Properties

Label 1575.2.d.e.1324.4
Level 15751575
Weight 22
Character 1575.1324
Analytic conductor 12.57612.576
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,2,Mod(1324,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1575.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.576438318412.5764383184
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,17)\Q(i, \sqrt{17})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9x2+16 x^{4} + 9x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1324.4
Root 2.56155i2.56155i of defining polynomial
Character χ\chi == 1575.1324
Dual form 1575.2.d.e.1324.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.56155iq24.56155q41.00000iq76.56155iq8+1.56155q110.438447iq13+2.56155q14+7.68466q16+0.438447iq17+7.12311q19+4.00000iq22+3.12311iq23+1.12311q26+4.56155iq28+6.68466q29+6.56155iq321.12311q34+6.00000iq37+18.2462iq385.12311q410.876894iq437.12311q448.00000q46+8.68466iq471.00000q49+2.00000iq525.12311iq536.56155q56+17.1231iq584.00000q59+15.3693q611.43845q64+10.2462iq672.00000iq688.00000q71+12.2462iq7315.3693q7432.4924q761.56155iq77+2.43845q7913.1231iq82+4.00000iq83+2.24621q8610.2462iq881.12311q890.438447q9114.2462iq9222.2462q94+5.80776iq972.56155iq98+O(q100)q+2.56155i q^{2} -4.56155 q^{4} -1.00000i q^{7} -6.56155i q^{8} +1.56155 q^{11} -0.438447i q^{13} +2.56155 q^{14} +7.68466 q^{16} +0.438447i q^{17} +7.12311 q^{19} +4.00000i q^{22} +3.12311i q^{23} +1.12311 q^{26} +4.56155i q^{28} +6.68466 q^{29} +6.56155i q^{32} -1.12311 q^{34} +6.00000i q^{37} +18.2462i q^{38} -5.12311 q^{41} -0.876894i q^{43} -7.12311 q^{44} -8.00000 q^{46} +8.68466i q^{47} -1.00000 q^{49} +2.00000i q^{52} -5.12311i q^{53} -6.56155 q^{56} +17.1231i q^{58} -4.00000 q^{59} +15.3693 q^{61} -1.43845 q^{64} +10.2462i q^{67} -2.00000i q^{68} -8.00000 q^{71} +12.2462i q^{73} -15.3693 q^{74} -32.4924 q^{76} -1.56155i q^{77} +2.43845 q^{79} -13.1231i q^{82} +4.00000i q^{83} +2.24621 q^{86} -10.2462i q^{88} -1.12311 q^{89} -0.438447 q^{91} -14.2462i q^{92} -22.2462 q^{94} +5.80776i q^{97} -2.56155i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q10q42q11+2q14+6q16+12q1912q26+2q29+12q344q4112q4432q464q4918q5616q59+12q6114q6432q7112q74+56q94+O(q100) 4 q - 10 q^{4} - 2 q^{11} + 2 q^{14} + 6 q^{16} + 12 q^{19} - 12 q^{26} + 2 q^{29} + 12 q^{34} - 4 q^{41} - 12 q^{44} - 32 q^{46} - 4 q^{49} - 18 q^{56} - 16 q^{59} + 12 q^{61} - 14 q^{64} - 32 q^{71} - 12 q^{74}+ \cdots - 56 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1575Z)×\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times.

nn 127127 451451 12261226
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.56155i 1.81129i 0.424035 + 0.905646i 0.360613π0.360613\pi
−0.424035 + 0.905646i 0.639387π0.639387\pi
33 0 0
44 −4.56155 −2.28078
55 0 0
66 0 0
77 − 1.00000i − 0.377964i
88 − 6.56155i − 2.31986i
99 0 0
1010 0 0
1111 1.56155 0.470826 0.235413 0.971895i 0.424356π-0.424356\pi
0.235413 + 0.971895i 0.424356π0.424356\pi
1212 0 0
1313 − 0.438447i − 0.121603i −0.998150 0.0608017i 0.980634π-0.980634\pi
0.998150 0.0608017i 0.0193657π-0.0193657\pi
1414 2.56155 0.684604
1515 0 0
1616 7.68466 1.92116
1717 0.438447i 0.106339i 0.998586 + 0.0531695i 0.0169324π0.0169324\pi
−0.998586 + 0.0531695i 0.983068π0.983068\pi
1818 0 0
1919 7.12311 1.63415 0.817076 0.576530i 0.195593π-0.195593\pi
0.817076 + 0.576530i 0.195593π0.195593\pi
2020 0 0
2121 0 0
2222 4.00000i 0.852803i
2323 3.12311i 0.651213i 0.945505 + 0.325606i 0.105568π0.105568\pi
−0.945505 + 0.325606i 0.894432π0.894432\pi
2424 0 0
2525 0 0
2626 1.12311 0.220259
2727 0 0
2828 4.56155i 0.862052i
2929 6.68466 1.24131 0.620655 0.784084i 0.286867π-0.286867\pi
0.620655 + 0.784084i 0.286867π0.286867\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 6.56155i 1.15993i
3333 0 0
3434 −1.12311 −0.192611
3535 0 0
3636 0 0
3737 6.00000i 0.986394i 0.869918 + 0.493197i 0.164172π0.164172\pi
−0.869918 + 0.493197i 0.835828π0.835828\pi
3838 18.2462i 2.95993i
3939 0 0
4040 0 0
4141 −5.12311 −0.800095 −0.400047 0.916494i 0.631006π-0.631006\pi
−0.400047 + 0.916494i 0.631006π0.631006\pi
4242 0 0
4343 − 0.876894i − 0.133725i −0.997762 0.0668626i 0.978701π-0.978701\pi
0.997762 0.0668626i 0.0212989π-0.0212989\pi
4444 −7.12311 −1.07385
4545 0 0
4646 −8.00000 −1.17954
4747 8.68466i 1.26679i 0.773830 + 0.633394i 0.218339π0.218339\pi
−0.773830 + 0.633394i 0.781661π0.781661\pi
4848 0 0
4949 −1.00000 −0.142857
5050 0 0
5151 0 0
5252 2.00000i 0.277350i
5353 − 5.12311i − 0.703713i −0.936054 0.351856i 0.885551π-0.885551\pi
0.936054 0.351856i 0.114449π-0.114449\pi
5454 0 0
5555 0 0
5656 −6.56155 −0.876824
5757 0 0
5858 17.1231i 2.24837i
