Properties

Label 1575.2.d.e.1324.3
Level 15751575
Weight 22
Character 1575.1324
Analytic conductor 12.57612.576
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,2,Mod(1324,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1575.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.576438318412.5764383184
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,17)\Q(i, \sqrt{17})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9x2+16 x^{4} + 9x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1324.3
Root 1.56155i1.56155i of defining polynomial
Character χ\chi == 1575.1324
Dual form 1575.2.d.e.1324.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.56155iq20.438447q4+1.00000iq7+2.43845iq82.56155q11+4.56155iq131.56155q144.68466q164.56155iq171.12311q194.00000iq22+5.12311iq237.12311q260.438447iq285.68466q292.43845iq32+7.12311q346.00000iq371.75379iq38+3.12311q41+9.12311iq43+1.12311q448.00000q46+3.68466iq471.00000q492.00000iq523.12311iq532.43845q568.87689iq584.00000q599.36932q615.56155q64+6.24621iq67+2.00000iq688.00000q71+4.24621iq73+9.36932q74+0.492423q762.56155iq77+6.56155q79+4.87689iq824.00000iq8314.2462q866.24621iq88+7.12311q894.56155q912.24621iq925.75379q94+14.8078iq971.56155iq98+O(q100)q+1.56155i q^{2} -0.438447 q^{4} +1.00000i q^{7} +2.43845i q^{8} -2.56155 q^{11} +4.56155i q^{13} -1.56155 q^{14} -4.68466 q^{16} -4.56155i q^{17} -1.12311 q^{19} -4.00000i q^{22} +5.12311i q^{23} -7.12311 q^{26} -0.438447i q^{28} -5.68466 q^{29} -2.43845i q^{32} +7.12311 q^{34} -6.00000i q^{37} -1.75379i q^{38} +3.12311 q^{41} +9.12311i q^{43} +1.12311 q^{44} -8.00000 q^{46} +3.68466i q^{47} -1.00000 q^{49} -2.00000i q^{52} -3.12311i q^{53} -2.43845 q^{56} -8.87689i q^{58} -4.00000 q^{59} -9.36932 q^{61} -5.56155 q^{64} +6.24621i q^{67} +2.00000i q^{68} -8.00000 q^{71} +4.24621i q^{73} +9.36932 q^{74} +0.492423 q^{76} -2.56155i q^{77} +6.56155 q^{79} +4.87689i q^{82} -4.00000i q^{83} -14.2462 q^{86} -6.24621i q^{88} +7.12311 q^{89} -4.56155 q^{91} -2.24621i q^{92} -5.75379 q^{94} +14.8078i q^{97} -1.56155i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q10q42q11+2q14+6q16+12q1912q26+2q29+12q344q4112q4432q464q4918q5616q59+12q6114q6432q7112q74+56q94+O(q100) 4 q - 10 q^{4} - 2 q^{11} + 2 q^{14} + 6 q^{16} + 12 q^{19} - 12 q^{26} + 2 q^{29} + 12 q^{34} - 4 q^{41} - 12 q^{44} - 32 q^{46} - 4 q^{49} - 18 q^{56} - 16 q^{59} + 12 q^{61} - 14 q^{64} - 32 q^{71} - 12 q^{74}+ \cdots - 56 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1575Z)×\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times.

nn 127127 451451 12261226
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.56155i 1.10418i 0.833783 + 0.552092i 0.186170π0.186170\pi
−0.833783 + 0.552092i 0.813830π0.813830\pi
33 0 0
44 −0.438447 −0.219224
55 0 0
66 0 0
77 1.00000i 0.377964i
88 2.43845i 0.862121i
99 0 0
1010 0 0
1111 −2.56155 −0.772337 −0.386169 0.922428i 0.626202π-0.626202\pi
−0.386169 + 0.922428i 0.626202π0.626202\pi
1212 0 0
1313 4.56155i 1.26515i 0.774500 + 0.632574i 0.218001π0.218001\pi
−0.774500 + 0.632574i 0.781999π0.781999\pi
1414 −1.56155 −0.417343
1515 0 0
1616 −4.68466 −1.17116
1717 − 4.56155i − 1.10634i −0.833069 0.553170i 0.813418π-0.813418\pi
0.833069 0.553170i 0.186582π-0.186582\pi
1818 0 0
1919 −1.12311 −0.257658 −0.128829 0.991667i 0.541122π-0.541122\pi
−0.128829 + 0.991667i 0.541122π0.541122\pi
2020 0 0
2121 0 0
2222 − 4.00000i − 0.852803i
2323 5.12311i 1.06824i 0.845408 + 0.534121i 0.179357π0.179357\pi
−0.845408 + 0.534121i 0.820643π0.820643\pi
2424 0 0
2525 0 0
2626 −7.12311 −1.39696
2727 0 0
2828 − 0.438447i − 0.0828587i
2929 −5.68466 −1.05561 −0.527807 0.849364i 0.676986π-0.676986\pi
−0.527807 + 0.849364i 0.676986π0.676986\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 − 2.43845i − 0.431061i
3333 0 0
3434 7.12311 1.22160
3535 0 0
3636 0 0
3737 − 6.00000i − 0.986394i −0.869918 0.493197i 0.835828π-0.835828\pi
0.869918 0.493197i 0.164172π-0.164172\pi
3838 − 1.75379i − 0.284502i
3939 0 0
4040 0 0
4141 3.12311 0.487747 0.243874 0.969807i 0.421582π-0.421582\pi
0.243874 + 0.969807i 0.421582π0.421582\pi
4242 0 0
4343 9.12311i 1.39126i 0.718400 + 0.695630i 0.244875π0.244875\pi
−0.718400 + 0.695630i 0.755125π0.755125\pi
4444 1.12311 0.169315
4545 0 0
4646 −8.00000 −1.17954
4747 3.68466i 0.537463i 0.963215 + 0.268731i 0.0866044π0.0866044\pi
−0.963215 + 0.268731i 0.913396π0.913396\pi
4848 0 0
4949 −1.00000 −0.142857
5050 0 0
5151 0 0
5252 − 2.00000i − 0.277350i
5353 − 3.12311i − 0.428992i −0.976725 0.214496i 0.931189π-0.931189\pi
0.976725 0.214496i 0.0688108π-0.0688108\pi
5454 0 0
5555 0 0
5656 −2.43845 −0.325851
5757 0 0
5858 − 8.87689i − 1.16559i
