) 0 0
\(772\) 9.80930i 0.353045i
\(773\) 17.4318i 0.626979i −0.949592 0.313490i \(-0.898502\pi\)
0.949592 0.313490i \(-0.101498\pi\)
\(774\) 0 0
\(775\) 4.72920 + 4.50702i 0.169878 + 0.161897i
\(776\) 14.1803 0.509043
\(777\) 0 0
\(778\) 14.3721i 0.515266i
\(779\) 42.4264i 1.52008i
\(780\) 0 0
\(781\) −11.7980 −0.422164
\(782\) 21.5674i 0.771249i
\(783\) 0 0
\(784\) −3.89898 + 5.81360i −0.139249 + 0.207629i
\(785\) 26.7444 11.4566i 0.954548 0.408903i
\(786\) 0 0
\(787\) −40.4625 −1.44233 −0.721166 0.692762i \(-0.756393\pi\)
−0.721166 + 0.692762i \(0.756393\pi\)
\(788\) 19.6246 0.699096
\(789\) 0 0
\(790\) 6.10018 2.61315i 0.217035 0.0929719i
\(791\) 0.415279 + 0.778539i 0.0147656 + 0.0276817i
\(792\) 0 0
\(793\) 64.4203i 2.28763i
\(794\) −23.2325 −0.824491
\(795\) 0 0
\(796\) 10.3206i 0.365805i
\(797\) 15.4930i 0.548789i −0.961617 0.274394i \(-0.911523\pi\)
0.961617 0.274394i \(-0.0884773\pi\)
\(798\) 0 0
\(799\) 47.5959 1.68382
\(800\) 20.2166 21.2132i 0.714765 0.750000i
\(801\) 0 0
\(802\) 16.6827i 0.589087i
\(803\) 0.791539i 0.0279328i
\(804\) 0 0
\(805\) −22.0832 17.7143i −0.778331 0.624346i
\(806\) 5.37113i 0.189190i
\(807\) 0 0
\(808\) 15.2505 0.536509
\(809\) 8.62815i 0.303349i 0.988430 + 0.151675i \(0.0484666\pi\)
−0.988430 + 0.151675i \(0.951533\pi\)
\(810\) 0 0
\(811\) 10.3206i 0.362406i 0.983446 + 0.181203i \(0.0579991\pi\)
−0.983446 + 0.181203i \(0.942001\pi\)
\(812\) −18.6577 + 9.95218i −0.654758 + 0.349253i
\(813\) 0 0
\(814\) −2.69694 −0.0945276
\(815\) 15.6128 + 36.4467i 0.546892 + 1.27667i
\(816\) 0 0
\(817\) 48.1852 1.68579
\(818\) 11.0016i 0.384661i
\(819\) 0 0
\(820\) 17.7526 7.60471i 0.619946 0.265568i
\(821\) 27.8557i 0.972170i 0.873912 + 0.486085i \(0.161575\pi\)
−0.873912 + 0.486085i \(0.838425\pi\)
\(822\) 0 0
\(823\) 14.4781i 0.504676i −0.967639 0.252338i \(-0.918801\pi\)
0.967639 0.252338i \(-0.0811995\pi\)
\(824\) −12.7478 −0.444090
\(825\) 0 0
\(826\) 1.70714 + 3.20045i 0.0593991 + 0.111358i
\(827\) 10.7210 0.372806 0.186403 0.982473i \(-0.440317\pi\)
0.186403 + 0.982473i \(0.440317\pi\)
\(828\) 0 0
\(829\) 17.4408i 0.605744i 0.953031 + 0.302872i \(0.0979455\pi\)
−0.953031 + 0.302872i \(0.902055\pi\)
\(830\) 5.11879 + 11.9494i 0.177676 + 0.414769i
\(831\) 0 0
\(832\) −13.0117 −0.451098
\(833\) −35.3144 23.6842i −1.22357 0.820608i
\(834\) 0 0
\(835\) −4.49490 10.4930i −0.155552 0.363124i
\(836\) 14.5956 0.504798
\(837\) 0 0
\(838\) −12.2004 −0.421455
\(839\) −28.3606 −0.979116 −0.489558 0.871971i \(-0.662842\pi\)
−0.489558 + 0.871971i \(0.662842\pi\)