5959 −4.00000 −0.520756 −0.260378 0.965507i 0.583847π-0.583847\pi
−0.260378 + 0.965507i 0.583847π0.583847\pi
6060 0 0
6161 15.3693 1.96784 0.983920 0.178611i 0.0571605π-0.0571605\pi
0.983920 + 0.178611i 0.0571605π0.0571605\pi
6262 0 0
6363 0 0
6464 −1.43845 −0.179806
6565 0 0
6666 0 0
6767 10.2462i 1.25177i 0.779914 + 0.625887i 0.215263π0.215263\pi
−0.779914 + 0.625887i 0.784737π0.784737\pi
6868 − 2.00000i − 0.242536i
6969 0 0
7070 0 0
7171 −8.00000 −0.949425 −0.474713 0.880141i 0.657448π-0.657448\pi
−0.474713 + 0.880141i 0.657448π0.657448\pi
7272 0 0
7373 12.2462i 1.43331i 0.697428 + 0.716655i 0.254328π0.254328\pi
−0.697428 + 0.716655i 0.745672π0.745672\pi
7474 −15.3693 −1.78665
7575 0 0
7676 −32.4924 −3.72714
7777 − 1.56155i − 0.177955i
7878 0 0
7979 2.43845 0.274347 0.137173 0.990547i 0.456198π-0.456198\pi
0.137173 + 0.990547i 0.456198π0.456198\pi
8080 0 0
8181 0 0
8282 − 13.1231i − 1.44920i
8383 4.00000i 0.439057i 0.975606 + 0.219529i 0.0704519π0.0704519\pi
−0.975606 + 0.219529i 0.929548π0.929548\pi
8484 0 0
8585 0 0
8686 2.24621 0.242215
8787 0 0
8888 − 10.2462i − 1.09225i
8989 −1.12311 −0.119049 −0.0595245 0.998227i 0.518958π-0.518958\pi
−0.0595245 + 0.998227i 0.518958π0.518958\pi
9090 0 0
9191 −0.438447 −0.0459618
9292 − 14.2462i − 1.48527i
9393 0 0
9494 −22.2462 −2.29452
9595 0 0
9696 0 0
9797 5.80776i 0.589689i 0.955545 + 0.294845i 0.0952679π0.0952679\pi
−0.955545 + 0.294845i 0.904732π0.904732\pi
9898 − 2.56155i − 0.258756i
9999 0 0
100100 0 0
101101 16.2462 1.61656 0.808279 0.588799i 0.200399π-0.200399\pi
0.808279 + 0.588799i 0.200399π0.200399\pi
102102 0 0
103103 − 5.56155i − 0.547996i −0.961730 0.273998i 0.911654π-0.911654\pi
0.961730 0.273998i 0.0883462π-0.0883462\pi
104104 −2.87689 −0.282103
105105 0 0
106106 13.1231 1.27463
107107 − 13.3693i − 1.29246i −0.763142 0.646230i 0.776345π-0.776345\pi
0.763142 0.646230i 0.223655π-0.223655\pi
108108 0 0
109109 −5.31534 −0.509117 −0.254559 0.967057i 0.581930π-0.581930\pi
−0.254559 + 0.967057i 0.581930π0.581930\pi
110110 0 0
111111 0 0
112112 − 7.68466i − 0.726132i
113113 − 14.0000i − 1.31701i −0.752577 0.658505i 0.771189π-0.771189\pi
0.752577 0.658505i 0.228811π-0.228811\pi
114114 0 0
115115 0 0
116116 −30.4924 −2.83115
117117 0 0
118118 − 10.2462i − 0.943240i
119119 0.438447 0.0401924
120120 0 0
121121 −8.56155 −0.778323
122122 39.3693i 3.56433i
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 − 6.24621i − 0.554262i −0.960832 0.277131i 0.910616π-0.910616\pi
0.960832 0.277131i 0.0893835π-0.0893835\pi
128128 9.43845i 0.834249i
129129 0 0
130130 0 0
131131 0.876894 0.0766146 0.0383073 0.999266i 0.487803π-0.487803\pi
0.0383073 + 0.999266i 0.487803π0.487803\pi
132132 0 0
133133 − 7.12311i − 0.617652i
134134 −26.2462 −2.26733
135135 0 0
136136 2.87689 0.246692
137137 17.1231i 1.46293i 0.681881 + 0.731463i 0.261162π0.261162\pi
−0.681881 + 0.731463i 0.738838π0.738838\pi
138138 0 0
139139 15.1231 1.28273 0.641363 0.767238i 0.278369π-0.278369\pi
0.641363 + 0.767238i 0.278369π0.278369\pi
140140 0 0
141141 0 0
142142 − 20.4924i − 1.71969i
143143 − 0.684658i − 0.0572540i
144144 0 0
145145 0 0
146146 −31.3693 −2.59614
147147 0 0
148148 − 27.3693i − 2.24974i
149149 12.2462 1.00325 0.501624 0.865086i 0.332736π-0.332736\pi
0.501624 + 0.865086i 0.332736π0.332736\pi
150150 0 0
151151 −6.93087 −0.564026 −0.282013 0.959411i 0.591002π-0.591002\pi
−0.282013 + 0.959411i 0.591002π0.591002\pi
152152 − 46.7386i − 3.79100i
153153 0 0
154154 4.00000 0.322329
155155 0 0
156156 0 0
157157 20.2462i 1.61582i 0.589303 + 0.807912i 0.299402π0.299402\pi
−0.589303 + 0.807912i 0.700598π0.700598\pi
158158 6.24621i 0.496922i
159159 0 0
160160 0 0
161161 3.12311 0.246135
162162 0 0
163163 7.12311i 0.557925i 0.960302 + 0.278962i 0.0899905π0.0899905\pi
−0.960302 + 0.278962i 0.910010π0.910010\pi
164164 23.3693 1.82484
165165 0 0
166166 −10.2462 −0.795260
167167 6.93087i 0.536327i 0.963373 + 0.268163i 0.0864167π0.0864167\pi
−0.963373 + 0.268163i 0.913583π0.913583\pi
168168 0 0
169169 12.8078 0.985213
170170 0 0
171171 0 0
172172 4.00000i 0.304997i
173173 − 4.43845i − 0.337449i −0.985663 0.168724i 0.946035π-0.946035\pi
0.985663 0.168724i 0.0539648π-0.0539648\pi
174174 0 0
175175 0 0
176176 12.0000 0.904534
177177 0 0
178178 − 2.87689i − 0.215632i
179179 20.0000 1.49487 0.747435 0.664335i 0.231285π-0.231285\pi
0.747435 + 0.664335i 0.231285π0.231285\pi
180180 0 0
181181 −17.6155 −1.30935 −0.654676 0.755910i 0.727195π-0.727195\pi
−0.654676 + 0.755910i 0.727195π0.727195\pi
182182 − 1.12311i − 0.0832501i
183183 0 0
184184 20.4924 1.51072
185185 0 0
186186 0 0
187187 0.684658i 0.0500672i
188188 − 39.6155i − 2.88926i