5959 −4.00000 −0.520756 −0.260378 0.965507i 0.583847π-0.583847\pi
−0.260378 + 0.965507i 0.583847π0.583847\pi
6060 0 0
6161 −9.36932 −1.19962 −0.599809 0.800143i 0.704757π-0.704757\pi
−0.599809 + 0.800143i 0.704757π0.704757\pi
6262 0 0
6363 0 0
6464 −5.56155 −0.695194
6565 0 0
6666 0 0
6767 6.24621i 0.763096i 0.924349 + 0.381548i 0.124609π0.124609\pi
−0.924349 + 0.381548i 0.875391π0.875391\pi
6868 2.00000i 0.242536i
6969 0 0
7070 0 0
7171 −8.00000 −0.949425 −0.474713 0.880141i 0.657448π-0.657448\pi
−0.474713 + 0.880141i 0.657448π0.657448\pi
7272 0 0
7373 4.24621i 0.496981i 0.968634 + 0.248491i 0.0799345π0.0799345\pi
−0.968634 + 0.248491i 0.920065π0.920065\pi
7474 9.36932 1.08916
7575 0 0
7676 0.492423 0.0564847
7777 − 2.56155i − 0.291916i
7878 0 0
7979 6.56155 0.738232 0.369116 0.929383i 0.379660π-0.379660\pi
0.369116 + 0.929383i 0.379660π0.379660\pi
8080 0 0
8181 0 0
8282 4.87689i 0.538563i
8383 − 4.00000i − 0.439057i −0.975606 0.219529i 0.929548π-0.929548\pi
0.975606 0.219529i 0.0704519π-0.0704519\pi
8484 0 0
8585 0 0
8686 −14.2462 −1.53621
8787 0 0
8888 − 6.24621i − 0.665848i
8989 7.12311 0.755048 0.377524 0.926000i 0.376776π-0.376776\pi
0.377524 + 0.926000i 0.376776π0.376776\pi
9090 0 0
9191 −4.56155 −0.478181
9292 − 2.24621i − 0.234184i
9393 0 0
9494 −5.75379 −0.593458
9595 0 0
9696 0 0
9797 14.8078i 1.50350i 0.659448 + 0.751750i 0.270790π0.270790\pi
−0.659448 + 0.751750i 0.729210π0.729210\pi
9898 − 1.56155i − 0.157741i
9999 0 0
100100 0 0
101101 −0.246211 −0.0244989 −0.0122495 0.999925i 0.503899π-0.503899\pi
−0.0122495 + 0.999925i 0.503899π0.503899\pi
102102 0 0
103103 1.43845i 0.141734i 0.997486 + 0.0708672i 0.0225767π0.0225767\pi
−0.997486 + 0.0708672i 0.977423π0.977423\pi
104104 −11.1231 −1.09071
105105 0 0
106106 4.87689 0.473686
107107 − 11.3693i − 1.09911i −0.835456 0.549557i 0.814797π-0.814797\pi
0.835456 0.549557i 0.185203π-0.185203\pi
108108 0 0
109109 −17.6847 −1.69388 −0.846942 0.531686i 0.821559π-0.821559\pi
−0.846942 + 0.531686i 0.821559π0.821559\pi
110110 0 0
111111 0 0
112112 − 4.68466i − 0.442659i
113113 14.0000i 1.31701i 0.752577 + 0.658505i 0.228811π0.228811\pi
−0.752577 + 0.658505i 0.771189π0.771189\pi
114114 0 0
115115 0 0
116116 2.49242 0.231416
117117 0 0
118118 − 6.24621i − 0.575010i
119119 4.56155 0.418157
120120 0 0
121121 −4.43845 −0.403495
122122 − 14.6307i − 1.32460i
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 − 10.2462i − 0.909204i −0.890695 0.454602i 0.849781π-0.849781\pi
0.890695 0.454602i 0.150219π-0.150219\pi
128128 − 13.5616i − 1.19868i
129129 0 0
130130 0 0
131131 9.12311 0.797089 0.398545 0.917149i 0.369515π-0.369515\pi
0.398545 + 0.917149i 0.369515π0.369515\pi
132132 0 0
133133 − 1.12311i − 0.0973856i
134134 −9.75379 −0.842599
135135 0 0
136136 11.1231 0.953798
137137 − 8.87689i − 0.758404i −0.925314 0.379202i 0.876199π-0.876199\pi
0.925314 0.379202i 0.123801π-0.123801\pi
138138 0 0
139139 6.87689 0.583291 0.291645 0.956527i 0.405797π-0.405797\pi
0.291645 + 0.956527i 0.405797π0.405797\pi
140140 0 0
141141 0 0
142142 − 12.4924i − 1.04834i
143143 − 11.6847i − 0.977120i
144144 0 0
145145 0 0
146146 −6.63068 −0.548759
147147 0 0
148148 2.63068i 0.216241i
149149 −4.24621 −0.347863 −0.173932 0.984758i 0.555647π-0.555647\pi
−0.173932 + 0.984758i 0.555647π0.555647\pi
150150 0 0
151151 21.9309 1.78471 0.892354 0.451335i 0.149052π-0.149052\pi
0.892354 + 0.451335i 0.149052π0.149052\pi
152152 − 2.73863i − 0.222133i
153153 0 0
154154 4.00000 0.322329
155155 0 0
156156 0 0
157157 − 3.75379i − 0.299585i −0.988717 0.149792i 0.952139π-0.952139\pi
0.988717 0.149792i 0.0478606π-0.0478606\pi
158158 10.2462i 0.815145i
159159 0 0
160160 0 0
161161 −5.12311 −0.403757
162162 0 0
163163 1.12311i 0.0879684i 0.999032 + 0.0439842i 0.0140051π0.0140051\pi
−0.999032 + 0.0439842i 0.985995π0.985995\pi
164164 −1.36932 −0.106926
165165 0 0
166166 6.24621 0.484800
167167 21.9309i 1.69706i 0.529146 + 0.848531i 0.322512π0.322512\pi
−0.529146 + 0.848531i 0.677488π0.677488\pi
168168 0 0
169169 −7.80776 −0.600597
170170 0 0
171171 0 0
172172 − 4.00000i − 0.304997i
173173 8.56155i 0.650923i 0.945555 + 0.325461i 0.105520π0.105520\pi
−0.945555 + 0.325461i 0.894480π0.894480\pi
174174 0 0
175175 0 0
176176 12.0000 0.904534
177177 0 0
178178 11.1231i 0.833712i
179179 20.0000 1.49487 0.747435 0.664335i 0.231285π-0.231285\pi
0.747435 + 0.664335i 0.231285π0.231285\pi
180180 0 0
181181 23.6155 1.75533 0.877664 0.479276i 0.159101π-0.159101\pi
0.877664 + 0.479276i 0.159101π0.159101\pi
182182 − 7.12311i − 0.528000i
183183 0 0
184184 −12.4924 −0.920954
185185 0 0
186186 0 0
187187 11.6847i 0.854467i
188188 − 1.61553i − 0.117824i
189189 0 0