\(840\) 0 0
\(841\) −1.40408 −0.0484166
\(842\) −9.42067 −0.324658
\(843\) 0 0
\(844\) 14.4949 0.498935
\(845\) −36.3746 + 15.5819i −1.25132 + 0.536034i
\(846\) 0 0
\(847\) −11.2068 21.0097i −0.385069 0.721903i
\(848\) −9.90408 −0.340108
\(849\) 0 0
\(850\) 16.3133 + 15.5469i 0.559542 + 0.533255i
\(851\) 12.2993i 0.421616i
\(852\) 0 0
\(853\) −34.0542 −1.16599 −0.582996 0.812475i \(-0.698120\pi\)
−0.582996 + 0.812475i \(0.698120\pi\)
\(854\) −20.1389 + 10.7423i −0.689139 + 0.367592i
\(855\) 0 0
\(856\) 4.65153 0.158986
\(857\) 15.4930i 0.529229i −0.964354 0.264615i \(-0.914755\pi\)
0.964354 0.264615i \(-0.0852448\pi\)
\(858\) 0 0
\(859\) 30.3746i 1.03637i −0.855269 0.518184i \(-0.826608\pi\)
0.855269 0.518184i \(-0.173392\pi\)
\(860\) 8.63695 + 20.1622i 0.294518 + 0.687526i
\(861\) 0 0
\(862\) 27.9070i 0.950515i
\(863\) 37.7989 1.28669 0.643345 0.765577i \(-0.277546\pi\)
0.643345 + 0.765577i \(0.277546\pi\)
\(864\) 0 0
\(865\) −1.55051 3.61953i −0.0527189 0.123068i
\(866\) 1.43250 0.0486783
\(867\) 0 0
\(868\) −4.42108 + 2.35824i −0.150061 + 0.0800438i
\(869\) 5.65685i 0.191896i
\(870\) 0 0
\(871\) 40.1079i 1.35900i
\(872\) −7.93674 −0.268772
\(873\) 0 0
\(874\) 25.2803i 0.855118i
\(875\) 29.3176 3.93408i 0.991117 0.132996i
\(876\) 0 0
\(877\) 14.4781i 0.488892i −0.969663 0.244446i \(-0.921394\pi\)
0.969663 0.244446i \(-0.0786061\pi\)
\(878\) 22.5368i 0.760582i
\(879\) 0 0
\(880\) 1.24519 + 2.90680i 0.0419755 + 0.0979882i
\(881\) 36.9975 1.24648 0.623239 0.782031i \(-0.285816\pi\)
0.623239 + 0.782031i \(0.285816\pi\)
\(882\) 0 0
\(883\) 14.0065i 0.471356i −0.971831 0.235678i \(-0.924269\pi\)
0.971831 0.235678i \(-0.0757310\pi\)
\(884\) 48.7832i 1.64075i
\(885\) 0 0
\(886\) 3.55051 0.119282
\(887\) 30.5502i 1.02577i 0.858456 + 0.512887i \(0.171424\pi\)
−0.858456 + 0.512887i \(0.828576\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 18.8076 8.05669i 0.630434 0.270061i
\(891\) 0 0
\(892\) −26.8911 −0.900382
\(893\) −55.7896 −1.86693
\(894\) 0 0
\(895\) −0.125790 0.293646i −0.00420470 0.00981552i
\(896\) 12.4258 + 23.2952i 0.415118 + 0.778238i
\(897\) 0 0
\(898\) 3.87918i 0.129450i
\(899\) −7.20445 −0.240282
\(900\) 0 0
\(901\) 60.1619i 2.00428i
\(902\) 6.25235i 0.208180i
\(903\) 0 0
\(904\) 0.853572 0.0283894
\(905\) 2.81795 + 6.57826i 0.0936718 + 0.218669i
\(906\) 0 0
\(907\) 22.4008i 0.743808i −0.928271 0.371904i \(-0.878705\pi\)
0.928271 0.371904i \(-0.121295\pi\)
\(908\) 26.6724i 0.885156i
\(909\) 0 0
\(910\) −18.9708 15.2176i −0.628874 0.504458i
