Properties

Label 1575.4.a.be.1.3
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.22952.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 18x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 315)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-4.15010\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.15010 q^{2} +18.5235 q^{4} -7.00000 q^{7} +54.1971 q^{8} +14.0073 q^{11} +10.5931 q^{13} -36.0507 q^{14} +130.932 q^{16} +131.801 q^{17} +38.6871 q^{19} +72.1391 q^{22} -102.481 q^{23} +54.5553 q^{26} -129.665 q^{28} +232.376 q^{29} -165.501 q^{31} +240.738 q^{32} +678.789 q^{34} -280.004 q^{37} +199.242 q^{38} +122.271 q^{41} +431.844 q^{43} +259.465 q^{44} -527.787 q^{46} +295.692 q^{47} +49.0000 q^{49} +196.221 q^{52} +243.639 q^{53} -379.380 q^{56} +1196.76 q^{58} -566.480 q^{59} -188.012 q^{61} -852.346 q^{62} +192.364 q^{64} +871.647 q^{67} +2441.42 q^{68} +176.800 q^{71} +220.524 q^{73} -1442.05 q^{74} +716.621 q^{76} -98.0513 q^{77} -190.494 q^{79} +629.710 q^{82} +518.241 q^{83} +2224.04 q^{86} +759.157 q^{88} +598.355 q^{89} -74.1515 q^{91} -1898.31 q^{92} +1522.85 q^{94} +1882.24 q^{97} +252.355 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 14 q^{4} - 21 q^{7} + 66 q^{8} + 20 q^{11} - 14 q^{14} + 114 q^{16} + 234 q^{17} - 82 q^{19} + 236 q^{22} + 30 q^{23} - 76 q^{26} - 98 q^{28} + 32 q^{29} - 362 q^{31} + 430 q^{32} + 596 q^{34}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.15010 1.82083 0.910417 0.413691i \(-0.135761\pi\)
0.910417 + 0.413691i \(0.135761\pi\)
\(3\) 0 0
\(4\) 18.5235 2.31544
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 54.1971 2.39520
\(9\) 0 0
\(10\) 0 0
\(11\) 14.0073 0.383943 0.191971 0.981401i \(-0.438512\pi\)
0.191971 + 0.981401i \(0.438512\pi\)
\(12\) 0 0
\(13\) 10.5931 0.225999 0.113000 0.993595i \(-0.463954\pi\)
0.113000 + 0.993595i \(0.463954\pi\)
\(14\) −36.0507 −0.688211
\(15\) 0 0
\(16\) 130.932 2.04582
\(17\) 131.801 1.88038 0.940191 0.340649i \(-0.110647\pi\)
0.940191 + 0.340649i \(0.110647\pi\)
\(18\) 0 0
\(19\) 38.6871 0.467128 0.233564 0.972341i \(-0.424961\pi\)
0.233564 + 0.972341i \(0.424961\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 72.1391 0.699096
\(23\) −102.481 −0.929076 −0.464538 0.885553i \(-0.653780\pi\)
−0.464538 + 0.885553i \(0.653780\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 54.5553 0.411507
\(27\) 0 0
\(28\) −129.665 −0.875154
\(29\) 232.376 1.48797 0.743986 0.668195i \(-0.232933\pi\)
0.743986 + 0.668195i \(0.232933\pi\)
\(30\) 0 0
\(31\) −165.501 −0.958866 −0.479433 0.877578i \(-0.659158\pi\)
−0.479433 + 0.877578i \(0.659158\pi\)
\(32\) 240.738 1.32990
\(33\) 0 0
\(34\) 678.789 3.42386
\(35\) 0 0
\(36\) 0 0
\(37\) −280.004 −1.24412 −0.622059 0.782970i \(-0.713704\pi\)
−0.622059 + 0.782970i \(0.713704\pi\)
\(38\) 199.242 0.850563
\(39\) 0 0
\(40\) 0 0
\(41\) 122.271 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(42\) 0 0
\(43\) 431.844 1.53153 0.765764 0.643122i \(-0.222361\pi\)
0.765764 + 0.643122i \(0.222361\pi\)
\(44\) 259.465 0.888996
\(45\) 0 0
\(46\) −527.787 −1.69169
\(47\) 295.692 0.917685 0.458842 0.888518i \(-0.348264\pi\)
0.458842 + 0.888518i \(0.348264\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 196.221 0.523287
\(53\) 243.639 0.631441 0.315721 0.948852i \(-0.397754\pi\)
0.315721 + 0.948852i \(0.397754\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −379.380 −0.905299
\(57\) 0 0
\(58\) 1196.76 2.70935
\(59\) −566.480 −1.24999 −0.624995 0.780628i \(-0.714899\pi\)
−0.624995 + 0.780628i \(0.714899\pi\)
\(60\) 0 0
\(61\) −188.012 −0.394630 −0.197315 0.980340i \(-0.563222\pi\)
−0.197315 + 0.980340i \(0.563222\pi\)
\(62\) −852.346 −1.74594
\(63\) 0 0
\(64\) 192.364 0.375711
\(65\) 0 0
\(66\) 0 0
\(67\) 871.647 1.58938 0.794692 0.607013i \(-0.207633\pi\)
0.794692 + 0.607013i \(0.207633\pi\)
\(68\) 2441.42 4.35391
\(69\) 0 0
\(70\) 0 0
\(71\) 176.800 0.295525 0.147762 0.989023i \(-0.452793\pi\)
0.147762 + 0.989023i \(0.452793\pi\)
\(72\) 0 0
\(73\) 220.524 0.353566 0.176783 0.984250i \(-0.443431\pi\)
0.176783 + 0.984250i \(0.443431\pi\)
\(74\) −1442.05 −2.26533
\(75\) 0 0
\(76\) 716.621 1.08161
\(77\) −98.0513 −0.145117
\(78\) 0 0
\(79\) −190.494 −0.271294 −0.135647 0.990757i \(-0.543311\pi\)