189189 0 0
190190 0 0
191191 13.5616 0.981280 0.490640 0.871363i 0.336763π-0.336763\pi
0.490640 + 0.871363i 0.336763π0.336763\pi
192192 0 0
193193 − 19.3693i − 1.39423i −0.716957 0.697117i 0.754466π-0.754466\pi
0.716957 0.697117i 0.245534π-0.245534\pi
194194 −14.8769 −1.06810
195195 0 0
196196 4.56155 0.325825
197197 − 1.12311i − 0.0800180i −0.999199 0.0400090i 0.987261π-0.987261\pi
0.999199 0.0400090i 0.0127387π-0.0127387\pi
198198 0 0
199199 1.75379 0.124323 0.0621614 0.998066i 0.480201π-0.480201\pi
0.0621614 + 0.998066i 0.480201π0.480201\pi
200200 0 0
201201 0 0
202202 41.6155i 2.92806i
203203 − 6.68466i − 0.469171i
204204 0 0
205205 0 0
206206 14.2462 0.992581
207207 0 0
208208 − 3.36932i − 0.233620i
209209 11.1231 0.769401
210210 0 0
211211 14.0540 0.967516 0.483758 0.875202i 0.339272π-0.339272\pi
0.483758 + 0.875202i 0.339272π0.339272\pi
212212 23.3693i 1.60501i
213213 0 0
214214 34.2462 2.34102
215215 0 0
216216 0 0
217217 0 0
218218 − 13.6155i − 0.922160i
219219 0 0
220220 0 0
221221 0.192236 0.0129312
222222 0 0
223223 2.43845i 0.163291i 0.996661 + 0.0816453i 0.0260175π0.0260175\pi
−0.996661 + 0.0816453i 0.973983π0.973983\pi
224224 6.56155 0.438412
225225 0 0
226226 35.8617 2.38549
227227 − 11.3153i − 0.751026i −0.926817 0.375513i 0.877467π-0.877467\pi
0.926817 0.375513i 0.122533π-0.122533\pi
228228 0 0
229229 −10.8769 −0.718765 −0.359383 0.933190i 0.617013π-0.617013\pi
−0.359383 + 0.933190i 0.617013π0.617013\pi
230230 0 0
231231 0 0
232232 − 43.8617i − 2.87966i
233233 5.12311i 0.335626i 0.985819 + 0.167813i 0.0536704π0.0536704\pi
−0.985819 + 0.167813i 0.946330π0.946330\pi
234234 0 0
235235 0 0
236236 18.2462 1.18773
237237 0 0
238238 1.12311i 0.0728001i
239239 19.8078 1.28126 0.640629 0.767851i 0.278674π-0.278674\pi
0.640629 + 0.767851i 0.278674π0.278674\pi
240240 0 0
241241 −4.24621 −0.273523 −0.136761 0.990604i 0.543669π-0.543669\pi
−0.136761 + 0.990604i 0.543669π0.543669\pi
242242 − 21.9309i − 1.40977i
243243 0 0
244244 −70.1080 −4.48820
245245 0 0
246246 0 0
247247 − 3.12311i − 0.198718i
248248 0 0
249249 0 0
250250 0 0
251251 8.87689 0.560305 0.280152 0.959956i 0.409615π-0.409615\pi
0.280152 + 0.959956i 0.409615π0.409615\pi
252252 0 0
253253 4.87689i 0.306608i
254254 16.0000 1.00393
255255 0 0
256256 −27.0540 −1.69087
257257 10.4924i 0.654499i 0.944938 + 0.327250i 0.106122π0.106122\pi
−0.944938 + 0.327250i 0.893878π0.893878\pi
258258 0 0
259259 6.00000 0.372822
260260 0 0
261261 0 0
262262 2.24621i 0.138771i
263263 − 12.8769i − 0.794023i −0.917814 0.397012i 0.870047π-0.870047\pi
0.917814 0.397012i 0.129953π-0.129953\pi
264264 0 0
265265 0 0
266266 18.2462 1.11875
267267 0 0
268268 − 46.7386i − 2.85502i
269269 −20.7386 −1.26446 −0.632228 0.774782i 0.717860π-0.717860\pi
−0.632228 + 0.774782i 0.717860π0.717860\pi
270270 0 0
271271 −16.0000 −0.971931 −0.485965 0.873978i 0.661532π-0.661532\pi
−0.485965 + 0.873978i 0.661532π0.661532\pi
272272 3.36932i 0.204295i
273273 0 0
274274 −43.8617 −2.64978
275275 0 0
276276 0 0
277277 − 0.246211i − 0.0147934i −0.999973 0.00739670i 0.997646π-0.997646\pi
0.999973 0.00739670i 0.00235446π-0.00235446\pi
278278 38.7386i 2.32339i
279279 0 0
280280 0 0
281281 −12.4384 −0.742016 −0.371008 0.928630i 0.620988π-0.620988\pi
−0.371008 + 0.928630i 0.620988π0.620988\pi
282282 0 0
283283 11.3153i 0.672627i 0.941750 + 0.336314i 0.109180π0.109180\pi
−0.941750 + 0.336314i 0.890820π0.890820\pi
284284 36.4924 2.16543
285285 0 0
286286 1.75379 0.103704
287287 5.12311i 0.302407i
288288 0 0
289289 16.8078 0.988692
290290 0 0
291291 0 0
292292 − 55.8617i − 3.26906i
293293 − 2.68466i − 0.156839i −0.996920 0.0784197i 0.975013π-0.975013\pi
0.996920 0.0784197i 0.0249874π-0.0249874\pi
294294 0 0
295295 0 0
296296 39.3693 2.28830
297297 0 0
298298 31.3693i 1.81718i
299299 1.36932 0.0791896
300300 0 0
301301 −0.876894 −0.0505434
302302 − 17.7538i − 1.02162i
303303 0 0
304304 54.7386 3.13948
305305 0 0
306306 0 0
307307 − 19.3153i − 1.10238i −0.834378 0.551192i 0.814173π-0.814173\pi
0.834378 0.551192i 0.185827π-0.185827\pi
308308 7.12311i 0.405877i
309309 0 0
310310 0 0
311311 −31.6155 −1.79275 −0.896376 0.443294i 0.853810π-0.853810\pi
−0.896376 + 0.443294i 0.853810π0.853810\pi
312312 0 0
313313 22.3002i 1.26048i 0.776400 + 0.630241i 0.217044π0.217044\pi
−0.776400 + 0.630241i 0.782956π0.782956\pi
314314 −51.8617 −2.92673
315315 0 0
316316 −11.1231 −0.625724
317317 − 10.4924i − 0.589313i −0.955603 0.294657i 0.904795π-0.904795\pi
0.955603 0.294657i 0.0952053π-0.0952053\pi
318318 0 0
319319 10.4384 0.584441
320320 0 0
321321 0 0
322322 8.00000i 0.445823i
323323 3.12311i 0.173774i
324324 0 0
325325 0 0