\(911\) 26.8701i 0.890245i −0.895470 0.445122i \(-0.853160\pi\)
0.895470 0.445122i \(-0.146840\pi\)
\(912\) 0 0
\(913\) −11.0810 −0.366726
\(914\) 3.46410i 0.114582i
\(915\) 0 0
\(916\) 8.42676i 0.278428i
\(917\) 7.93674 + 14.8793i 0.262094 + 0.491358i
\(918\) 0 0
\(919\) −10.0000 −0.329870 −0.164935 0.986304i \(-0.552741\pi\)
−0.164935 + 0.986304i \(0.552741\pi\)
\(920\) −25.1736 + 10.7837i −0.829950 + 0.355528i
\(921\) 0 0
\(922\) −30.1928 −0.994347
\(923\) 46.2210i 1.52138i
\(924\) 0 0
\(925\) −9.30306 8.86601i −0.305883 0.291513i
\(926\) 23.8988i 0.785362i
\(927\) 0 0
\(928\) 32.3162i 1.06083i
\(929\) 8.63695 0.283369 0.141685 0.989912i \(-0.454748\pi\)
0.141685 + 0.989912i \(0.454748\pi\)
\(930\) 0 0
\(931\) 41.3939 + 27.7614i 1.35663 + 0.909844i
\(932\) 3.81846 0.125078
\(933\) 0 0
\(934\) 0.587293i 0.0192168i
\(935\) −17.6572 + 7.56388i −0.577453 + 0.247365i
\(936\) 0 0
\(937\) 8.03087 0.262357 0.131179 0.991359i \(-0.458124\pi\)
0.131179 + 0.991359i \(0.458124\pi\)
\(938\) 12.5384 6.68810i 0.409394 0.218374i
\(939\) 0 0
\(940\) −10.0000 23.3441i −0.326164 0.761402i
\(941\) 36.1670 1.17901 0.589505 0.807765i \(-0.299323\pi\)
0.589505 + 0.807765i \(0.299323\pi\)
\(942\) 0 0
\(943\) −28.5137 −0.928534
\(944\) −1.84778 −0.0601401
\(945\) 0 0
\(946\) 7.10102 0.230874
\(947\) −13.0218 −0.423153 −0.211577 0.977361i \(-0.567860\pi\)
−0.211577 + 0.977361i \(0.567860\pi\)
\(948\) 0 0
\(949\) −3.10102 −0.100663
\(950\) −19.1217 18.2234i −0.620389 0.591244i
\(951\) 0 0
\(952\) −36.2930 + 19.3590i −1.17626 + 0.627428i
\(953\) −27.7112 −0.897654 −0.448827 0.893619i \(-0.648158\pi\)
−0.448827 + 0.893619i \(0.648158\pi\)
\(954\) 0 0
\(955\) −19.7973 46.2152i −0.640626 1.49549i
\(956\) 20.2918i 0.656284i
\(957\) 0 0
\(958\) −28.5137 −0.921236
\(959\) 4.11084 + 7.70674i 0.132746 + 0.248864i
\(960\) 0 0
\(961\) 29.2929 0.944931
\(962\) 10.5658i 0.340656i
\(963\) 0 0
\(964\) 29.0680i 0.936217i
\(965\) 5.95862 + 13.9099i 0.191815 + 0.447775i
\(966\) 0 0
\(967\) 42.7031i 1.37324i 0.727017 + 0.686620i \(0.240906\pi\)
−0.727017 + 0.686620i \(0.759094\pi\)
\(968\) −23.0346 −0.740359
\(969\) 0 0
\(970\) 8.44949 3.61953i 0.271297 0.116216i
\(971\) −40.2778 −1.29258 −0.646288 0.763093i \(-0.723680\pi\)
−0.646288 + 0.763093i \(0.723680\pi\)
\(972\) 0 0
\(973\) 3.05009 1.62694i 0.0977815 0.0521574i
\(974\) 11.2495i 0.360457i
\(975\) 0 0
\(976\) 11.6272i 0.372178i
\(977\) −34.3139 −1.09780 −0.548900 0.835888i \(-0.684953\pi\)
−0.548900 + 0.835888i \(0.684953\pi\)
\(978\) 0 0
\(979\) 17.4408i 0.557411i