190190 0 0
191191 9.43845 0.682942 0.341471 0.939892i 0.389075π-0.389075\pi
0.341471 + 0.939892i 0.389075π0.389075\pi
192192 0 0
193193 − 5.36932i − 0.386492i −0.981150 0.193246i 0.938098π-0.938098\pi
0.981150 0.193246i 0.0619015π-0.0619015\pi
194194 −23.1231 −1.66014
195195 0 0
196196 0.438447 0.0313177
197197 − 7.12311i − 0.507500i −0.967270 0.253750i 0.918336π-0.918336\pi
0.967270 0.253750i 0.0816641π-0.0816641\pi
198198 0 0
199199 18.2462 1.29344 0.646720 0.762728i 0.276140π-0.276140\pi
0.646720 + 0.762728i 0.276140π0.276140\pi
200200 0 0
201201 0 0
202202 − 0.384472i − 0.0270513i
203203 − 5.68466i − 0.398985i
204204 0 0
205205 0 0
206206 −2.24621 −0.156501
207207 0 0
208208 − 21.3693i − 1.48170i
209209 2.87689 0.198999
210210 0 0
211211 −23.0540 −1.58710 −0.793551 0.608504i 0.791770π-0.791770\pi
−0.793551 + 0.608504i 0.791770π0.791770\pi
212212 1.36932i 0.0940451i
213213 0 0
214214 17.7538 1.21362
215215 0 0
216216 0 0
217217 0 0
218218 − 27.6155i − 1.87036i
219219 0 0
220220 0 0
221221 20.8078 1.39968
222222 0 0
223223 − 6.56155i − 0.439394i −0.975568 0.219697i 0.929493π-0.929493\pi
0.975568 0.219697i 0.0705069π-0.0705069\pi
224224 2.43845 0.162926
225225 0 0
226226 −21.8617 −1.45422
227227 23.6847i 1.57201i 0.618223 + 0.786003i 0.287853π0.287853\pi
−0.618223 + 0.786003i 0.712147π0.712147\pi
228228 0 0
229229 −19.1231 −1.26369 −0.631845 0.775095i 0.717702π-0.717702\pi
−0.631845 + 0.775095i 0.717702π0.717702\pi
230230 0 0
231231 0 0
232232 − 13.8617i − 0.910068i
233233 3.12311i 0.204601i 0.994754 + 0.102301i 0.0326204π0.0326204\pi
−0.994754 + 0.102301i 0.967380π0.967380\pi
234234 0 0
235235 0 0
236236 1.75379 0.114162
237237 0 0
238238 7.12311i 0.461722i
239239 −0.807764 −0.0522499 −0.0261250 0.999659i 0.508317π-0.508317\pi
−0.0261250 + 0.999659i 0.508317π0.508317\pi
240240 0 0
241241 12.2462 0.788848 0.394424 0.918929i 0.370944π-0.370944\pi
0.394424 + 0.918929i 0.370944π0.370944\pi
242242 − 6.93087i − 0.445533i
243243 0 0
244244 4.10795 0.262985
245245 0 0
246246 0 0
247247 − 5.12311i − 0.325975i
248248 0 0
249249 0 0
250250 0 0
251251 17.1231 1.08080 0.540400 0.841408i 0.318273π-0.318273\pi
0.540400 + 0.841408i 0.318273π0.318273\pi
252252 0 0
253253 − 13.1231i − 0.825043i
254254 16.0000 1.00393
255255 0 0
256256 10.0540 0.628373
257257 22.4924i 1.40304i 0.712650 + 0.701519i 0.247495π0.247495\pi
−0.712650 + 0.701519i 0.752505π0.752505\pi
258258 0 0
259259 6.00000 0.372822
260260 0 0
261261 0 0
262262 14.2462i 0.880134i
263263 21.1231i 1.30251i 0.758860 + 0.651253i 0.225756π0.225756\pi
−0.758860 + 0.651253i 0.774244π0.774244\pi
264264 0 0
265265 0 0
266266 1.75379 0.107532
267267 0 0
268268 − 2.73863i − 0.167289i
269269 28.7386 1.75223 0.876113 0.482106i 0.160128π-0.160128\pi
0.876113 + 0.482106i 0.160128π0.160128\pi
270270 0 0
271271 −16.0000 −0.971931 −0.485965 0.873978i 0.661532π-0.661532\pi
−0.485965 + 0.873978i 0.661532π0.661532\pi
272272 21.3693i 1.29571i
273273 0 0
274274 13.8617 0.837418
275275 0 0
276276 0 0
277277 − 16.2462i − 0.976140i −0.872804 0.488070i 0.837701π-0.837701\pi
0.872804 0.488070i 0.162299π-0.162299\pi
278278 10.7386i 0.644060i
279279 0 0
280280 0 0
281281 −16.5616 −0.987979 −0.493990 0.869468i 0.664462π-0.664462\pi
−0.493990 + 0.869468i 0.664462π0.664462\pi
282282 0 0
283283 − 23.6847i − 1.40791i −0.710246 0.703953i 0.751416π-0.751416\pi
0.710246 0.703953i 0.248584π-0.248584\pi
284284 3.50758 0.208136
285285 0 0
286286 18.2462 1.07892
287287 3.12311i 0.184351i
288288 0 0
289289 −3.80776 −0.223986
290290 0 0
291291 0 0
292292 − 1.86174i − 0.108950i
293293 − 9.68466i − 0.565784i −0.959152 0.282892i 0.908706π-0.908706\pi
0.959152 0.282892i 0.0912938π-0.0912938\pi
294294 0 0
295295 0 0
296296 14.6307 0.850391
297297 0 0
298298 − 6.63068i − 0.384105i
299299 −23.3693 −1.35148
300300 0 0
301301 −9.12311 −0.525847
302302 34.2462i 1.97065i
303303 0 0
304304 5.26137 0.301760
305305 0 0
306306 0 0
307307 31.6847i 1.80834i 0.427174 + 0.904169i 0.359509π0.359509\pi
−0.427174 + 0.904169i 0.640491π0.640491\pi
308308 1.12311i 0.0639949i
309309 0 0
310310 0 0
311311 9.61553 0.545247 0.272623 0.962121i 0.412109π-0.412109\pi
0.272623 + 0.962121i 0.412109π0.412109\pi
312312 0 0
313313 31.3002i 1.76919i 0.466359 + 0.884596i 0.345566π0.345566\pi
−0.466359 + 0.884596i 0.654434π0.654434\pi
314314 5.86174 0.330797
315315 0 0
316316 −2.87689 −0.161838
317317 − 22.4924i − 1.26330i −0.775254 0.631650i 0.782378π-0.782378\pi
0.775254 0.631650i 0.217622π-0.217622\pi
318318 0 0
319319 14.5616 0.815290
320320 0 0
321321 0 0
322322 − 8.00000i − 0.445823i
323323 5.12311i 0.285057i
324324 0 0
325325 0 0
326326 −1.75379 −0.0971334
327327 0 0