326326 −18.2462 −1.01056
327327 0 0
328328 33.6155i 1.85611i
329329 8.68466 0.478801
330330 0 0
331331 12.0000 0.659580 0.329790 0.944054i 0.393022π-0.393022\pi
0.329790 + 0.944054i 0.393022π0.393022\pi
332332 − 18.2462i − 1.00139i
333333 0 0
334334 −17.7538 −0.971444
335335 0 0
336336 0 0
337337 − 1.50758i − 0.0821230i −0.999157 0.0410615i 0.986926π-0.986926\pi
0.999157 0.0410615i 0.0130740π-0.0130740\pi
338338 32.8078i 1.78451i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000i 0.0539949i
344344 −5.75379 −0.310223
345345 0 0
346346 11.3693 0.611218
347347 − 7.12311i − 0.382388i −0.981552 0.191194i 0.938764π-0.938764\pi
0.981552 0.191194i 0.0612360π-0.0612360\pi
348348 0 0
349349 −10.4924 −0.561646 −0.280823 0.959760i 0.590607π-0.590607\pi
−0.280823 + 0.959760i 0.590607π0.590607\pi
350350 0 0
351351 0 0
352352 10.2462i 0.546125i
353353 5.80776i 0.309116i 0.987984 + 0.154558i 0.0493954π0.0493954\pi
−0.987984 + 0.154558i 0.950605π0.950605\pi
354354 0 0
355355 0 0
356356 5.12311 0.271524
357357 0 0
358358 51.2311i 2.70765i
359359 8.00000 0.422224 0.211112 0.977462i 0.432292π-0.432292\pi
0.211112 + 0.977462i 0.432292π0.432292\pi
360360 0 0
361361 31.7386 1.67045
362362 − 45.1231i − 2.37162i
363363 0 0
364364 2.00000 0.104828
365365 0 0
366366 0 0
367367 − 8.68466i − 0.453335i −0.973972 0.226668i 0.927217π-0.927217\pi
0.973972 0.226668i 0.0727831π-0.0727831\pi
368368 24.0000i 1.25109i
369369 0 0
370370 0 0
371371 −5.12311 −0.265978
372372 0 0
373373 − 4.63068i − 0.239768i −0.992788 0.119884i 0.961748π-0.961748\pi
0.992788 0.119884i 0.0382522π-0.0382522\pi
374374 −1.75379 −0.0906863
375375 0 0
376376 56.9848 2.93877
377377 − 2.93087i − 0.150947i
378378 0 0
379379 16.4924 0.847159 0.423579 0.905859i 0.360773π-0.360773\pi
0.423579 + 0.905859i 0.360773π0.360773\pi
380380 0 0
381381 0 0
382382 34.7386i 1.77738i
383383 6.24621i 0.319166i 0.987184 + 0.159583i 0.0510150π0.0510150\pi
−0.987184 + 0.159583i 0.948985π0.948985\pi
384384 0 0
385385 0 0
386386 49.6155 2.52536
387387 0 0
388388 − 26.4924i − 1.34495i
389389 −24.9309 −1.26405 −0.632023 0.774950i 0.717775π-0.717775\pi
−0.632023 + 0.774950i 0.717775π0.717775\pi
390390 0 0
391391 −1.36932 −0.0692493
392392 6.56155i 0.331408i
393393 0 0
394394 2.87689 0.144936
395395 0 0
396396 0 0
397397 27.5616i 1.38327i 0.722245 + 0.691637i 0.243110π0.243110\pi
−0.722245 + 0.691637i 0.756890π0.756890\pi
398398 4.49242i 0.225185i
399399 0 0
400400 0 0
401401 −31.5616 −1.57611 −0.788054 0.615606i 0.788911π-0.788911\pi
−0.788054 + 0.615606i 0.788911π0.788911\pi
402402 0 0
403403 0 0
404404 −74.1080 −3.68701
405405 0 0
406406 17.1231 0.849805
407407 9.36932i 0.464420i
408408 0 0
409409 −6.49242 −0.321030 −0.160515 0.987033i 0.551315π-0.551315\pi
−0.160515 + 0.987033i 0.551315π0.551315\pi
410410 0 0
411411 0 0
412412 25.3693i 1.24986i
413413 4.00000i 0.196827i
414414 0 0
415415 0 0
416416 2.87689 0.141051
417417 0 0
418418 28.4924i 1.39361i
419419 26.2462 1.28221 0.641106 0.767453i 0.278476π-0.278476\pi
0.641106 + 0.767453i 0.278476π0.278476\pi
420420 0 0
421421 −2.68466 −0.130842 −0.0654211 0.997858i 0.520839π-0.520839\pi
−0.0654211 + 0.997858i 0.520839π0.520839\pi
422422 36.0000i 1.75245i
423423 0 0
424424 −33.6155 −1.63251
425425 0 0
426426 0 0
427427 − 15.3693i − 0.743773i
428428 60.9848i 2.94781i
429429 0 0
430430 0 0
431431 19.8078 0.954106 0.477053 0.878874i 0.341705π-0.341705\pi
0.477053 + 0.878874i 0.341705π0.341705\pi
432432 0 0
433433 − 8.24621i − 0.396288i −0.980173 0.198144i 0.936509π-0.936509\pi
0.980173 0.198144i 0.0634913π-0.0634913\pi
434434 0 0
435435 0 0
436436 24.2462 1.16118
437437 22.2462i 1.06418i
438438 0 0
439439 −9.36932 −0.447173 −0.223587 0.974684i 0.571777π-0.571777\pi
−0.223587 + 0.974684i 0.571777π0.571777\pi
440440 0 0
441441 0 0
442442 0.492423i 0.0234221i
443443 − 2.63068i − 0.124988i −0.998045 0.0624938i 0.980095π-0.980095\pi
0.998045 0.0624938i 0.0199054π-0.0199054\pi
444444 0 0
445445 0 0
446446 −6.24621 −0.295767
447447 0 0
448448 1.43845i 0.0679602i
449449 −1.80776 −0.0853137 −0.0426568 0.999090i 0.513582π-0.513582\pi
−0.0426568 + 0.999090i 0.513582π0.513582\pi
450450 0 0
451451 −8.00000 −0.376705
452452 63.8617i 3.00380i
453453 0 0
454454 28.9848 1.36033
455455 0 0
456456 0 0
457457 − 17.1231i − 0.800985i −0.916300 0.400493i 0.868839π-0.868839\pi
0.916300 0.400493i 0.131161π-0.131161\pi
458458 − 27.8617i − 1.30189i
459459 0 0
460460 0 0
461461 13.1231 0.611204 0.305602 0.952159i 0.401142π-0.401142\pi
0.305602 + 0.952159i 0.401142π0.401142\pi
462462 0 0
463463 − 12.4924i − 0.580572i −0.956940 0.290286i 0.906250π-0.906250\pi
0.956940 0.290286i 0.0937505π-0.0937505\pi