−0.135647 + 0.990757i \(0.543311\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 629.710 0.848047
\(83\) 518.241 0.685353 0.342676 0.939453i \(-0.388667\pi\)
0.342676 + 0.939453i \(0.388667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2224.04 2.78866
\(87\) 0 0
\(88\) 759.157 0.919618
\(89\) 598.355 0.712646 0.356323 0.934363i \(-0.384030\pi\)
0.356323 + 0.934363i \(0.384030\pi\)
\(90\) 0 0
\(91\) −74.1515 −0.0854196
\(92\) −1898.31 −2.15122
\(93\) 0 0
\(94\) 1522.85 1.67095
\(95\) 0 0
\(96\) 0 0
\(97\) 1882.24 1.97023 0.985116 0.171889i \(-0.0549871\pi\)
0.985116 + 0.171889i \(0.0549871\pi\)
\(98\) 252.355 0.260119
\(99\) 0 0
\(100\) 0 0
\(101\) −190.791 −0.187964 −0.0939821 0.995574i \(-0.529960\pi\)
−0.0939821 + 0.995574i \(0.529960\pi\)
\(102\) 0 0
\(103\) 1496.53 1.43163 0.715813 0.698292i \(-0.246056\pi\)
0.715813 + 0.698292i \(0.246056\pi\)
\(104\) 574.114 0.541312
\(105\) 0 0
\(106\) 1254.76 1.14975
\(107\) −1965.85 −1.77613 −0.888066 0.459716i \(-0.847951\pi\)
−0.888066 + 0.459716i \(0.847951\pi\)
\(108\) 0 0
\(109\) −870.482 −0.764927 −0.382464 0.923971i \(-0.624924\pi\)
−0.382464 + 0.923971i \(0.624924\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −916.527 −0.773247
\(113\) 2051.20 1.70762 0.853809 0.520587i \(-0.174287\pi\)
0.853809 + 0.520587i \(0.174287\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4304.42 3.44531
\(117\) 0 0
\(118\) −2917.43 −2.27603
\(119\) −922.608 −0.710717
\(120\) 0 0
\(121\) −1134.79 −0.852588
\(122\) −968.279 −0.718556
\(123\) 0 0
\(124\) −3065.66 −2.22020
\(125\) 0 0
\(126\) 0 0
\(127\) −2501.15 −1.74757 −0.873785 0.486313i \(-0.838341\pi\)
−0.873785 + 0.486313i \(0.838341\pi\)
\(128\) −935.209 −0.645793
\(129\) 0 0
\(130\) 0 0
\(131\) −534.190 −0.356278 −0.178139 0.984005i \(-0.557008\pi\)
−0.178139 + 0.984005i \(0.557008\pi\)
\(132\) 0 0
\(133\) −270.810 −0.176558
\(134\) 4489.07 2.89400
\(135\) 0 0
\(136\) 7143.24 4.50388
\(137\) 503.159 0.313779 0.156890 0.987616i \(-0.449853\pi\)
0.156890 + 0.987616i \(0.449853\pi\)
\(138\) 0 0
\(139\) 1424.87 0.869466 0.434733 0.900559i \(-0.356843\pi\)
0.434733 + 0.900559i \(0.356843\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 910.536 0.538102
\(143\) 148.381 0.0867707
\(144\) 0 0
\(145\) 0 0
\(146\) 1135.72 0.643786
\(147\) 0 0
\(148\) −5186.66 −2.88068
\(149\) −1482.49 −0.815105 −0.407552 0.913182i \(-0.633618\pi\)
−0.407552 + 0.913182i \(0.633618\pi\)
\(150\) 0 0
\(151\) −1267.34 −0.683008 −0.341504 0.939880i \(-0.610936\pi\)
−0.341504 + 0.939880i \(0.610936\pi\)
\(152\) 2096.73 1.11886
\(153\) 0 0
\(154\) −504.974 −0.264233
\(155\) 0 0
\(156\) 0 0
\(157\) −3234.00 −1.64396 −0.821979 0.569517i \(-0.807130\pi\)
−0.821979 + 0.569517i \(0.807130\pi\)
\(158\) −981.063 −0.493982
\(159\) 0 0
\(160\) 0 0
\(161\) 717.367 0.351158
\(162\) 0 0
\(163\) −1758.52 −0.845017 −0.422508 0.906359i \(-0.638850\pi\)
−0.422508 + 0.906359i \(0.638850\pi\)
\(164\) 2264.90 1.07841
\(165\) 0 0
\(166\) 2668.99 1.24791
\(167\) 1682.57 0.779646 0.389823 0.920890i \(-0.372536\pi\)
0.389823 + 0.920890i \(0.372536\pi\)
\(168\) 0 0
\(169\) −2084.79 −0.948924
\(170\) 0 0
\(171\) 0 0
\(172\) 7999.28 3.54616
\(173\) 3211.53 1.41138 0.705688 0.708523i \(-0.250638\pi\)
0.705688 + 0.708523i \(0.250638\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1834.01 0.785477
\(177\) 0 0
\(178\) 3081.59 1.29761
\(179\) −3311.97 −1.38295 −0.691476 0.722399i \(-0.743039\pi\)
−0.691476 + 0.722399i \(0.743039\pi\)
\(180\) 0 0
\(181\) 2062.42 0.846954 0.423477 0.905907i \(-0.360809\pi\)
0.423477 + 0.905907i \(0.360809\pi\)
\(182\) −381.887 −0.155535
\(183\) 0 0
\(184\) −5554.17 −2.22532
\(185\) 0 0
\(186\) 0 0
\(187\) 1846.18 0.721958
\(188\) 5477.26 2.12484
\(189\) 0 0
\(190\) 0 0
\(191\) −2783.01 −1.05430 −0.527150 0.849772i \(-0.676739\pi\)
−0.527150 + 0.849772i \(0.676739\pi\)
\(192\) 0 0
\(193\) −300.293 −0.111998 −0.0559988 0.998431i \(-0.517834\pi\)
−0.0559988 + 0.998431i \(0.517834\pi\)
\(194\) 9693.72 3.58747
\(195\) 0 0
\(196\) 907.652 0.330777
\(197\) −1485.64 −0.537295 −0.268648 0.963239i \(-0.586577\pi\)
−0.268648 + 0.963239i \(0.586577\pi\)
\(198\) 0 0
\(199\) −3040.55 −1.08311 −0.541555 0.840665i \(-0.682164\pi\)
−0.541555 + 0.840665i \(0.682164\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −982.591 −0.342252