\(980\) −4.19662 + 22.2966i −0.134056 + 0.712239i
\(981\) 0 0
\(982\) 19.9366i 0.636203i
\(983\) 54.8480i 1.74938i −0.484684 0.874689i \(-0.661065\pi\)
0.484684 0.874689i \(-0.338935\pi\)
\(984\) 0 0
\(985\) 27.8282 11.9208i 0.886680 0.379830i
\(986\) −24.8517 −0.791439
\(987\) 0 0
\(988\) 57.1812i 1.81918i
\(989\) 32.3840i 1.02975i
\(990\) 0 0
\(991\) 23.7980 0.755967 0.377984 0.925812i \(-0.376618\pi\)
0.377984 + 0.925812i \(0.376618\pi\)
\(992\) 7.65753i 0.243127i
\(993\) 0 0
\(994\) −14.4495 + 7.70747i −0.458310 + 0.244466i
\(995\) −6.26922 14.6349i −0.198747 0.463959i
\(996\) 0 0
\(997\) −4.16950 −0.132049 −0.0660246 0.997818i \(-0.521032\pi\)
−0.0660246 + 0.997818i \(0.521032\pi\)
\(998\) −7.41964 −0.234865
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.g.a.314.10 yes 16
3.2 odd 2 inner 315.2.g.a.314.7 yes 16
4.3 odd 2 5040.2.k.g.1889.4 16
5.2 odd 4 1575.2.b.h.251.11 16
5.3 odd 4 1575.2.b.h.251.6 16
5.4 even 2 inner 315.2.g.a.314.5 16
7.6 odd 2 inner 315.2.g.a.314.11 yes 16
12.11 even 2 5040.2.k.g.1889.14 16
15.2 even 4 1575.2.b.h.251.7 16
15.8 even 4 1575.2.b.h.251.10 16
15.14 odd 2 inner 315.2.g.a.314.12 yes 16
20.19 odd 2 5040.2.k.g.1889.1 16
21.20 even 2 inner 315.2.g.a.314.6 yes 16
28.27 even 2 5040.2.k.g.1889.13 16
35.13 even 4 1575.2.b.h.251.5 16
35.27 even 4 1575.2.b.h.251.12 16
35.34 odd 2 inner 315.2.g.a.314.8 yes 16
60.59 even 2 5040.2.k.g.1889.15 16
84.83 odd 2 5040.2.k.g.1889.3 16
105.62 odd 4 1575.2.b.h.251.8 16
105.83 odd 4 1575.2.b.h.251.9 16
105.104 even 2 inner 315.2.g.a.314.9 yes 16
140.139 even 2 5040.2.k.g.1889.16 16
420.419 odd 2 5040.2.k.g.1889.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.g.a.314.5 16 5.4 even 2 inner
315.2.g.a.314.6 yes 16 21.20 even 2 inner
315.2.g.a.314.7 yes 16 3.2 odd 2 inner
315.2.g.a.314.8 yes 16 35.34 odd 2 inner
315.2.g.a.314.9 yes 16 105.104 even 2 inner
315.2.g.a.314.10 yes 16 1.1 even 1 trivial
315.2.g.a.314.11 yes 16 7.6 odd 2 inner
315.2.g.a.314.12 yes 16 15.14 odd 2 inner
1575.2.b.h.251.5 16 35.13 even 4
1575.2.b.h.251.6 16 5.3 odd 4
1575.2.b.h.251.7 16 15.2 even 4
1575.2.b.h.251.8 16 105.62 odd 4
1575.2.b.h.251.9 16 105.83 odd 4
1575.2.b.h.251.10 16 15.8 even 4
1575.2.b.h.251.11 16 5.2 odd 4
1575.2.b.h.251.12 16 35.27 even 4
5040.2.k.g.1889.1 16 20.19 odd 2
5040.2.k.g.1889.2 16 420.419 odd 2
5040.2.k.g.1889.3 16 84.83 odd 2
5040.2.k.g.1889.4 16 4.3 odd 2
5040.2.k.g.1889.13 16 28.27 even 2
5040.2.k.g.1889.14 16 12.11 even 2
5040.2.k.g.1889.15 16 60.59 even 2
5040.2.k.g.1889.16 16 140.139 even 2