328328 7.61553i 0.420497i
329329 −3.68466 −0.203142
330330 0 0
331331 12.0000 0.659580 0.329790 0.944054i 0.393022π-0.393022\pi
0.329790 + 0.944054i 0.393022π0.393022\pi
332332 1.75379i 0.0962517i
333333 0 0
334334 −34.2462 −1.87387
335335 0 0
336336 0 0
337337 34.4924i 1.87892i 0.342656 + 0.939461i 0.388674π0.388674\pi
−0.342656 + 0.939461i 0.611326π0.611326\pi
338338 − 12.1922i − 0.663170i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 − 1.00000i − 0.0539949i
344344 −22.2462 −1.19944
345345 0 0
346346 −13.3693 −0.718739
347347 − 1.12311i − 0.0602915i −0.999546 0.0301457i 0.990403π-0.990403\pi
0.999546 0.0301457i 0.00959714π-0.00959714\pi
348348 0 0
349349 22.4924 1.20399 0.601996 0.798499i 0.294372π-0.294372\pi
0.601996 + 0.798499i 0.294372π0.294372\pi
350350 0 0
351351 0 0
352352 6.24621i 0.332924i
353353 14.8078i 0.788138i 0.919081 + 0.394069i 0.128933π0.128933\pi
−0.919081 + 0.394069i 0.871067π0.871067\pi
354354 0 0
355355 0 0
356356 −3.12311 −0.165524
357357 0 0
358358 31.2311i 1.65061i
359359 8.00000 0.422224 0.211112 0.977462i 0.432292π-0.432292\pi
0.211112 + 0.977462i 0.432292π0.432292\pi
360360 0 0
361361 −17.7386 −0.933612
362362 36.8769i 1.93821i
363363 0 0
364364 2.00000 0.104828
365365 0 0
366366 0 0
367367 − 3.68466i − 0.192338i −0.995365 0.0961688i 0.969341π-0.969341\pi
0.995365 0.0961688i 0.0306589π-0.0306589\pi
368368 − 24.0000i − 1.25109i
369369 0 0
370370 0 0
371371 3.12311 0.162144
372372 0 0
373373 29.3693i 1.52069i 0.649522 + 0.760343i 0.274969π0.274969\pi
−0.649522 + 0.760343i 0.725031π0.725031\pi
374374 −18.2462 −0.943489
375375 0 0
376376 −8.98485 −0.463358
377377 − 25.9309i − 1.33551i
378378 0 0
379379 −16.4924 −0.847159 −0.423579 0.905859i 0.639227π-0.639227\pi
−0.423579 + 0.905859i 0.639227π0.639227\pi
380380 0 0
381381 0 0
382382 14.7386i 0.754094i
383383 10.2462i 0.523557i 0.965128 + 0.261778i 0.0843090π0.0843090\pi
−0.965128 + 0.261778i 0.915691π0.915691\pi
384384 0 0
385385 0 0
386386 8.38447 0.426758
387387 0 0
388388 − 6.49242i − 0.329603i
389389 3.93087 0.199303 0.0996515 0.995022i 0.468227π-0.468227\pi
0.0996515 + 0.995022i 0.468227π0.468227\pi
390390 0 0
391391 23.3693 1.18184
392392 − 2.43845i − 0.123160i
393393 0 0
394394 11.1231 0.560374
395395 0 0
396396 0 0
397397 − 23.4384i − 1.17634i −0.808737 0.588171i 0.799848π-0.799848\pi
0.808737 0.588171i 0.200152π-0.200152\pi
398398 28.4924i 1.42820i
399399 0 0
400400 0 0
401401 −27.4384 −1.37021 −0.685105 0.728444i 0.740244π-0.740244\pi
−0.685105 + 0.728444i 0.740244π0.740244\pi
402402 0 0
403403 0 0
404404 0.107951 0.00537074
405405 0 0
406406 8.87689 0.440553
407407 15.3693i 0.761829i
408408 0 0
409409 26.4924 1.30997 0.654983 0.755644i 0.272676π-0.272676\pi
0.654983 + 0.755644i 0.272676π0.272676\pi
410410 0 0
411411 0 0
412412 − 0.630683i − 0.0310715i
413413 − 4.00000i − 0.196827i
414414 0 0
415415 0 0
416416 11.1231 0.545355
417417 0 0
418418 4.49242i 0.219732i
419419 9.75379 0.476504 0.238252 0.971203i 0.423426π-0.423426\pi
0.238252 + 0.971203i 0.423426π0.423426\pi
420420 0 0
421421 9.68466 0.472001 0.236001 0.971753i 0.424163π-0.424163\pi
0.236001 + 0.971753i 0.424163π0.424163\pi
422422 − 36.0000i − 1.75245i
423423 0 0
424424 7.61553 0.369843
425425 0 0
426426 0 0
427427 − 9.36932i − 0.453413i
428428 4.98485i 0.240952i
429429 0 0
430430 0 0
431431 −0.807764 −0.0389086 −0.0194543 0.999811i 0.506193π-0.506193\pi
−0.0194543 + 0.999811i 0.506193π0.506193\pi
432432 0 0
433433 − 8.24621i − 0.396288i −0.980173 0.198144i 0.936509π-0.936509\pi
0.980173 0.198144i 0.0634913π-0.0634913\pi
434434 0 0
435435 0 0
436436 7.75379 0.371339
437437 − 5.75379i − 0.275241i
438438 0 0
439439 15.3693 0.733537 0.366769 0.930312i 0.380464π-0.380464\pi
0.366769 + 0.930312i 0.380464π0.380464\pi
440440 0 0
441441 0 0
442442 32.4924i 1.54551i
443443 27.3693i 1.30036i 0.759782 + 0.650178i 0.225306π0.225306\pi
−0.759782 + 0.650178i 0.774694π0.774694\pi
444444 0 0
445445 0 0
446446 10.2462 0.485172
447447 0 0
448448 − 5.56155i − 0.262759i
449449 18.8078 0.887593 0.443797 0.896128i 0.353631π-0.353631\pi
0.443797 + 0.896128i 0.353631π0.353631\pi
450450 0 0
451451 −8.00000 −0.376705
452452 − 6.13826i − 0.288719i
453453 0 0
454454 −36.9848 −1.73578
455455 0 0
456456 0 0
457457 8.87689i 0.415244i 0.978209 + 0.207622i 0.0665723π0.0665723\pi
−0.978209 + 0.207622i 0.933428π0.933428\pi
458458 − 29.8617i − 1.39535i
459459 0 0
460460 0 0
461461 4.87689 0.227140 0.113570 0.993530i 0.463771π-0.463771\pi
0.113570 + 0.993530i 0.463771π0.463771\pi
462462 0 0
463463 − 20.4924i − 0.952364i −0.879347 0.476182i 0.842020π-0.842020\pi
0.879347 0.476182i 0.157980π-0.157980\pi
464464 26.6307 1.23630