\(203\) −1626.63 −0.562400
\(204\) 0 0
\(205\) 0 0
\(206\) 7707.28 2.60676
\(207\) 0 0
\(208\) 1386.98 0.462353
\(209\) 541.903 0.179350
\(210\) 0 0
\(211\) −2886.74 −0.941855 −0.470928 0.882172i \(-0.656081\pi\)
−0.470928 + 0.882172i \(0.656081\pi\)
\(212\) 4513.05 1.46206
\(213\) 0 0
\(214\) −10124.3 −3.23404
\(215\) 0 0
\(216\) 0 0
\(217\) 1158.51 0.362417
\(218\) −4483.07 −1.39281
\(219\) 0 0
\(220\) 0 0
\(221\) 1396.18 0.424964
\(222\) 0 0
\(223\) −4591.34 −1.37874 −0.689369 0.724410i \(-0.742112\pi\)
−0.689369 + 0.724410i \(0.742112\pi\)
\(224\) −1685.16 −0.502655
\(225\) 0 0
\(226\) 10563.9 3.10929
\(227\) −2547.05 −0.744729 −0.372364 0.928087i \(-0.621453\pi\)
−0.372364 + 0.928087i \(0.621453\pi\)
\(228\) 0 0
\(229\) 2007.40 0.579269 0.289635 0.957137i \(-0.406466\pi\)
0.289635 + 0.957137i \(0.406466\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 12594.1 3.56399
\(233\) 2810.65 0.790266 0.395133 0.918624i \(-0.370699\pi\)
0.395133 + 0.918624i \(0.370699\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −10493.2 −2.89428
\(237\) 0 0
\(238\) −4751.52 −1.29410
\(239\) −1848.68 −0.500339 −0.250170 0.968202i \(-0.580486\pi\)
−0.250170 + 0.968202i \(0.580486\pi\)
\(240\) 0 0
\(241\) 5722.64 1.52958 0.764788 0.644283i \(-0.222844\pi\)
0.764788 + 0.644283i \(0.222844\pi\)
\(242\) −5844.30 −1.55242
\(243\) 0 0
\(244\) −3482.64 −0.913742
\(245\) 0 0
\(246\) 0 0
\(247\) 409.815 0.105571
\(248\) −8969.68 −2.29667
\(249\) 0 0
\(250\) 0 0
\(251\) −1723.38 −0.433381 −0.216691 0.976240i \(-0.569526\pi\)
−0.216691 + 0.976240i \(0.569526\pi\)
\(252\) 0 0
\(253\) −1435.48 −0.356712
\(254\) −12881.2 −3.18203
\(255\) 0 0
\(256\) −6355.33 −1.55159
\(257\) −5754.01 −1.39660 −0.698298 0.715807i \(-0.746059\pi\)
−0.698298 + 0.715807i \(0.746059\pi\)
\(258\) 0 0
\(259\) 1960.03 0.470232
\(260\) 0 0
\(261\) 0 0
\(262\) −2751.13 −0.648723
\(263\) −6680.33 −1.56626 −0.783130 0.621857i \(-0.786378\pi\)
−0.783130 + 0.621857i \(0.786378\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1394.70 −0.321483
\(267\) 0 0
\(268\) 16146.0 3.68012
\(269\) −7468.96 −1.69290 −0.846451 0.532466i \(-0.821265\pi\)
−0.846451 + 0.532466i \(0.821265\pi\)
\(270\) 0 0
\(271\) −757.673 −0.169835 −0.0849176 0.996388i \(-0.527063\pi\)
−0.0849176 + 0.996388i \(0.527063\pi\)
\(272\) 17257.0 3.84692
\(273\) 0 0
\(274\) 2591.32 0.571340
\(275\) 0 0
\(276\) 0 0
\(277\) −1169.29 −0.253632 −0.126816 0.991926i \(-0.540476\pi\)
−0.126816 + 0.991926i \(0.540476\pi\)
\(278\) 7338.22 1.58315
\(279\) 0 0
\(280\) 0 0
\(281\) −5735.20 −1.21756 −0.608778 0.793341i \(-0.708340\pi\)
−0.608778 + 0.793341i \(0.708340\pi\)
\(282\) 0 0
\(283\) 9010.69 1.89269 0.946343 0.323164i \(-0.104747\pi\)
0.946343 + 0.323164i \(0.104747\pi\)
\(284\) 3274.95 0.684270
\(285\) 0 0
\(286\) 764.174 0.157995
\(287\) −855.900 −0.176035
\(288\) 0 0
\(289\) 12458.6 2.53583
\(290\) 0 0
\(291\) 0 0
\(292\) 4084.87 0.818662
\(293\) 5303.84 1.05752 0.528760 0.848771i \(-0.322657\pi\)
0.528760 + 0.848771i \(0.322657\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −15175.4 −2.97991
\(297\) 0 0
\(298\) −7634.99 −1.48417
\(299\) −1085.59 −0.209970
\(300\) 0 0
\(301\) −3022.91 −0.578863
\(302\) −6526.90 −1.24365
\(303\) 0 0
\(304\) 5065.40 0.955659
\(305\) 0 0
\(306\) 0 0
\(307\) −8783.81 −1.63296 −0.816480 0.577374i \(-0.804078\pi\)
−0.816480 + 0.577374i \(0.804078\pi\)
\(308\) −1816.25 −0.336009
\(309\) 0 0
\(310\) 0 0
\(311\) 2357.25 0.429799 0.214899 0.976636i \(-0.431058\pi\)
0.214899 + 0.976636i \(0.431058\pi\)
\(312\) 0 0
\(313\) 2633.84 0.475635 0.237817 0.971310i \(-0.423568\pi\)
0.237817 + 0.971310i \(0.423568\pi\)
\(314\) −16655.4 −2.99338
\(315\) 0 0
\(316\) −3528.62 −0.628166
\(317\) −842.572 −0.149286 −0.0746428 0.997210i \(-0.523782\pi\)
−0.0746428 + 0.997210i \(0.523782\pi\)
\(318\) 0 0
\(319\) 3254.97 0.571296
\(320\) 0 0
\(321\) 0 0
\(322\) 3694.51 0.639401
\(323\) 5099.01 0.878379
\(324\) 0 0
\(325\) 0 0
\(326\) −9056.54 −1.53864
\(327\) 0 0
\(328\) 6626.76 1.11555
\(329\) −2069.85 −0.346852
\(330\) 0 0
\(331\) 11058.8 1.83639 0.918197 0.396125i \(-0.129645\pi\)
0.918197 + 0.396125i \(0.129645\pi\)
\(332\) 9599.64 1.58689
\(333\) 0 0
\(334\) 8665.38 1.41961
\(335\) 0 0