464464 51.3693 2.38476
465465 0 0
466466 −13.1231 −0.607916
467467 − 22.4384i − 1.03833i −0.854675 0.519164i 0.826243π-0.826243\pi
0.854675 0.519164i 0.173757π-0.173757\pi
468468 0 0
469469 10.2462 0.473126
470470 0 0
471471 0 0
472472 26.2462i 1.20808i
473473 − 1.36932i − 0.0629613i
474474 0 0
475475 0 0
476476 −2.00000 −0.0916698
477477 0 0
478478 50.7386i 2.32073i
479479 4.87689 0.222831 0.111415 0.993774i 0.464462π-0.464462\pi
0.111415 + 0.993774i 0.464462π0.464462\pi
480480 0 0
481481 2.63068 0.119949
482482 − 10.8769i − 0.495429i
483483 0 0
484484 39.0540 1.77518
485485 0 0
486486 0 0
487487 − 3.12311i − 0.141521i −0.997493 0.0707607i 0.977457π-0.977457\pi
0.997493 0.0707607i 0.0225427π-0.0225427\pi
488488 − 100.847i − 4.56511i
489489 0 0
490490 0 0
491491 41.1771 1.85830 0.929148 0.369708i 0.120542π-0.120542\pi
0.929148 + 0.369708i 0.120542π0.120542\pi
492492 0 0
493493 2.93087i 0.132000i
494494 8.00000 0.359937
495495 0 0
496496 0 0
497497 8.00000i 0.358849i
498498 0 0
499499 −41.1771 −1.84334 −0.921670 0.387976i 0.873174π-0.873174\pi
−0.921670 + 0.387976i 0.873174π0.873174\pi
500500 0 0
501501 0 0
502502 22.7386i 1.01487i
503503 38.9309i 1.73584i 0.496703 + 0.867921i 0.334544π0.334544\pi
−0.496703 + 0.867921i 0.665456π0.665456\pi
504504 0 0
505505 0 0
506506 −12.4924 −0.555356
507507 0 0
508508 28.4924i 1.26415i
509509 −11.7538 −0.520978 −0.260489 0.965477i 0.583884π-0.583884\pi
−0.260489 + 0.965477i 0.583884π0.583884\pi
510510 0 0
511511 12.2462 0.541740
512512 − 50.4233i − 2.22842i
513513 0 0
514514 −26.8769 −1.18549
515515 0 0
516516 0 0
517517 13.5616i 0.596436i
518518 15.3693i 0.675289i
519519 0 0
520520 0 0
521521 −10.0000 −0.438108 −0.219054 0.975713i 0.570297π-0.570297\pi
−0.219054 + 0.975713i 0.570297π0.570297\pi
522522 0 0
523523 − 40.4924i − 1.77061i −0.465011 0.885305i 0.653950π-0.653950\pi
0.465011 0.885305i 0.346050π-0.346050\pi
524524 −4.00000 −0.174741
525525 0 0
526526 32.9848 1.43821
527527 0 0
528528 0 0
529529 13.2462 0.575922
530530 0 0
531531 0 0
532532 32.4924i 1.40873i
533533 2.24621i 0.0972942i
534534 0 0
535535 0 0
536536 67.2311 2.90394
537537 0 0
538538 − 53.1231i − 2.29030i
539539 −1.56155 −0.0672608
540540 0 0
541541 −37.8078 −1.62548 −0.812741 0.582625i 0.802026π-0.802026\pi
−0.812741 + 0.582625i 0.802026π0.802026\pi
542542 − 40.9848i − 1.76045i
543543 0 0
544544 −2.87689 −0.123346
545545 0 0
546546 0 0
547547 − 2.24621i − 0.0960411i −0.998846 0.0480205i 0.984709π-0.984709\pi
0.998846 0.0480205i 0.0152913π-0.0152913\pi
548548 − 78.1080i − 3.33661i
549549 0 0
550550 0 0
551551 47.6155 2.02849
552552 0 0
553553 − 2.43845i − 0.103693i
554554 0.630683 0.0267952
555555 0 0
556556 −68.9848 −2.92561
557557 13.1231i 0.556044i 0.960575 + 0.278022i 0.0896788π0.0896788\pi
−0.960575 + 0.278022i 0.910321π0.910321\pi
558558 0 0
559559 −0.384472 −0.0162614
560560 0 0
561561 0 0
562562 − 31.8617i − 1.34401i
563563 − 28.0000i − 1.18006i −0.807382 0.590030i 0.799116π-0.799116\pi
0.807382 0.590030i 0.200884π-0.200884\pi
564564 0 0
565565 0 0
566566 −28.9848 −1.21832
567567 0 0
568568 52.4924i 2.20253i
569569 −30.9848 −1.29895 −0.649476 0.760382i 0.725012π-0.725012\pi
−0.649476 + 0.760382i 0.725012π0.725012\pi
570570 0 0
571571 40.4924 1.69456 0.847278 0.531150i 0.178240π-0.178240\pi
0.847278 + 0.531150i 0.178240π0.178240\pi
572572 3.12311i 0.130584i
573573 0 0
574574 −13.1231 −0.547748
575575 0 0
576576 0 0
577577 − 24.0540i − 1.00138i −0.865627 0.500690i 0.833080π-0.833080\pi
0.865627 0.500690i 0.166920π-0.166920\pi
578578 43.0540i 1.79081i
579579 0 0
580580 0 0
581581 4.00000 0.165948
582582 0 0
583583 − 8.00000i − 0.331326i
584584 80.3542 3.32508
585585 0 0
586586 6.87689 0.284082
587587 26.2462i 1.08330i 0.840605 + 0.541649i 0.182200π0.182200\pi
−0.840605 + 0.541649i 0.817800π0.817800\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 46.1080i 1.89503i
593593 − 27.5616i − 1.13182i −0.824468 0.565909i 0.808525π-0.808525\pi
0.824468 0.565909i 0.191475π-0.191475\pi
594594 0 0
595595 0 0
596596 −55.8617 −2.28819
597597 0 0
598598 3.50758i 0.143436i
599599 −11.8078 −0.482452 −0.241226 0.970469i 0.577550π-0.577550\pi
−0.241226 + 0.970469i 0.577550π0.577550\pi
600600 0 0
601601 6.49242 0.264831 0.132416 0.991194i 0.457727π-0.457727\pi
0.132416 + 0.991194i 0.457727π0.457727\pi
602602 − 2.24621i − 0.0915487i
603603 0 0
604604 31.6155 1.28642
605605 0 0
606606 0 0
607607 − 42.0540i − 1.70692i −0.521160 0.853459i 0.674500π-0.674500\pi
0.521160 0.853459i 0.325500π-0.325500\pi
608608 46.7386i 1.89550i
609609 0 0
610610 0 0
611611 3.80776 0.154046
612612 0 0
613613 − 40.7386i − 1.64542i −0.568463 0.822709i 0.692462π-0.692462\pi