465465 0 0
466466 −4.87689 −0.225918
467467 26.5616i 1.22912i 0.788869 + 0.614561i 0.210667π0.210667\pi
−0.788869 + 0.614561i 0.789333π0.789333\pi
468468 0 0
469469 −6.24621 −0.288423
470470 0 0
471471 0 0
472472 − 9.75379i − 0.448955i
473473 − 23.3693i − 1.07452i
474474 0 0
475475 0 0
476476 −2.00000 −0.0916698
477477 0 0
478478 − 1.26137i − 0.0576935i
479479 13.1231 0.599610 0.299805 0.954001i 0.403078π-0.403078\pi
0.299805 + 0.954001i 0.403078π0.403078\pi
480480 0 0
481481 27.3693 1.24793
482482 19.1231i 0.871034i
483483 0 0
484484 1.94602 0.0884557
485485 0 0
486486 0 0
487487 − 5.12311i − 0.232150i −0.993240 0.116075i 0.962969π-0.962969\pi
0.993240 0.116075i 0.0370313π-0.0370313\pi
488488 − 22.8466i − 1.03422i
489489 0 0
490490 0 0
491491 −4.17708 −0.188509 −0.0942545 0.995548i 0.530047π-0.530047\pi
−0.0942545 + 0.995548i 0.530047π0.530047\pi
492492 0 0
493493 25.9309i 1.16787i
494494 8.00000 0.359937
495495 0 0
496496 0 0
497497 − 8.00000i − 0.358849i
498498 0 0
499499 4.17708 0.186992 0.0934959 0.995620i 0.470196π-0.470196\pi
0.0934959 + 0.995620i 0.470196π0.470196\pi
500500 0 0
501501 0 0
502502 26.7386i 1.19340i
503503 − 10.0691i − 0.448960i −0.974479 0.224480i 0.927932π-0.927932\pi
0.974479 0.224480i 0.0720684π-0.0720684\pi
504504 0 0
505505 0 0
506506 20.4924 0.910999
507507 0 0
508508 4.49242i 0.199319i
509509 −28.2462 −1.25199 −0.625996 0.779827i 0.715307π-0.715307\pi
−0.625996 + 0.779827i 0.715307π0.715307\pi
510510 0 0
511511 −4.24621 −0.187841
512512 − 11.4233i − 0.504843i
513513 0 0
514514 −35.1231 −1.54921
515515 0 0
516516 0 0
517517 − 9.43845i − 0.415102i
518518 9.36932i 0.411664i
519519 0 0
520520 0 0
521521 −10.0000 −0.438108 −0.219054 0.975713i 0.570297π-0.570297\pi
−0.219054 + 0.975713i 0.570297π0.570297\pi
522522 0 0
523523 7.50758i 0.328283i 0.986437 + 0.164142i 0.0524854π0.0524854\pi
−0.986437 + 0.164142i 0.947515π0.947515\pi
524524 −4.00000 −0.174741
525525 0 0
526526 −32.9848 −1.43821
527527 0 0
528528 0 0
529529 −3.24621 −0.141140
530530 0 0
531531 0 0
532532 0.492423i 0.0213492i
533533 14.2462i 0.617072i
534534 0 0
535535 0 0
536536 −15.2311 −0.657881
537537 0 0
538538 44.8769i 1.93478i
539539 2.56155 0.110334
540540 0 0
541541 −17.1922 −0.739152 −0.369576 0.929201i 0.620497π-0.620497\pi
−0.369576 + 0.929201i 0.620497π0.620497\pi
542542 − 24.9848i − 1.07319i
543543 0 0
544544 −11.1231 −0.476899
545545 0 0
546546 0 0
547547 − 14.2462i − 0.609124i −0.952493 0.304562i 0.901490π-0.901490\pi
0.952493 0.304562i 0.0985101π-0.0985101\pi
548548 3.89205i 0.166260i
549549 0 0
550550 0 0
551551 6.38447 0.271988
552552 0 0
553553 6.56155i 0.279026i
554554 25.3693 1.07784
555555 0 0
556556 −3.01515 −0.127871
557557 − 4.87689i − 0.206641i −0.994648 0.103320i 0.967053π-0.967053\pi
0.994648 0.103320i 0.0329467π-0.0329467\pi
558558 0 0
559559 −41.6155 −1.76015
560560 0 0
561561 0 0
562562 − 25.8617i − 1.09091i
563563 28.0000i 1.18006i 0.807382 + 0.590030i 0.200884π0.200884\pi
−0.807382 + 0.590030i 0.799116π0.799116\pi
564564 0 0
565565 0 0
566566 36.9848 1.55459
567567 0 0
568568 − 19.5076i − 0.818520i
569569 34.9848 1.46664 0.733320 0.679883i 0.237969π-0.237969\pi
0.733320 + 0.679883i 0.237969π0.237969\pi
570570 0 0
571571 7.50758 0.314182 0.157091 0.987584i 0.449788π-0.449788\pi
0.157091 + 0.987584i 0.449788π0.449788\pi
572572 5.12311i 0.214208i
573573 0 0
574574 −4.87689 −0.203558
575575 0 0
576576 0 0
577577 − 13.0540i − 0.543444i −0.962376 0.271722i 0.912407π-0.912407\pi
0.962376 0.271722i 0.0875931π-0.0875931\pi
578578 − 5.94602i − 0.247322i
579579 0 0
580580 0 0
581581 4.00000 0.165948
582582 0 0
583583 8.00000i 0.331326i
584584 −10.3542 −0.428458
585585 0 0
586586 15.1231 0.624730
587587 − 9.75379i − 0.402582i −0.979531 0.201291i 0.935486π-0.935486\pi
0.979531 0.201291i 0.0645137π-0.0645137\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 28.1080i 1.15523i
593593 23.4384i 0.962502i 0.876583 + 0.481251i 0.159817π0.159817\pi
−0.876583 + 0.481251i 0.840183π0.840183\pi
594594 0 0
595595 0 0
596596 1.86174 0.0762598
597597 0 0
598598 − 36.4924i − 1.49229i
599599 8.80776 0.359875 0.179938 0.983678i 0.442410π-0.442410\pi
0.179938 + 0.983678i 0.442410π0.442410\pi
600600 0 0
601601 −26.4924 −1.08065 −0.540324 0.841457i 0.681698π-0.681698\pi
−0.540324 + 0.841457i 0.681698π0.681698\pi
602602 − 14.2462i − 0.580632i
603603 0 0
604604 −9.61553 −0.391250
605605 0 0
606606 0 0
607607 4.94602i 0.200753i 0.994950 + 0.100376i 0.0320047π0.0320047\pi
−0.994950 + 0.100376i 0.967995π0.967995\pi
608608 2.73863i 0.111066i
609609 0 0
610610 0 0
611611 −16.8078 −0.679969
612612 0 0
613613 − 8.73863i − 0.352950i −0.984305 0.176475i 0.943531π-0.943531\pi