\(336\) 0 0
\(337\) 1197.28 0.193531 0.0967657 0.995307i \(-0.469150\pi\)
0.0967657 + 0.995307i \(0.469150\pi\)
\(338\) −10736.9 −1.72783
\(339\) 0 0
\(340\) 0 0
\(341\) −2318.23 −0.368150
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 23404.7 3.66831
\(345\) 0 0
\(346\) 16539.7 2.56988
\(347\) −518.087 −0.0801509 −0.0400755 0.999197i \(-0.512760\pi\)
−0.0400755 + 0.999197i \(0.512760\pi\)
\(348\) 0 0
\(349\) −1776.08 −0.272412 −0.136206 0.990681i \(-0.543491\pi\)
−0.136206 + 0.990681i \(0.543491\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3372.09 0.510606
\(353\) −7507.35 −1.13194 −0.565972 0.824425i \(-0.691499\pi\)
−0.565972 + 0.824425i \(0.691499\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 11083.6 1.65009
\(357\) 0 0
\(358\) −17057.0 −2.51813
\(359\) 4915.58 0.722658 0.361329 0.932438i \(-0.382323\pi\)
0.361329 + 0.932438i \(0.382323\pi\)
\(360\) 0 0
\(361\) −5362.31 −0.781791
\(362\) 10621.7 1.54216
\(363\) 0 0
\(364\) −1373.55 −0.197784
\(365\) 0 0
\(366\) 0 0
\(367\) 3628.98 0.516161 0.258080 0.966123i \(-0.416910\pi\)
0.258080 + 0.966123i \(0.416910\pi\)
\(368\) −13418.1 −1.90072
\(369\) 0 0
\(370\) 0 0
\(371\) −1705.47 −0.238662
\(372\) 0 0
\(373\) 2836.97 0.393814 0.196907 0.980422i \(-0.436910\pi\)
0.196907 + 0.980422i \(0.436910\pi\)
\(374\) 9508.02 1.31457
\(375\) 0 0
\(376\) 16025.7 2.19804
\(377\) 2461.58 0.336280
\(378\) 0 0
\(379\) 9703.96 1.31519 0.657597 0.753370i \(-0.271573\pi\)
0.657597 + 0.753370i \(0.271573\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −14332.8 −1.91971
\(383\) −3855.90 −0.514431 −0.257216 0.966354i \(-0.582805\pi\)
−0.257216 + 0.966354i \(0.582805\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1546.54 −0.203929
\(387\) 0 0
\(388\) 34865.7 4.56195
\(389\) −7106.46 −0.926251 −0.463125 0.886293i \(-0.653272\pi\)
−0.463125 + 0.886293i \(0.653272\pi\)
\(390\) 0 0
\(391\) −13507.1 −1.74702
\(392\) 2655.66 0.342171
\(393\) 0 0
\(394\) −7651.17 −0.978326
\(395\) 0 0
\(396\) 0 0
\(397\) 6775.82 0.856596 0.428298 0.903637i \(-0.359113\pi\)
0.428298 + 0.903637i \(0.359113\pi\)
\(398\) −15659.1 −1.97217
\(399\) 0 0
\(400\) 0 0
\(401\) −6444.62 −0.802566 −0.401283 0.915954i \(-0.631436\pi\)
−0.401283 + 0.915954i \(0.631436\pi\)
\(402\) 0 0
\(403\) −1753.16 −0.216703
\(404\) −3534.11 −0.435220
\(405\) 0 0
\(406\) −8377.32 −1.02404
\(407\) −3922.11 −0.477670
\(408\) 0 0
\(409\) 4807.99 0.581270 0.290635 0.956834i \(-0.406133\pi\)
0.290635 + 0.956834i \(0.406133\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 27721.0 3.31484
\(413\) 3965.36 0.472452
\(414\) 0 0
\(415\) 0 0
\(416\) 2550.15 0.300556
\(417\) 0 0
\(418\) 2790.85 0.326567
\(419\) 4521.51 0.527184 0.263592 0.964634i \(-0.415093\pi\)
0.263592 + 0.964634i \(0.415093\pi\)
\(420\) 0 0
\(421\) −5821.82 −0.673962 −0.336981 0.941511i \(-0.609406\pi\)
−0.336981 + 0.941511i \(0.609406\pi\)
\(422\) −14867.0 −1.71496
\(423\) 0 0
\(424\) 13204.5 1.51243
\(425\) 0 0
\(426\) 0 0
\(427\) 1316.08 0.149156
\(428\) −36414.5 −4.11252
\(429\) 0 0
\(430\) 0 0
\(431\) 8382.59 0.936833 0.468417 0.883508i \(-0.344825\pi\)
0.468417 + 0.883508i \(0.344825\pi\)
\(432\) 0 0
\(433\) −2628.05 −0.291677 −0.145838 0.989308i \(-0.546588\pi\)
−0.145838 + 0.989308i \(0.546588\pi\)
\(434\) 5966.42 0.659902
\(435\) 0 0
\(436\) −16124.4 −1.77114
\(437\) −3964.69 −0.433998
\(438\) 0 0
\(439\) −4122.97 −0.448243 −0.224121 0.974561i \(-0.571951\pi\)
−0.224121 + 0.974561i \(0.571951\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 7190.46 0.773790
\(443\) −210.327 −0.0225574 −0.0112787 0.999936i \(-0.503590\pi\)
−0.0112787 + 0.999936i \(0.503590\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −23645.8 −2.51045
\(447\) 0 0
\(448\) −1346.55 −0.142005
\(449\) −4414.35 −0.463978 −0.231989 0.972718i \(-0.574523\pi\)
−0.231989 + 0.972718i \(0.574523\pi\)
\(450\) 0 0
\(451\) 1712.70 0.178820
\(452\) 37995.4 3.95388
\(453\) 0 0
\(454\) −13117.5 −1.35603
\(455\) 0 0
\(456\) 0 0
\(457\) −14355.4 −1.46941 −0.734704 0.678388i \(-0.762679\pi\)
−0.734704 + 0.678388i \(0.762679\pi\)
\(458\) 10338.3 1.05475
\(459\) 0 0
\(460\) 0 0
\(461\) 14366.9 1.45149 0.725744 0.687965i \(-0.241496\pi\)
0.725744 + 0.687965i \(0.241496\pi\)
\(462\) 0 0