0.568463 0.822709i 0.307538π-0.307538\pi
614614 49.4773 1.99674
615615 0 0
616616 −10.2462 −0.412832
617617 − 32.2462i − 1.29818i −0.760710 0.649092i 0.775149π-0.775149\pi
0.760710 0.649092i 0.224851π-0.224851\pi
618618 0 0
619619 −32.1080 −1.29053 −0.645264 0.763960i 0.723253π-0.723253\pi
−0.645264 + 0.763960i 0.723253π0.723253\pi
620620 0 0
621621 0 0
622622 − 80.9848i − 3.24720i
623623 1.12311i 0.0449963i
624624 0 0
625625 0 0
626626 −57.1231 −2.28310
627627 0 0
628628 − 92.3542i − 3.68533i
629629 −2.63068 −0.104892
630630 0 0
631631 −11.8078 −0.470060 −0.235030 0.971988i 0.575519π-0.575519\pi
−0.235030 + 0.971988i 0.575519π0.575519\pi
632632 − 16.0000i − 0.636446i
633633 0 0
634634 26.8769 1.06742
635635 0 0
636636 0 0
637637 0.438447i 0.0173719i
638638 26.7386i 1.05859i
639639 0 0
640640 0 0
641641 −2.00000 −0.0789953 −0.0394976 0.999220i 0.512576π-0.512576\pi
−0.0394976 + 0.999220i 0.512576π0.512576\pi
642642 0 0
643643 − 1.56155i − 0.0615816i −0.999526 0.0307908i 0.990197π-0.990197\pi
0.999526 0.0307908i 0.00980257π-0.00980257\pi
644644 −14.2462 −0.561379
645645 0 0
646646 −8.00000 −0.314756
647647 − 36.4924i − 1.43467i −0.696731 0.717333i 0.745363π-0.745363\pi
0.696731 0.717333i 0.254637π-0.254637\pi
648648 0 0
649649 −6.24621 −0.245185
650650 0 0
651651 0 0
652652 − 32.4924i − 1.27250i
653653 − 33.2311i − 1.30043i −0.759750 0.650216i 0.774678π-0.774678\pi
0.759750 0.650216i 0.225322π-0.225322\pi
654654 0 0
655655 0 0
656656 −39.3693 −1.53711
657657 0 0
658658 22.2462i 0.867248i
659659 9.17708 0.357488 0.178744 0.983896i 0.442797π-0.442797\pi
0.178744 + 0.983896i 0.442797π0.442797\pi
660660 0 0
661661 −5.12311 −0.199266 −0.0996329 0.995024i 0.531767π-0.531767\pi
−0.0996329 + 0.995024i 0.531767π0.531767\pi
662662 30.7386i 1.19469i
663663 0 0
664664 26.2462 1.01855
665665 0 0
666666 0 0
667667 20.8769i 0.808357i
668668 − 31.6155i − 1.22324i
669669 0 0
670670 0 0
671671 24.0000 0.926510
672672 0 0
673673 − 31.8617i − 1.22818i −0.789236 0.614090i 0.789523π-0.789523\pi
0.789236 0.614090i 0.210477π-0.210477\pi
674674 3.86174 0.148749
675675 0 0
676676 −58.4233 −2.24705
677677 − 4.93087i − 0.189509i −0.995501 0.0947544i 0.969793π-0.969793\pi
0.995501 0.0947544i 0.0302066π-0.0302066\pi
678678 0 0
679679 5.80776 0.222882
680680 0 0
681681 0 0
682682 0 0
683683 − 6.73863i − 0.257847i −0.991655 0.128923i 0.958848π-0.958848\pi
0.991655 0.128923i 0.0411521π-0.0411521\pi
684684 0 0
685685 0 0
686686 −2.56155 −0.0978005
687687 0 0
688688 − 6.73863i − 0.256908i
689689 −2.24621 −0.0855738
690690 0 0
691691 −24.4924 −0.931736 −0.465868 0.884854i 0.654258π-0.654258\pi
−0.465868 + 0.884854i 0.654258π0.654258\pi
692692 20.2462i 0.769645i
693693 0 0
694694 18.2462 0.692617
695695 0 0
696696 0 0
697697 − 2.24621i − 0.0850813i
698698 − 26.8769i − 1.01731i
699699 0 0
700700 0 0
701701 −28.9309 −1.09270 −0.546352 0.837556i 0.683984π-0.683984\pi
−0.546352 + 0.837556i 0.683984π0.683984\pi
702702 0 0
703703 42.7386i 1.61192i
704704 −2.24621 −0.0846573
705705 0 0
706706 −14.8769 −0.559899
707707 − 16.2462i − 0.611002i
708708 0 0
709709 −27.1771 −1.02066 −0.510328 0.859980i 0.670476π-0.670476\pi
−0.510328 + 0.859980i 0.670476π0.670476\pi
710710 0 0
711711 0 0
712712 7.36932i 0.276177i
713713 0 0
714714 0 0
715715 0 0
716716 −91.2311 −3.40946
717717 0 0
718718 20.4924i 0.764770i
719719 8.38447 0.312688 0.156344 0.987703i 0.450029π-0.450029\pi
0.156344 + 0.987703i 0.450029π0.450029\pi
720720 0 0
721721 −5.56155 −0.207123
722722 81.3002i 3.02568i
723723 0 0
724724 80.3542 2.98634
725725 0 0
726726 0 0
727727 52.4924i 1.94684i 0.229035 + 0.973418i 0.426443π0.426443\pi
−0.229035 + 0.973418i 0.573557π0.573557\pi
728728 2.87689i 0.106625i
729729 0 0
730730 0 0
731731 0.384472 0.0142202
732732 0 0
733733 − 6.68466i − 0.246903i −0.992351 0.123452i 0.960604π-0.960604\pi
0.992351 0.123452i 0.0393964π-0.0393964\pi
734734 22.2462 0.821123
735735 0 0
736736 −20.4924 −0.755361
737737 16.0000i 0.589368i
738738 0 0
739739 −34.9309 −1.28495 −0.642476 0.766305i 0.722093π-0.722093\pi
−0.642476 + 0.766305i 0.722093π0.722093\pi
740740 0 0
741741 0 0
742742 − 13.1231i − 0.481764i
743743 − 32.9848i − 1.21010i −0.796189 0.605048i 0.793154π-0.793154\pi
0.796189 0.605048i 0.206846π-0.206846\pi
744744 0 0
745745 0 0
746746 11.8617 0.434289
747747 0 0
748748 − 3.12311i − 0.114192i
749749 −13.3693 −0.488504
750750 0 0
751751 17.0691 0.622861 0.311431 0.950269i 0.399192π-0.399192\pi
0.311431 + 0.950269i 0.399192π0.399192\pi
752752 66.7386i 2.43371i
753753 0 0
754754 7.50758 0.273410
755755 0 0
756756 0 0
757757 39.3693i 1.43090i 0.698663 + 0.715451i 0.253779π0.253779\pi