0.984305 0.176475i 0.0564695π-0.0564695\pi
614614 −49.4773 −1.99674
615615 0 0
616616 6.24621 0.251667
617617 15.7538i 0.634224i 0.948388 + 0.317112i 0.102713π0.102713\pi
−0.948388 + 0.317112i 0.897287π0.897287\pi
618618 0 0
619619 42.1080 1.69246 0.846231 0.532817i 0.178866π-0.178866\pi
0.846231 + 0.532817i 0.178866π0.178866\pi
620620 0 0
621621 0 0
622622 15.0152i 0.602053i
623623 7.12311i 0.285381i
624624 0 0
625625 0 0
626626 −48.8769 −1.95351
627627 0 0
628628 1.64584i 0.0656761i
629629 −27.3693 −1.09129
630630 0 0
631631 8.80776 0.350632 0.175316 0.984512i 0.443905π-0.443905\pi
0.175316 + 0.984512i 0.443905π0.443905\pi
632632 16.0000i 0.636446i
633633 0 0
634634 35.1231 1.39492
635635 0 0
636636 0 0
637637 − 4.56155i − 0.180735i
638638 22.7386i 0.900231i
639639 0 0
640640 0 0
641641 −2.00000 −0.0789953 −0.0394976 0.999220i 0.512576π-0.512576\pi
−0.0394976 + 0.999220i 0.512576π0.512576\pi
642642 0 0
643643 − 2.56155i − 0.101018i −0.998724 0.0505089i 0.983916π-0.983916\pi
0.998724 0.0505089i 0.0160843π-0.0160843\pi
644644 2.24621 0.0885131
645645 0 0
646646 −8.00000 −0.314756
647647 3.50758i 0.137897i 0.997620 + 0.0689486i 0.0219644π0.0219644\pi
−0.997620 + 0.0689486i 0.978036π0.978036\pi
648648 0 0
649649 10.2462 0.402199
650650 0 0
651651 0 0
652652 − 0.492423i − 0.0192848i
653653 − 49.2311i − 1.92656i −0.268499 0.963280i 0.586527π-0.586527\pi
0.268499 0.963280i 0.413473π-0.413473\pi
654654 0 0
655655 0 0
656656 −14.6307 −0.571232
657657 0 0
658658 − 5.75379i − 0.224306i
659659 −36.1771 −1.40926 −0.704629 0.709575i 0.748887π-0.748887\pi
−0.704629 + 0.709575i 0.748887π0.748887\pi
660660 0 0
661661 3.12311 0.121475 0.0607374 0.998154i 0.480655π-0.480655\pi
0.0607374 + 0.998154i 0.480655π0.480655\pi
662662 18.7386i 0.728298i
663663 0 0
664664 9.75379 0.378520
665665 0 0
666666 0 0
667667 − 29.1231i − 1.12765i
668668 − 9.61553i − 0.372036i
669669 0 0
670670 0 0
671671 24.0000 0.926510
672672 0 0
673673 − 25.8617i − 0.996897i −0.866919 0.498448i 0.833903π-0.833903\pi
0.866919 0.498448i 0.166097π-0.166097\pi
674674 −53.8617 −2.07468
675675 0 0
676676 3.42329 0.131665
677677 − 23.9309i − 0.919738i −0.887987 0.459869i 0.847896π-0.847896\pi
0.887987 0.459869i 0.152104π-0.152104\pi
678678 0 0
679679 −14.8078 −0.568270
680680 0 0
681681 0 0
682682 0 0
683683 − 42.7386i − 1.63535i −0.575681 0.817674i 0.695263π-0.695263\pi
0.575681 0.817674i 0.304737π-0.304737\pi
684684 0 0
685685 0 0
686686 1.56155 0.0596204
687687 0 0
688688 − 42.7386i − 1.62940i
689689 14.2462 0.542737
690690 0 0
691691 8.49242 0.323067 0.161533 0.986867i 0.448356π-0.448356\pi
0.161533 + 0.986867i 0.448356π0.448356\pi
692692 − 3.75379i − 0.142698i
693693 0 0
694694 1.75379 0.0665729
695695 0 0
696696 0 0
697697 − 14.2462i − 0.539614i
698698 35.1231i 1.32943i
699699 0 0
700700 0 0
701701 −0.0691303 −0.00261102 −0.00130551 0.999999i 0.500416π-0.500416\pi
−0.00130551 + 0.999999i 0.500416π0.500416\pi
702702 0 0
703703 6.73863i 0.254152i
704704 14.2462 0.536924
705705 0 0
706706 −23.1231 −0.870250
707707 − 0.246211i − 0.00925973i
708708 0 0
709709 18.1771 0.682655 0.341327 0.939945i 0.389124π-0.389124\pi
0.341327 + 0.939945i 0.389124π0.389124\pi
710710 0 0
711711 0 0
712712 17.3693i 0.650943i
713713 0 0
714714 0 0
715715 0 0
716716 −8.76894 −0.327711
717717 0 0
718718 12.4924i 0.466213i
719719 49.6155 1.85035 0.925173 0.379544i 0.123919π-0.123919\pi
0.925173 + 0.379544i 0.123919π0.123919\pi
720720 0 0
721721 −1.43845 −0.0535706
722722 − 27.6998i − 1.03088i
723723 0 0
724724 −10.3542 −0.384809
725725 0 0
726726 0 0
727727 − 19.5076i − 0.723496i −0.932276 0.361748i 0.882180π-0.882180\pi
0.932276 0.361748i 0.117820π-0.117820\pi
728728 − 11.1231i − 0.412250i
729729 0 0
730730 0 0
731731 41.6155 1.53921
732732 0 0
733733 − 5.68466i − 0.209968i −0.994474 0.104984i 0.966521π-0.966521\pi
0.994474 0.104984i 0.0334791π-0.0334791\pi
734734 5.75379 0.212376
735735 0 0
736736 12.4924 0.460477
737737 − 16.0000i − 0.589368i
738738 0 0
739739 −6.06913 −0.223257 −0.111628 0.993750i 0.535607π-0.535607\pi
−0.111628 + 0.993750i 0.535607π0.535607\pi
740740 0 0
741741 0 0
742742 4.87689i 0.179036i
743743 − 32.9848i − 1.21010i −0.796189 0.605048i 0.793154π-0.793154\pi
0.796189 0.605048i 0.206846π-0.206846\pi
744744 0 0
745745 0 0
746746 −45.8617 −1.67912
747747 0 0
748748 − 5.12311i − 0.187319i
749749 11.3693 0.415426
750750 0 0
751751 45.9309 1.67604 0.838021 0.545639i 0.183713π-0.183713\pi
0.838021 + 0.545639i 0.183713π0.183713\pi
752752 − 17.2614i − 0.629457i
753753 0 0
754754 40.4924 1.47465
755755 0 0
756756 0 0
757757 − 14.6307i − 0.531761i −0.964006 0.265881i 0.914337π-0.914337\pi