\(463\) −11634.1 −1.16778 −0.583892 0.811832i \(-0.698471\pi\)
−0.583892 + 0.811832i \(0.698471\pi\)
\(464\) 30425.6 3.04412
\(465\) 0 0
\(466\) 14475.1 1.43894
\(467\) −12112.2 −1.20019 −0.600094 0.799929i \(-0.704870\pi\)
−0.600094 + 0.799929i \(0.704870\pi\)
\(468\) 0 0
\(469\) −6101.53 −0.600730
\(470\) 0 0
\(471\) 0 0
\(472\) −30701.6 −2.99397
\(473\) 6048.99 0.588018
\(474\) 0 0
\(475\) 0 0
\(476\) −17089.9 −1.64562
\(477\) 0 0
\(478\) −9520.88 −0.911035
\(479\) −11380.8 −1.08560 −0.542801 0.839861i \(-0.682636\pi\)
−0.542801 + 0.839861i \(0.682636\pi\)
\(480\) 0 0
\(481\) −2966.10 −0.281170
\(482\) 29472.2 2.78510
\(483\) 0 0
\(484\) −21020.4 −1.97412
\(485\) 0 0
\(486\) 0 0
\(487\) 11615.5 1.08080 0.540401 0.841408i \(-0.318273\pi\)
0.540401 + 0.841408i \(0.318273\pi\)
\(488\) −10189.7 −0.945217
\(489\) 0 0
\(490\) 0 0
\(491\) 6045.64 0.555674 0.277837 0.960628i \(-0.410383\pi\)
0.277837 + 0.960628i \(0.410383\pi\)
\(492\) 0 0
\(493\) 30627.5 2.79795
\(494\) 2110.59 0.192226
\(495\) 0 0
\(496\) −21669.4 −1.96167
\(497\) −1237.60 −0.111698
\(498\) 0 0
\(499\) 860.279 0.0771771 0.0385886 0.999255i \(-0.487714\pi\)
0.0385886 + 0.999255i \(0.487714\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −8875.57 −0.789115
\(503\) 3341.49 0.296202 0.148101 0.988972i \(-0.452684\pi\)
0.148101 + 0.988972i \(0.452684\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −7392.89 −0.649514
\(507\) 0 0
\(508\) −46330.1 −4.04639
\(509\) −19754.5 −1.72024 −0.860122 0.510088i \(-0.829613\pi\)
−0.860122 + 0.510088i \(0.829613\pi\)
\(510\) 0 0
\(511\) −1543.67 −0.133636
\(512\) −25248.9 −2.17940
\(513\) 0 0
\(514\) −29633.7 −2.54297
\(515\) 0 0
\(516\) 0 0
\(517\) 4141.86 0.352338
\(518\) 10094.3 0.856215
\(519\) 0 0
\(520\) 0 0
\(521\) −20754.2 −1.74522 −0.872609 0.488420i \(-0.837573\pi\)
−0.872609 + 0.488420i \(0.837573\pi\)
\(522\) 0 0
\(523\) 9495.26 0.793879 0.396940 0.917845i \(-0.370072\pi\)
0.396940 + 0.917845i \(0.370072\pi\)
\(524\) −9895.07 −0.824939
\(525\) 0 0
\(526\) −34404.3 −2.85190
\(527\) −21813.2 −1.80303
\(528\) 0 0
\(529\) −1664.65 −0.136817
\(530\) 0 0
\(531\) 0 0
\(532\) −5016.35 −0.408809
\(533\) 1295.23 0.105258
\(534\) 0 0
\(535\) 0 0
\(536\) 47240.8 3.80689
\(537\) 0 0
\(538\) −38465.9 −3.08250
\(539\) 686.359 0.0548489
\(540\) 0 0
\(541\) 15585.9 1.23862 0.619308 0.785148i \(-0.287413\pi\)
0.619308 + 0.785148i \(0.287413\pi\)
\(542\) −3902.09 −0.309242
\(543\) 0 0
\(544\) 31729.5 2.50072
\(545\) 0 0
\(546\) 0 0
\(547\) 23104.6 1.80600 0.902998 0.429644i \(-0.141361\pi\)
0.902998 + 0.429644i \(0.141361\pi\)
\(548\) 9320.27 0.726537
\(549\) 0 0
\(550\) 0 0
\(551\) 8989.96 0.695073
\(552\) 0 0
\(553\) 1333.46 0.102540
\(554\) −6021.98 −0.461822
\(555\) 0 0
\(556\) 26393.6 2.01320
\(557\) −21731.2 −1.65311 −0.826553 0.562859i \(-0.809701\pi\)
−0.826553 + 0.562859i \(0.809701\pi\)
\(558\) 0 0
\(559\) 4574.56 0.346124
\(560\) 0 0
\(561\) 0 0
\(562\) −29536.8 −2.21697
\(563\) 13595.1 1.01770 0.508850 0.860855i \(-0.330071\pi\)
0.508850 + 0.860855i \(0.330071\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 46405.9 3.44627
\(567\) 0 0
\(568\) 9582.04 0.707840
\(569\) 10018.2 0.738107 0.369054 0.929408i \(-0.379682\pi\)
0.369054 + 0.929408i \(0.379682\pi\)
\(570\) 0 0
\(571\) −6658.73 −0.488020 −0.244010 0.969773i \(-0.578463\pi\)
−0.244010 + 0.969773i \(0.578463\pi\)
\(572\) 2748.53 0.200912
\(573\) 0 0
\(574\) −4407.97 −0.320531
\(575\) 0 0
\(576\) 0 0
\(577\) 12676.0 0.914570 0.457285 0.889320i \(-0.348822\pi\)
0.457285 + 0.889320i \(0.348822\pi\)
\(578\) 64162.8 4.61733
\(579\) 0 0
\(580\) 0 0
\(581\) −3627.68 −0.259039
\(582\) 0 0
\(583\) 3412.73 0.242437
\(584\) 11951.8 0.846861
\(585\) 0 0
\(586\) 27315.3 1.92557
\(587\) −18625.6 −1.30965 −0.654823 0.755782i \(-0.727257\pi\)
−0.654823 + 0.755782i \(0.727257\pi\)
\(588\) 0 0
\(589\) −6402.76 −0.447913
\(590\) 0 0
\(591\) 0 0
\(592\) −36661.6 −2.54524
\(593\) −19417.3 −1.34465 −0.672323 0.740258i \(-0.734703\pi\)
−0.672323 + 0.740258i \(0.734703\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −27461.0 −1.88733
\(597\) 0 0
\(598\) −5590.88 −0.382321
\(599\) 13376.9 0.912461 0.456231 0.889862i \(-0.349199\pi\)
0.456231 + 0.889862i \(0.349199\pi\)
\(600\) 0 0
\(601\) 14963.9 1.01562 0.507812 0.861468i \(-0.330454\pi\)