−0.698663 + 0.715451i 0.746221π0.746221\pi
758758 42.2462i 1.53445i
759759 0 0
760760 0 0
761761 −48.2462 −1.74892 −0.874462 0.485094i 0.838785π-0.838785\pi
−0.874462 + 0.485094i 0.838785π0.838785\pi
762762 0 0
763763 5.31534i 0.192428i
764764 −61.8617 −2.23808
765765 0 0
766766 −16.0000 −0.578103
767767 1.75379i 0.0633256i
768768 0 0
769769 42.4924 1.53232 0.766158 0.642652i 0.222166π-0.222166\pi
0.766158 + 0.642652i 0.222166π0.222166\pi
770770 0 0
771771 0 0
772772 88.3542i 3.17994i
773773 36.9309i 1.32831i 0.747594 + 0.664156i 0.231209π0.231209\pi
−0.747594 + 0.664156i 0.768791π0.768791\pi
774774 0 0
775775 0 0
776776 38.1080 1.36800
777777 0 0
778778 − 63.8617i − 2.28955i
779779 −36.4924 −1.30748
780780 0 0
781781 −12.4924 −0.447014
782782 − 3.50758i − 0.125431i
783783 0 0
784784 −7.68466 −0.274452
785785 0 0
786786 0 0
787787 − 49.1771i − 1.75297i −0.481426 0.876487i 0.659881π-0.659881\pi
0.481426 0.876487i 0.340119π-0.340119\pi
788788 5.12311i 0.182503i
789789 0 0
790790 0 0
791791 −14.0000 −0.497783
792792 0 0
793793 − 6.73863i − 0.239296i
794794 −70.6004 −2.50551
795795 0 0
796796 −8.00000 −0.283552
797797 − 24.0540i − 0.852036i −0.904715 0.426018i 0.859916π-0.859916\pi
0.904715 0.426018i 0.140084π-0.140084\pi
798798 0 0
799799 −3.80776 −0.134709
800800 0 0
801801 0 0
802802 − 80.8466i − 2.85479i
803803 19.1231i 0.674840i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 − 106.600i − 3.75019i
809809 16.5464 0.581740 0.290870 0.956763i 0.406055π-0.406055\pi
0.290870 + 0.956763i 0.406055π0.406055\pi
810810 0 0
811811 19.6155 0.688794 0.344397 0.938824i 0.388083π-0.388083\pi
0.344397 + 0.938824i 0.388083π0.388083\pi
812812 30.4924i 1.07007i
813813 0 0
814814 −24.0000 −0.841200
815815 0 0
816816 0 0
817817 − 6.24621i − 0.218527i
818818 − 16.6307i − 0.581478i
819819 0 0
820820 0 0
821821 21.4233 0.747678 0.373839 0.927494i 0.378041π-0.378041\pi
0.373839 + 0.927494i 0.378041π0.378041\pi
822822 0 0
823823 36.4924i 1.27205i 0.771670 + 0.636023i 0.219422π0.219422\pi
−0.771670 + 0.636023i 0.780578π0.780578\pi
824824 −36.4924 −1.27127
825825 0 0
826826 −10.2462 −0.356511
827827 5.36932i 0.186709i 0.995633 + 0.0933547i 0.0297591π0.0297591\pi
−0.995633 + 0.0933547i 0.970241π0.970241\pi
828828 0 0
829829 −34.8769 −1.21132 −0.605662 0.795722i 0.707092π-0.707092\pi
−0.605662 + 0.795722i 0.707092π0.707092\pi
830830 0 0
831831 0 0
832832 0.630683i 0.0218650i
833833 − 0.438447i − 0.0151913i
834834 0 0
835835 0 0
836836 −50.7386 −1.75483
837837 0 0
838838 67.2311i 2.32246i
839839 −28.8769 −0.996941 −0.498471 0.866907i 0.666105π-0.666105\pi
−0.498471 + 0.866907i 0.666105π0.666105\pi
840840 0 0
841841 15.6847 0.540850
842842 − 6.87689i − 0.236993i
843843 0 0
844844 −64.1080 −2.20669
845845 0 0
846846 0 0
847847 8.56155i 0.294178i
848848 − 39.3693i − 1.35195i
849849 0 0
850850 0 0
851851 −18.7386 −0.642352
852852 0 0
853853 7.26137i 0.248624i 0.992243 + 0.124312i 0.0396724π0.0396724\pi
−0.992243 + 0.124312i 0.960328π0.960328\pi
854854 39.3693 1.34719
855855 0 0
856856 −87.7235 −2.99833
857857 15.7538i 0.538139i 0.963121 + 0.269070i 0.0867162π0.0867162\pi
−0.963121 + 0.269070i 0.913284π0.913284\pi
858858 0 0
859859 16.4924 0.562714 0.281357 0.959603i 0.409215π-0.409215\pi
0.281357 + 0.959603i 0.409215π0.409215\pi
860860 0 0
861861 0 0
862862 50.7386i 1.72816i
863863 − 25.7538i − 0.876669i −0.898812 0.438335i 0.855569π-0.855569\pi
0.898812 0.438335i 0.144431π-0.144431\pi
864864 0 0
865865 0 0
866866 21.1231 0.717792
867867 0 0
868868 0 0
869869 3.80776 0.129170
870870 0 0
871871 4.49242 0.152220
872872 34.8769i 1.18108i
873873 0 0
874874 −56.9848 −1.92754
875875 0 0
876876 0 0
877877 − 40.2462i − 1.35902i −0.733667 0.679509i 0.762193π-0.762193\pi
0.733667 0.679509i 0.237807π-0.237807\pi
878878 − 24.0000i − 0.809961i
879879 0 0
880880 0 0
881881 11.8617 0.399632 0.199816 0.979833i 0.435966π-0.435966\pi
0.199816 + 0.979833i 0.435966π0.435966\pi
882882 0 0
883883 8.49242i 0.285793i 0.989738 + 0.142896i 0.0456416π0.0456416\pi
−0.989738 + 0.142896i 0.954358π0.954358\pi
884884 −0.876894 −0.0294931
885885 0 0
886886 6.73863 0.226389
887887 − 20.4924i − 0.688068i −0.938957 0.344034i 0.888206π-0.888206\pi
0.938957 0.344034i 0.111794π-0.111794\pi
888888 0 0
889889 −6.24621 −0.209491
890890 0 0
891891 0 0
892892 − 11.1231i − 0.372429i
893893 61.8617i 2.07012i
894894 0 0
895895 0 0
896896 9.43845 0.315316
897897 0 0
898898 − 4.63068i − 0.154528i
899899 0 0
900900 0 0
901901 2.24621 0.0748321
902902 − 20.4924i − 0.682323i
903903 0 0
904904 −91.8617 −3.05528
905905 0 0
906906 0 0
907907 − 24.1080i − 0.800491i −0.916408 0.400246i 0.868925π-0.868925\pi