0.964006 0.265881i 0.0856627π-0.0856627\pi
758758 − 25.7538i − 0.935420i
759759 0 0
760760 0 0
761761 −31.7538 −1.15107 −0.575537 0.817776i 0.695207π-0.695207\pi
−0.575537 + 0.817776i 0.695207π0.695207\pi
762762 0 0
763763 − 17.6847i − 0.640228i
764764 −4.13826 −0.149717
765765 0 0
766766 −16.0000 −0.578103
767767 − 18.2462i − 0.658833i
768768 0 0
769769 9.50758 0.342852 0.171426 0.985197i 0.445163π-0.445163\pi
0.171426 + 0.985197i 0.445163π0.445163\pi
770770 0 0
771771 0 0
772772 2.35416i 0.0847281i
773773 − 8.06913i − 0.290226i −0.989415 0.145113i 0.953645π-0.953645\pi
0.989415 0.145113i 0.0463546π-0.0463546\pi
774774 0 0
775775 0 0
776776 −36.1080 −1.29620
777777 0 0
778778 6.13826i 0.220067i
779779 −3.50758 −0.125672
780780 0 0
781781 20.4924 0.733277
782782 36.4924i 1.30497i
783783 0 0
784784 4.68466 0.167309
785785 0 0
786786 0 0
787787 3.82292i 0.136272i 0.997676 + 0.0681362i 0.0217052π0.0217052\pi
−0.997676 + 0.0681362i 0.978295π0.978295\pi
788788 3.12311i 0.111256i
789789 0 0
790790 0 0
791791 −14.0000 −0.497783
792792 0 0
793793 − 42.7386i − 1.51769i
794794 36.6004 1.29890
795795 0 0
796796 −8.00000 −0.283552
797797 − 13.0540i − 0.462396i −0.972907 0.231198i 0.925736π-0.925736\pi
0.972907 0.231198i 0.0742644π-0.0742644\pi
798798 0 0
799799 16.8078 0.594616
800800 0 0
801801 0 0
802802 − 42.8466i − 1.51297i
803803 − 10.8769i − 0.383837i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 − 0.600373i − 0.0211211i
809809 −53.5464 −1.88259 −0.941296 0.337584i 0.890390π-0.890390\pi
−0.941296 + 0.337584i 0.890390π0.890390\pi
810810 0 0
811811 −21.6155 −0.759024 −0.379512 0.925187i 0.623908π-0.623908\pi
−0.379512 + 0.925187i 0.623908π0.623908\pi
812812 2.49242i 0.0874669i
813813 0 0
814814 −24.0000 −0.841200
815815 0 0
816816 0 0
817817 − 10.2462i − 0.358470i
818818 41.3693i 1.44644i
819819 0 0
820820 0 0
821821 −40.4233 −1.41078 −0.705391 0.708818i 0.749229π-0.749229\pi
−0.705391 + 0.708818i 0.749229π0.749229\pi
822822 0 0
823823 − 3.50758i − 0.122266i −0.998130 0.0611332i 0.980529π-0.980529\pi
0.998130 0.0611332i 0.0194715π-0.0194715\pi
824824 −3.50758 −0.122192
825825 0 0
826826 6.24621 0.217333
827827 19.3693i 0.673537i 0.941587 + 0.336769i 0.109334π0.109334\pi
−0.941587 + 0.336769i 0.890666π0.890666\pi
828828 0 0
829829 −43.1231 −1.49773 −0.748864 0.662724i 0.769400π-0.769400\pi
−0.748864 + 0.662724i 0.769400π0.769400\pi
830830 0 0
831831 0 0
832832 − 25.3693i − 0.879523i
833833 4.56155i 0.158048i
834834 0 0
835835 0 0
836836 −1.26137 −0.0436253
837837 0 0
838838 15.2311i 0.526148i
839839 −37.1231 −1.28163 −0.640816 0.767695i 0.721404π-0.721404\pi
−0.640816 + 0.767695i 0.721404π0.721404\pi
840840 0 0
841841 3.31534 0.114322
842842 15.1231i 0.521177i
843843 0 0
844844 10.1080 0.347930
845845 0 0
846846 0 0
847847 − 4.43845i − 0.152507i
848848 14.6307i 0.502420i
849849 0 0
850850 0 0
851851 30.7386 1.05371
852852 0 0
853853 − 56.7386i − 1.94269i −0.237666 0.971347i 0.576382π-0.576382\pi
0.237666 0.971347i 0.423618π-0.423618\pi
854854 14.6307 0.500652
855855 0 0
856856 27.7235 0.947569
857857 − 32.2462i − 1.10151i −0.834667 0.550755i 0.814340π-0.814340\pi
0.834667 0.550755i 0.185660π-0.185660\pi
858858 0 0
859859 −16.4924 −0.562714 −0.281357 0.959603i 0.590785π-0.590785\pi
−0.281357 + 0.959603i 0.590785π0.590785\pi
860860 0 0
861861 0 0
862862 − 1.26137i − 0.0429623i
863863 42.2462i 1.43808i 0.694970 + 0.719039i 0.255418π0.255418\pi
−0.694970 + 0.719039i 0.744582π0.744582\pi
864864 0 0
865865 0 0
866866 12.8769 0.437575
867867 0 0
868868 0 0
869869 −16.8078 −0.570164
870870 0 0
871871 −28.4924 −0.965429
872872 − 43.1231i − 1.46033i
873873 0 0
874874 8.98485 0.303917
875875 0 0
876876 0 0
877877 23.7538i 0.802108i 0.916054 + 0.401054i 0.131356π0.131356\pi
−0.916054 + 0.401054i 0.868644π0.868644\pi
878878 24.0000i 0.809961i
879879 0 0
880880 0 0
881881 −45.8617 −1.54512 −0.772561 0.634941i 0.781024π-0.781024\pi
−0.772561 + 0.634941i 0.781024π0.781024\pi
882882 0 0
883883 24.4924i 0.824236i 0.911131 + 0.412118i 0.135211π0.135211\pi
−0.911131 + 0.412118i 0.864789π0.864789\pi
884884 −9.12311 −0.306843
885885 0 0
886886 −42.7386 −1.43583
887887 − 12.4924i − 0.419454i −0.977760 0.209727i 0.932742π-0.932742\pi
0.977760 0.209727i 0.0672576π-0.0672576\pi
888888 0 0
889889 10.2462 0.343647
890890 0 0
891891 0 0
892892 2.87689i 0.0963255i
893893 − 4.13826i − 0.138482i
894894 0 0
895895 0 0
896896 13.5616 0.453060
897897 0 0
898898 29.3693i 0.980067i
899899 0 0
900900 0 0
901901 −14.2462 −0.474610
902902 − 12.4924i − 0.415952i
903903 0 0
904904 −34.1383 −1.13542
905905 0 0
906906 0 0
907907 − 50.1080i − 1.66381i −0.554920 0.831904i 0.687251π-0.687251\pi