0.507812 + 0.861468i \(0.330454\pi\)
\(602\) −15568.3 −1.05401
\(603\) 0 0
\(604\) −23475.5 −1.58146
\(605\) 0 0
\(606\) 0 0
\(607\) −20270.8 −1.35546 −0.677731 0.735310i \(-0.737037\pi\)
−0.677731 + 0.735310i \(0.737037\pi\)
\(608\) 9313.45 0.621234
\(609\) 0 0
\(610\) 0 0
\(611\) 3132.29 0.207396
\(612\) 0 0
\(613\) −13005.1 −0.856888 −0.428444 0.903568i \(-0.640938\pi\)
−0.428444 + 0.903568i \(0.640938\pi\)
\(614\) −45237.5 −2.97335
\(615\) 0 0
\(616\) −5314.10 −0.347583
\(617\) −11107.4 −0.724745 −0.362372 0.932033i \(-0.618033\pi\)
−0.362372 + 0.932033i \(0.618033\pi\)
\(618\) 0 0
\(619\) 348.077 0.0226016 0.0113008 0.999936i \(-0.496403\pi\)
0.0113008 + 0.999936i \(0.496403\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12140.1 0.782593
\(623\) −4188.48 −0.269355
\(624\) 0 0
\(625\) 0 0
\(626\) 13564.6 0.866052
\(627\) 0 0
\(628\) −59905.1 −3.80649
\(629\) −36904.8 −2.33942
\(630\) 0 0
\(631\) 7548.88 0.476254 0.238127 0.971234i \(-0.423467\pi\)
0.238127 + 0.971234i \(0.423467\pi\)
\(632\) −10324.2 −0.649804
\(633\) 0 0
\(634\) −4339.33 −0.271825
\(635\) 0 0
\(636\) 0 0
\(637\) 519.060 0.0322856
\(638\) 16763.4 1.04023
\(639\) 0 0
\(640\) 0 0
\(641\) −8720.39 −0.537340 −0.268670 0.963232i \(-0.586584\pi\)
−0.268670 + 0.963232i \(0.586584\pi\)
\(642\) 0 0
\(643\) 10517.6 0.645061 0.322530 0.946559i \(-0.395467\pi\)
0.322530 + 0.946559i \(0.395467\pi\)
\(644\) 13288.2 0.813085
\(645\) 0 0
\(646\) 26260.4 1.59938
\(647\) −6194.54 −0.376402 −0.188201 0.982130i \(-0.560266\pi\)
−0.188201 + 0.982130i \(0.560266\pi\)
\(648\) 0 0
\(649\) −7934.87 −0.479925
\(650\) 0 0
\(651\) 0 0
\(652\) −32573.9 −1.95658
\(653\) 16726.9 1.00241 0.501205 0.865329i \(-0.332890\pi\)
0.501205 + 0.865329i \(0.332890\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 16009.3 0.952832
\(657\) 0 0
\(658\) −10659.9 −0.631561
\(659\) 9874.87 0.583718 0.291859 0.956461i \(-0.405726\pi\)
0.291859 + 0.956461i \(0.405726\pi\)
\(660\) 0 0
\(661\) −26873.6 −1.58134 −0.790668 0.612245i \(-0.790267\pi\)
−0.790668 + 0.612245i \(0.790267\pi\)
\(662\) 56953.9 3.34377
\(663\) 0 0
\(664\) 28087.1 1.64156
\(665\) 0 0
\(666\) 0 0
\(667\) −23814.1 −1.38244
\(668\) 31167.0 1.80522
\(669\) 0 0
\(670\) 0 0
\(671\) −2633.54 −0.151515
\(672\) 0 0
\(673\) −270.279 −0.0154807 −0.00774034 0.999970i \(-0.502464\pi\)
−0.00774034 + 0.999970i \(0.502464\pi\)
\(674\) 6166.12 0.352389
\(675\) 0 0
\(676\) −38617.6 −2.19718
\(677\) −5216.49 −0.296139 −0.148070 0.988977i \(-0.547306\pi\)
−0.148070 + 0.988977i \(0.547306\pi\)
\(678\) 0 0
\(679\) −13175.7 −0.744678
\(680\) 0 0
\(681\) 0 0
\(682\) −11939.1 −0.670339
\(683\) 597.154 0.0334546 0.0167273 0.999860i \(-0.494675\pi\)
0.0167273 + 0.999860i \(0.494675\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1766.48 −0.0983158
\(687\) 0 0
\(688\) 56542.4 3.13323
\(689\) 2580.88 0.142705
\(690\) 0 0
\(691\) −32491.9 −1.78878 −0.894392 0.447283i \(-0.852392\pi\)
−0.894392 + 0.447283i \(0.852392\pi\)
\(692\) 59488.8 3.26795
\(693\) 0 0
\(694\) −2668.20 −0.145942
\(695\) 0 0
\(696\) 0 0
\(697\) 16115.5 0.875780
\(698\) −9147.01 −0.496016
\(699\) 0 0
\(700\) 0 0
\(701\) −25288.3 −1.36252 −0.681260 0.732041i \(-0.738568\pi\)
−0.681260 + 0.732041i \(0.738568\pi\)
\(702\) 0 0
\(703\) −10832.5 −0.581162
\(704\) 2694.51 0.144251
\(705\) 0 0
\(706\) −38663.6 −2.06108
\(707\) 1335.53 0.0710438
\(708\) 0 0
\(709\) 20110.2 1.06524 0.532618 0.846355i \(-0.321208\pi\)
0.532618 + 0.846355i \(0.321208\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 32429.1 1.70693
\(713\) 16960.7 0.890860
\(714\) 0 0
\(715\) 0 0
\(716\) −61349.4 −3.20214
\(717\) 0 0
\(718\) 25315.7 1.31584
\(719\) 5650.46 0.293083 0.146542 0.989205i \(-0.453186\pi\)
0.146542 + 0.989205i \(0.453186\pi\)
\(720\) 0 0
\(721\) −10475.7 −0.541104
\(722\) −27616.4 −1.42351
\(723\) 0 0
\(724\) 38203.3 1.96107
\(725\) 0 0
\(726\) 0 0
\(727\) −6571.94 −0.335268 −0.167634 0.985849i \(-0.553613\pi\)
−0.167634 + 0.985849i \(0.553613\pi\)
\(728\) −4018.80 −0.204597
\(729\) 0 0
\(730\) 0 0
\(731\) 56917.6 2.87985
\(732\) 0 0
\(733\) 31444.0 1.58446 0.792231 0.610222i \(-0.208920\pi\)
0.792231 + 0.610222i \(0.208920\pi\)
\(734\) 18689.6 0.939843
\(735\) 0 0
\(736\) −24671.0 −1.23558