0.916408 0.400246i 0.131075π-0.131075\pi
908908 51.6155i 1.71292i
909909 0 0
910910 0 0
911911 28.4924 0.943996 0.471998 0.881600i 0.343533π-0.343533\pi
0.471998 + 0.881600i 0.343533π0.343533\pi
912912 0 0
913913 6.24621i 0.206719i
914914 43.8617 1.45082
915915 0 0
916916 49.6155 1.63934
917917 − 0.876894i − 0.0289576i
918918 0 0
919919 −40.3002 −1.32938 −0.664690 0.747119i 0.731436π-0.731436\pi
−0.664690 + 0.747119i 0.731436π0.731436\pi
920920 0 0
921921 0 0
922922 33.6155i 1.10707i
923923 3.50758i 0.115453i
924924 0 0
925925 0 0
926926 32.0000 1.05159
927927 0 0
928928 43.8617i 1.43983i
929929 22.1080 0.725338 0.362669 0.931918i 0.381866π-0.381866\pi
0.362669 + 0.931918i 0.381866π0.381866\pi
930930 0 0
931931 −7.12311 −0.233450
932932 − 23.3693i − 0.765487i
933933 0 0
934934 57.4773 1.88071
935935 0 0
936936 0 0
937937 − 55.6695i − 1.81864i −0.416094 0.909322i 0.636601π-0.636601\pi
0.416094 0.909322i 0.363399π-0.363399\pi
938938 26.2462i 0.856969i
939939 0 0
940940 0 0
941941 −43.8617 −1.42985 −0.714926 0.699200i 0.753540π-0.753540\pi
−0.714926 + 0.699200i 0.753540π0.753540\pi
942942 0 0
943943 − 16.0000i − 0.521032i
944944 −30.7386 −1.00046
945945 0 0
946946 3.50758 0.114041
947947 − 4.00000i − 0.129983i −0.997886 0.0649913i 0.979298π-0.979298\pi
0.997886 0.0649913i 0.0207020π-0.0207020\pi
948948 0 0
949949 5.36932 0.174295
950950 0 0
951951 0 0
952952 − 2.87689i − 0.0932407i
953953 − 33.1231i − 1.07296i −0.843912 0.536481i 0.819753π-0.819753\pi
0.843912 0.536481i 0.180247π-0.180247\pi
954954 0 0
955955 0 0
956956 −90.3542 −2.92226
957957 0 0
958958 12.4924i 0.403612i
959959 17.1231 0.552934
960960 0 0
961961 −31.0000 −1.00000
962962 6.73863i 0.217262i
963963 0 0
964964 19.3693 0.623844
965965 0 0
966966 0 0
967967 − 35.1231i − 1.12948i −0.825268 0.564741i 0.808976π-0.808976\pi
0.825268 0.564741i 0.191024π-0.191024\pi
968968 56.1771i 1.80560i
969969 0 0
970970 0 0
971971 −49.4773 −1.58780 −0.793901 0.608048i 0.791953π-0.791953\pi
−0.793901 + 0.608048i 0.791953π0.791953\pi
972972 0 0
973973 − 15.1231i − 0.484825i
974974 8.00000 0.256337
975975 0 0
976976 118.108 3.78054
977977 − 33.2311i − 1.06316i −0.847009 0.531578i 0.821599π-0.821599\pi
0.847009 0.531578i 0.178401π-0.178401\pi
978978 0 0
979979 −1.75379 −0.0560513
980980 0 0
981981 0 0
982982 105.477i 3.36591i
983983 51.4233i 1.64015i 0.572257 + 0.820074i 0.306068π0.306068\pi
−0.572257 + 0.820074i 0.693932π0.693932\pi
984984 0 0
985985 0 0
986986 −7.50758 −0.239090
987987 0 0
988988 14.2462i 0.453232i
989989 2.73863 0.0870835
990990 0 0
991991 12.4924 0.396835 0.198417 0.980118i 0.436420π-0.436420\pi
0.198417 + 0.980118i 0.436420π0.436420\pi
992992 0 0
993993 0 0
994994 −20.4924 −0.649980
995995 0 0
996996 0 0
997997 − 2.68466i − 0.0850240i −0.999096 0.0425120i 0.986464π-0.986464\pi
0.999096 0.0425120i 0.0135361π-0.0135361\pi
998998 − 105.477i − 3.33882i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.d.e.1324.4 4
3.2 odd 2 175.2.b.b.99.1 4
5.2 odd 4 1575.2.a.p.1.1 2
5.3 odd 4 315.2.a.e.1.2 2
5.4 even 2 inner 1575.2.d.e.1324.1 4
12.11 even 2 2800.2.g.t.449.3 4
15.2 even 4 175.2.a.f.1.2 2
15.8 even 4 35.2.a.b.1.1 2
15.14 odd 2 175.2.b.b.99.4 4
20.3 even 4 5040.2.a.bt.1.1 2
21.20 even 2 1225.2.b.f.99.1 4
35.13 even 4 2205.2.a.x.1.2 2
60.23 odd 4 560.2.a.i.1.1 2
60.47 odd 4 2800.2.a.bi.1.2 2
60.59 even 2 2800.2.g.t.449.2 4
105.23 even 12 245.2.e.i.116.2 4
105.38 odd 12 245.2.e.h.226.2 4
105.53 even 12 245.2.e.i.226.2 4
105.62 odd 4 1225.2.a.s.1.2 2
105.68 odd 12 245.2.e.h.116.2 4
105.83 odd 4 245.2.a.d.1.1 2
105.104 even 2 1225.2.b.f.99.4 4
120.53 even 4 2240.2.a.bh.1.1 2
120.83 odd 4 2240.2.a.bd.1.2 2
165.98 odd 4 4235.2.a.m.1.2 2
195.38 even 4 5915.2.a.l.1.2 2
420.83 even 4 3920.2.a.bs.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.a.b.1.1 2 15.8 even 4
175.2.a.f.1.2 2 15.2 even 4
175.2.b.b.99.1 4 3.2 odd 2
175.2.b.b.99.4 4 15.14 odd 2
245.2.a.d.1.1 2 105.83 odd 4
245.2.e.h.116.2 4 105.68 odd 12
245.2.e.h.226.2 4 105.38 odd 12
245.2.e.i.116.2 4 105.23 even 12
245.2.e.i.226.2 4 105.53 even 12
315.2.a.e.1.2 2 5.3 odd 4
560.2.a.i.1.1 2 60.23 odd 4
1225.2.a.s.1.2 2 105.62 odd 4
1225.2.b.f.99.1 4 21.20 even 2
1225.2.b.f.99.4 4 105.104 even 2
1575.2.a.p.1.1 2 5.2 odd 4
1575.2.d.e.1324.1 4 5.4 even 2 inner
1575.2.d.e.1324.4 4 1.1 even 1 trivial
2205.2.a.x.1.2 2 35.13 even 4
2240.2.a.bd.1.2 2 120.83 odd 4
2240.2.a.bh.1.1 2 120.53 even 4
2800.2.a.bi.1.2 2 60.47 odd 4
2800.2.g.t.449.2 4 60.59 even 2
2800.2.g.t.449.3 4 12.11 even 2
3920.2.a.bs.1.2 2 420.83 even 4
4235.2.a.m.1.2 2 165.98 odd 4
5040.2.a.bt.1.1 2 20.3 even 4
5915.2.a.l.1.2 2 195.38 even 4