0.554920 0.831904i 0.312749π-0.312749\pi
908908 − 10.3845i − 0.344621i
909909 0 0
910910 0 0
911911 −4.49242 −0.148841 −0.0744203 0.997227i 0.523711π-0.523711\pi
−0.0744203 + 0.997227i 0.523711π0.523711\pi
912912 0 0
913913 10.2462i 0.339100i
914914 −13.8617 −0.458506
915915 0 0
916916 8.38447 0.277031
917917 9.12311i 0.301271i
918918 0 0
919919 13.3002 0.438733 0.219366 0.975643i 0.429601π-0.429601\pi
0.219366 + 0.975643i 0.429601π0.429601\pi
920920 0 0
921921 0 0
922922 7.61553i 0.250804i
923923 − 36.4924i − 1.20116i
924924 0 0
925925 0 0
926926 32.0000 1.05159
927927 0 0
928928 13.8617i 0.455034i
929929 −52.1080 −1.70961 −0.854803 0.518952i 0.826322π-0.826322\pi
−0.854803 + 0.518952i 0.826322π0.826322\pi
930930 0 0
931931 1.12311 0.0368083
932932 − 1.36932i − 0.0448535i
933933 0 0
934934 −41.4773 −1.35718
935935 0 0
936936 0 0
937937 − 22.6695i − 0.740580i −0.928916 0.370290i 0.879258π-0.879258\pi
0.928916 0.370290i 0.120742π-0.120742\pi
938938 − 9.75379i − 0.318472i
939939 0 0
940940 0 0
941941 13.8617 0.451880 0.225940 0.974141i 0.427455π-0.427455\pi
0.225940 + 0.974141i 0.427455π0.427455\pi
942942 0 0
943943 16.0000i 0.521032i
944944 18.7386 0.609891
945945 0 0
946946 36.4924 1.18647
947947 4.00000i 0.129983i 0.997886 + 0.0649913i 0.0207020π0.0207020\pi
−0.997886 + 0.0649913i 0.979298π0.979298\pi
948948 0 0
949949 −19.3693 −0.628755
950950 0 0
951951 0 0
952952 11.1231i 0.360502i
953953 24.8769i 0.805842i 0.915235 + 0.402921i 0.132005π0.132005\pi
−0.915235 + 0.402921i 0.867995π0.867995\pi
954954 0 0
955955 0 0
956956 0.354162 0.0114544
957957 0 0
958958 20.4924i 0.662080i
959959 8.87689 0.286650
960960 0 0
961961 −31.0000 −1.00000
962962 42.7386i 1.37795i
963963 0 0
964964 −5.36932 −0.172934
965965 0 0
966966 0 0
967967 26.8769i 0.864303i 0.901801 + 0.432151i 0.142245π0.142245\pi
−0.901801 + 0.432151i 0.857755π0.857755\pi
968968 − 10.8229i − 0.347862i
969969 0 0
970970 0 0
971971 49.4773 1.58780 0.793901 0.608048i 0.208047π-0.208047\pi
0.793901 + 0.608048i 0.208047π0.208047\pi
972972 0 0
973973 6.87689i 0.220463i
974974 8.00000 0.256337
975975 0 0
976976 43.8920 1.40495
977977 − 49.2311i − 1.57504i −0.616288 0.787521i 0.711364π-0.711364\pi
0.616288 0.787521i 0.288636π-0.288636\pi
978978 0 0
979979 −18.2462 −0.583151
980980 0 0
981981 0 0
982982 − 6.52273i − 0.208149i
983983 10.4233i 0.332451i 0.986088 + 0.166226i 0.0531580π0.0531580\pi
−0.986088 + 0.166226i 0.946842π0.946842\pi
984984 0 0
985985 0 0
986986 −40.4924 −1.28954
987987 0 0
988988 2.24621i 0.0714615i
989989 −46.7386 −1.48620
990990 0 0
991991 −20.4924 −0.650963 −0.325482 0.945548i 0.605526π-0.605526\pi
−0.325482 + 0.945548i 0.605526π0.605526\pi
992992 0 0
993993 0 0
994994 12.4924 0.396236
995995 0 0
996996 0 0
997997 − 9.68466i − 0.306716i −0.988171 0.153358i 0.950991π-0.950991\pi
0.988171 0.153358i 0.0490088π-0.0490088\pi
998998 6.52273i 0.206473i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.d.e.1324.3 4
3.2 odd 2 175.2.b.b.99.2 4
5.2 odd 4 315.2.a.e.1.1 2
5.3 odd 4 1575.2.a.p.1.2 2
5.4 even 2 inner 1575.2.d.e.1324.2 4
12.11 even 2 2800.2.g.t.449.4 4
15.2 even 4 35.2.a.b.1.2 2
15.8 even 4 175.2.a.f.1.1 2
15.14 odd 2 175.2.b.b.99.3 4
20.7 even 4 5040.2.a.bt.1.2 2
21.20 even 2 1225.2.b.f.99.2 4
35.27 even 4 2205.2.a.x.1.1 2
60.23 odd 4 2800.2.a.bi.1.1 2
60.47 odd 4 560.2.a.i.1.2 2
60.59 even 2 2800.2.g.t.449.1 4
105.2 even 12 245.2.e.i.116.1 4
105.17 odd 12 245.2.e.h.226.1 4
105.32 even 12 245.2.e.i.226.1 4
105.47 odd 12 245.2.e.h.116.1 4
105.62 odd 4 245.2.a.d.1.2 2
105.83 odd 4 1225.2.a.s.1.1 2
105.104 even 2 1225.2.b.f.99.3 4
120.77 even 4 2240.2.a.bh.1.2 2
120.107 odd 4 2240.2.a.bd.1.1 2
165.32 odd 4 4235.2.a.m.1.1 2
195.77 even 4 5915.2.a.l.1.1 2
420.167 even 4 3920.2.a.bs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.a.b.1.2 2 15.2 even 4
175.2.a.f.1.1 2 15.8 even 4
175.2.b.b.99.2 4 3.2 odd 2
175.2.b.b.99.3 4 15.14 odd 2
245.2.a.d.1.2 2 105.62 odd 4
245.2.e.h.116.1 4 105.47 odd 12
245.2.e.h.226.1 4 105.17 odd 12
245.2.e.i.116.1 4 105.2 even 12
245.2.e.i.226.1 4 105.32 even 12
315.2.a.e.1.1 2 5.2 odd 4
560.2.a.i.1.2 2 60.47 odd 4
1225.2.a.s.1.1 2 105.83 odd 4
1225.2.b.f.99.2 4 21.20 even 2
1225.2.b.f.99.3 4 105.104 even 2
1575.2.a.p.1.2 2 5.3 odd 4
1575.2.d.e.1324.2 4 5.4 even 2 inner
1575.2.d.e.1324.3 4 1.1 even 1 trivial
2205.2.a.x.1.1 2 35.27 even 4
2240.2.a.bd.1.1 2 120.107 odd 4
2240.2.a.bh.1.2 2 120.77 even 4
2800.2.a.bi.1.1 2 60.23 odd 4
2800.2.g.t.449.1 4 60.59 even 2
2800.2.g.t.449.4 4 12.11 even 2
3920.2.a.bs.1.1 2 420.167 even 4
4235.2.a.m.1.1 2 165.32 odd 4
5040.2.a.bt.1.2 2 20.7 even 4
5915.2.a.l.1.1 2 195.77 even 4