\(737\) 12209.4 0.610232
\(738\) 0 0
\(739\) 8157.80 0.406075 0.203038 0.979171i \(-0.434919\pi\)
0.203038 + 0.979171i \(0.434919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −8783.35 −0.434565
\(743\) −5705.69 −0.281725 −0.140862 0.990029i \(-0.544987\pi\)
−0.140862 + 0.990029i \(0.544987\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 14610.7 0.717070
\(747\) 0 0
\(748\) 34197.8 1.67165
\(749\) 13761.0 0.671315
\(750\) 0 0
\(751\) −7296.31 −0.354522 −0.177261 0.984164i \(-0.556724\pi\)
−0.177261 + 0.984164i \(0.556724\pi\)
\(752\) 38715.7 1.87742
\(753\) 0 0
\(754\) 12677.4 0.612311
\(755\) 0 0
\(756\) 0 0
\(757\) −8240.48 −0.395648 −0.197824 0.980238i \(-0.563387\pi\)
−0.197824 + 0.980238i \(0.563387\pi\)
\(758\) 49976.3 2.39475
\(759\) 0 0
\(760\) 0 0
\(761\) 30887.8 1.47133 0.735665 0.677345i \(-0.236870\pi\)
0.735665 + 0.677345i \(0.236870\pi\)
\(762\) 0 0
\(763\) 6093.37 0.289115
\(764\) −51551.1 −2.44117
\(765\) 0 0
\(766\) −19858.2 −0.936694
\(767\) −6000.76 −0.282497
\(768\) 0 0
\(769\) 30953.0 1.45149 0.725743 0.687966i \(-0.241496\pi\)
0.725743 + 0.687966i \(0.241496\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5562.48 −0.259324
\(773\) −6620.92 −0.308070 −0.154035 0.988065i \(-0.549227\pi\)
−0.154035 + 0.988065i \(0.549227\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 102012. 4.71910
\(777\) 0 0
\(778\) −36598.9 −1.68655
\(779\) 4730.33 0.217563
\(780\) 0 0
\(781\) 2476.49 0.113465
\(782\) −69563.0 −3.18103
\(783\) 0 0
\(784\) 6415.69 0.292260
\(785\) 0 0
\(786\) 0 0
\(787\) 10068.6 0.456044 0.228022 0.973656i \(-0.426774\pi\)
0.228022 + 0.973656i \(0.426774\pi\)
\(788\) −27519.2 −1.24407
\(789\) 0 0
\(790\) 0 0
\(791\) −14358.4 −0.645419
\(792\) 0 0
\(793\) −1991.62 −0.0891861
\(794\) 34896.1 1.55972
\(795\) 0 0
\(796\) −56321.7 −2.50788
\(797\) 42016.5 1.86738 0.933690 0.358084i \(-0.116570\pi\)
0.933690 + 0.358084i \(0.116570\pi\)
\(798\) 0 0
\(799\) 38972.6 1.72560
\(800\) 0 0
\(801\) 0 0
\(802\) −33190.4 −1.46134
\(803\) 3088.95 0.135749
\(804\) 0 0
\(805\) 0 0
\(806\) −9028.96 −0.394580
\(807\) 0 0
\(808\) −10340.3 −0.450211
\(809\) 32805.5 1.42568 0.712842 0.701324i \(-0.247407\pi\)
0.712842 + 0.701324i \(0.247407\pi\)
\(810\) 0 0
\(811\) 15395.7 0.666606 0.333303 0.942820i \(-0.391837\pi\)
0.333303 + 0.942820i \(0.391837\pi\)
\(812\) −30131.0 −1.30220
\(813\) 0 0
\(814\) −20199.2 −0.869758
\(815\) 0 0
\(816\) 0 0
\(817\) 16706.8 0.715419
\(818\) 24761.6 1.05840
\(819\) 0 0
\(820\) 0 0
\(821\) −10626.7 −0.451734 −0.225867 0.974158i \(-0.572521\pi\)
−0.225867 + 0.974158i \(0.572521\pi\)
\(822\) 0 0
\(823\) 42578.1 1.80338 0.901689 0.432384i \(-0.142328\pi\)
0.901689 + 0.432384i \(0.142328\pi\)
\(824\) 81107.7 3.42903
\(825\) 0 0
\(826\) 20422.0 0.860257
\(827\) 733.624 0.0308472 0.0154236 0.999881i \(-0.495090\pi\)
0.0154236 + 0.999881i \(0.495090\pi\)
\(828\) 0 0
\(829\) 15778.0 0.661028 0.330514 0.943801i \(-0.392778\pi\)
0.330514 + 0.943801i \(0.392778\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2037.73 0.0849104
\(833\) 6458.26 0.268626
\(834\) 0 0
\(835\) 0 0
\(836\) 10037.9 0.415275
\(837\) 0 0
\(838\) 23286.2 0.959916
\(839\) −16776.8 −0.690343 −0.345172 0.938540i \(-0.612179\pi\)
−0.345172 + 0.938540i \(0.612179\pi\)
\(840\) 0 0
\(841\) 29609.7 1.21406
\(842\) −29983.0 −1.22717
\(843\) 0 0
\(844\) −53472.6 −2.18081
\(845\) 0 0
\(846\) 0 0
\(847\) 7943.56 0.322248
\(848\) 31900.2 1.29181
\(849\) 0 0
\(850\) 0 0
\(851\) 28695.1 1.15588
\(852\) 0 0
\(853\) −7646.57 −0.306933 −0.153466 0.988154i \(-0.549044\pi\)
−0.153466 + 0.988154i \(0.549044\pi\)
\(854\) 6777.95 0.271589
\(855\) 0 0
\(856\) −106544. −4.25419
\(857\) 26980.3 1.07541 0.537707 0.843132i \(-0.319291\pi\)
0.537707 + 0.843132i \(0.319291\pi\)
\(858\) 0 0
\(859\) 3034.02 0.120511 0.0602557 0.998183i \(-0.480808\pi\)
0.0602557 + 0.998183i \(0.480808\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 43171.2 1.70582
\(863\) −25954.5 −1.02376 −0.511879 0.859058i \(-0.671050\pi\)
−0.511879 + 0.859058i \(0.671050\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −13534.7 −0.531095
\(867\) 0 0
\(868\) 21459.6 0.839155
\(869\) −2668.31 −0.104161
\(870\) 0 0
\(871\) 9233.42 0.359199
\(872\) −47177.6 −1.83215
\(873\) 0 0
\(874\) −20418.6 −0.790238
\(875\) 0 0
\(876\) 0 0
\(877\) 11235.7 0.432616 0.216308 0.976325i \(-0.430598\pi\)
0.216308 + 0.976325i \(0.430598\pi\)
\(878\) −21233.7 −0.816176
\(879\) 0 0
\(880\) 0 0
\(881\) 4594.31 0.175694 0.0878468 0.996134i \(-0.472001\pi\)
0.0878468 + 0.996134i \(0.472001\pi\)
\(882\) 0 0
\(883\) 14162.1 0.539741 0.269871 0.962897i \(-0.413019\pi\)
0.269871 + 0.962897i \(0.413019\pi\)
\(884\) 25862.1 0.983979
\(885\) 0 0
\(886\) −1083.20 −0.0410733
\(887\) −31024.2 −1.17440 −0.587199 0.809442i \(-0.699770\pi\)
−0.587199 + 0.809442i \(0.699770\pi\)
\(888\) 0 0
\(889\) 17508.1 0.660519
\(890\) 0 0
\(891\) 0 0
\(892\) −85047.7 −3.19238
\(893\) 11439.5 0.428676
\(894\) 0 0
\(895\) 0 0
\(896\) 6546.46 0.244087
\(897\) 0 0
\(898\) −22734.4 −0.844828
\(899\) −38458.5 −1.42677
\(900\) 0 0
\(901\) 32111.9 1.18735
\(902\) 8820.55 0.325601
\(903\) 0 0
\(904\) 111169. 4.09008
\(905\) 0 0
\(906\) 0 0
\(907\) 10594.5 0.387855 0.193928 0.981016i \(-0.437877\pi\)
0.193928 + 0.981016i \(0.437877\pi\)
\(908\) −47180.2 −1.72437
\(909\) 0 0
\(910\) 0 0
\(911\) −1469.37 −0.0534384 −0.0267192 0.999643i \(-0.508506\pi\)
−0.0267192 + 0.999643i \(0.508506\pi\)
\(912\) 0 0
\(913\) 7259.17 0.263136
\(914\) −73931.9 −2.67555
\(915\) 0 0
\(916\) 37184.1 1.34126
\(917\) 3739.33 0.134660
\(918\) 0 0
\(919\) 41834.6 1.50163 0.750813 0.660515i \(-0.229662\pi\)
0.750813 + 0.660515i \(0.229662\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 73991.2 2.64292
\(923\) 1872.85 0.0667884
\(924\) 0 0
\(925\) 0 0
\(926\) −59916.9 −2.12634
\(927\) 0 0
\(928\) 55941.7 1.97885
\(929\) −8570.23 −0.302670 −0.151335 0.988483i \(-0.548357\pi\)
−0.151335 + 0.988483i \(0.548357\pi\)
\(930\) 0 0
\(931\) 1895.67 0.0667326
\(932\) 52063.1 1.82981
\(933\) 0 0
\(934\) −62379.3 −2.18534
\(935\) 0 0
\(936\) 0 0
\(937\) −41260.3 −1.43854 −0.719271 0.694730i \(-0.755524\pi\)
−0.719271 + 0.694730i \(0.755524\pi\)
\(938\) −31423.5 −1.09383
\(939\) 0 0
\(940\) 0 0
\(941\) −47969.6 −1.66181 −0.830905 0.556414i \(-0.812177\pi\)
−0.830905 + 0.556414i \(0.812177\pi\)
\(942\) 0 0
\(943\) −12530.5 −0.432714
\(944\) −74170.6 −2.55725
\(945\) 0 0
\(946\) 31152.9 1.07068
\(947\) −15666.3 −0.537577 −0.268789 0.963199i \(-0.586623\pi\)
−0.268789 + 0.963199i \(0.586623\pi\)
\(948\) 0 0
\(949\) 2336.02 0.0799057
\(950\) 0 0
\(951\) 0 0
\(952\) −50002.7 −1.70231
\(953\) 27495.7 0.934600 0.467300 0.884099i \(-0.345227\pi\)
0.467300 + 0.884099i \(0.345227\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −34244.0 −1.15851
\(957\) 0 0
\(958\) −58612.4 −1.97670
\(959\) −3522.11 −0.118597
\(960\) 0 0
\(961\) −2400.42 −0.0805755
\(962\) −15275.7 −0.511963
\(963\) 0 0
\(964\) 106003. 3.54164
\(965\) 0 0
\(966\) 0 0
\(967\) −51246.2 −1.70421 −0.852103 0.523374i \(-0.824673\pi\)
−0.852103 + 0.523374i \(0.824673\pi\)
\(968\) −61502.6 −2.04212
\(969\) 0 0
\(970\) 0 0
\(971\) −40446.0 −1.33674 −0.668370 0.743829i \(-0.733008\pi\)
−0.668370 + 0.743829i \(0.733008\pi\)
\(972\) 0 0
\(973\) −9974.08 −0.328627
\(974\) 59821.2 1.96796
\(975\) 0 0
\(976\) −24616.8 −0.807342
\(977\) 21457.8 0.702656 0.351328 0.936253i \(-0.385730\pi\)
0.351328 + 0.936253i \(0.385730\pi\)
\(978\) 0 0
\(979\) 8381.35 0.273615
\(980\) 0 0
\(981\) 0 0
\(982\) 31135.6 1.01179
\(983\) −8746.68 −0.283801 −0.141900 0.989881i \(-0.545321\pi\)
−0.141900 + 0.989881i \(0.545321\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 157734. 5.09461
\(987\) 0 0
\(988\) 7591.22 0.244442
\(989\) −44255.8 −1.42291
\(990\) 0 0
\(991\) −29046.2 −0.931061 −0.465531 0.885032i \(-0.654137\pi\)
−0.465531 + 0.885032i \(0.654137\pi\)
\(992\) −39842.3 −1.27520
\(993\) 0 0
\(994\) −6373.75 −0.203383
\(995\) 0 0
\(996\) 0 0
\(997\) 4656.30 0.147910 0.0739552 0.997262i \(-0.476438\pi\)
0.0739552 + 0.997262i \(0.476438\pi\)
\(998\) 4430.52 0.140527
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.be.1.3 3
3.2 odd 2 1575.4.a.bb.1.1 3
5.4 even 2 315.4.a.n.1.1 3
15.14 odd 2 315.4.a.o.1.3 yes 3
35.34 odd 2 2205.4.a.bk.1.1 3
105.104 even 2 2205.4.a.bl.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.4.a.n.1.1 3 5.4 even 2
315.4.a.o.1.3 yes 3 15.14 odd 2
1575.4.a.bb.1.1 3 3.2 odd 2
1575.4.a.be.1.3 3 1.1 even 1 trivial
2205.4.a.bk.1.1 3 35.34 odd 2
2205.4.a.bl.1.3 3 105.104 even 2