Properties

Label 315.4.a.o.1.3
Level $315$
Weight $4$
Character 315.1
Self dual yes
Analytic conductor $18.586$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.22952.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 18x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-4.15010\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.15010 q^{2} +18.5235 q^{4} +5.00000 q^{5} +7.00000 q^{7} +54.1971 q^{8} +25.7505 q^{10} -14.0073 q^{11} -10.5931 q^{13} +36.0507 q^{14} +130.932 q^{16} +131.801 q^{17} +38.6871 q^{19} +92.6176 q^{20} -72.1391 q^{22} -102.481 q^{23} +25.0000 q^{25} -54.5553 q^{26} +129.665 q^{28} -232.376 q^{29} -165.501 q^{31} +240.738 q^{32} +678.789 q^{34} +35.0000 q^{35} +280.004 q^{37} +199.242 q^{38} +270.986 q^{40} -122.271 q^{41} -431.844 q^{43} -259.465 q^{44} -527.787 q^{46} +295.692 q^{47} +49.0000 q^{49} +128.752 q^{50} -196.221 q^{52} +243.639 q^{53} -70.0366 q^{55} +379.380 q^{56} -1196.76 q^{58} +566.480 q^{59} -188.012 q^{61} -852.346 q^{62} +192.364 q^{64} -52.9653 q^{65} -871.647 q^{67} +2441.42 q^{68} +180.253 q^{70} -176.800 q^{71} -220.524 q^{73} +1442.05 q^{74} +716.621 q^{76} -98.0513 q^{77} -190.494 q^{79} +654.662 q^{80} -629.710 q^{82} +518.241 q^{83} +659.006 q^{85} -2224.04 q^{86} -759.157 q^{88} -598.355 q^{89} -74.1515 q^{91} -1898.31 q^{92} +1522.85 q^{94} +193.436 q^{95} -1882.24 q^{97} +252.355 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 14 q^{4} + 15 q^{5} + 21 q^{7} + 66 q^{8} + 10 q^{10} - 20 q^{11} + 14 q^{14} + 114 q^{16} + 234 q^{17} - 82 q^{19} + 70 q^{20} - 236 q^{22} + 30 q^{23} + 75 q^{25} + 76 q^{26} + 98 q^{28}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.15010 1.82083 0.910417 0.413691i \(-0.135761\pi\)
0.910417 + 0.413691i \(0.135761\pi\)
\(3\) 0 0
\(4\) 18.5235 2.31544
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 54.1971 2.39520
\(9\) 0 0
\(10\) 25.7505 0.814302
\(11\) −14.0073 −0.383943 −0.191971 0.981401i \(-0.561488\pi\)
−0.191971 + 0.981401i \(0.561488\pi\)
\(12\) 0 0
\(13\) −10.5931 −0.225999 −0.113000 0.993595i \(-0.536046\pi\)
−0.113000 + 0.993595i \(0.536046\pi\)
\(14\) 36.0507 0.688211
\(15\) 0 0
\(16\) 130.932 2.04582
\(17\) 131.801 1.88038 0.940191 0.340649i \(-0.110647\pi\)
0.940191 + 0.340649i \(0.110647\pi\)
\(18\) 0 0
\(19\) 38.6871 0.467128 0.233564 0.972341i \(-0.424961\pi\)
0.233564 + 0.972341i \(0.424961\pi\)
\(20\) 92.6176 1.03550
\(21\) 0 0
\(22\) −72.1391 −0.699096
\(23\) −102.481 −0.929076 −0.464538 0.885553i \(-0.653780\pi\)
−0.464538 + 0.885553i \(0.653780\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −54.5553 −0.411507
\(27\) 0 0
\(28\) 129.665 0.875154
\(29\) −232.376 −1.48797 −0.743986 0.668195i \(-0.767067\pi\)
−0.743986 + 0.668195i \(0.767067\pi\)
\(30\) 0 0
\(31\) −165.501 −0.958866 −0.479433 0.877578i \(-0.659158\pi\)
−0.479433 + 0.877578i \(0.659158\pi\)
\(32\) 240.738 1.32990
\(33\) 0 0
\(34\) 678.789 3.42386
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) 280.004 1.24412 0.622059 0.782970i \(-0.286296\pi\)
0.622059 + 0.782970i \(0.286296\pi\)
\(38\) 199.242 0.850563
\(39\) 0 0
\(40\) 270.986 1.07116
\(41\) −122.271 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(42\) 0 0
\(43\) −431.844 −1.53153 −0.765764 0.643122i \(-0.777639\pi\)
−0.765764 + 0.643122i \(0.777639\pi\)
\(44\) −259.465 −0.888996
\(45\) 0 0
\(46\) −527.787 −1.69169
\(47\) 295.692 0.917685 0.458842 0.888518i \(-0.348264\pi\)
0.458842 + 0.888518i \(0.348264\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 128.752 0.364167
\(51\) 0 0
\(52\) −196.221 −0.523287
\(53\) 243.639 0.631441 0.315721 0.948852i \(-0.397754\pi\)
0.315721 + 0.948852i \(0.397754\pi\)
\(54\) 0 0
\(55\) −70.0366 −0.171704
\(56\) 379.380 0.905299
\(57\) 0 0
\(58\) −1196.76 −2.70935
\(59\) 566.480 1.24999 0.624995 0.780628i \(-0.285101\pi\)
0.624995 + 0.780628i \(0.285101\pi\)
\(60\) 0 0
\(61\) −188.012 −0.394630 −0.197315 0.980340i \(-0.563222\pi\)
−0.197315 + 0.980340i \(0.563222\pi\)
\(62\) −852.346 −1.74594
\(63\) 0 0
\(64\) 192.364 0.375711
\(65\) −52.9653 −0.101070
\(66\) 0 0
\(67\) −871.647 −1.58938 −0.794692 0.607013i \(-0.792367\pi\)
−0.794692 + 0.607013i \(0.792367\pi\)
\(68\) 2441.42 4.35391
\(69\) 0 0
\(70\) 180.253 0.307777
\(71\) −176.800 −0.295525 −0.147762 0.989023i \(-0.547207\pi\)
−0.147762 + 0.989023i \(0.547207\pi\)
\(72\) 0 0
\(73\) −220.524 −0.353566 −0.176783 0.984250i \(-0.556569\pi\)
−0.176783 + 0.984250i \(0.556569\pi\)
\(74\) 1442.05 2.26533
\(75\) 0 0
\(76\) 716.621 1.08161
\(77\) −98.0513 −0.145117
\(78\) 0 0
\(79\) −190.494 −0.271294 −0.135647 0.990757i \(-0.543311\pi\)
−0.135647 + 0.990757i \(0.543311\pi\)
\(80\) 654.662 0.914918
\(81\) 0 0
\(82\) −629.710 −0.848047
\(83\) 518.241 0.685353 0.342676 0.939453i \(-0.388667\pi\)
0.342676 + 0.939453i \(0.388667\pi\)
\(84\) 0 0
\(85\) 659.006 0.840932
\(86\) −2224.04 −2.78866
\(87\) 0 0
\(88\) −759.157 −0.919618
\(89\) −598.355 −0.712646 −0.356323 0.934363i \(-0.615970\pi\)
−0.356323 + 0.934363i \(0.615970\pi\)
\(90\) 0 0
\(91\) −74.1515 −0.0854196
\(92\) −1898.31 −2.15122
\(93\) 0 0
\(94\) 1522.85 1.67095
\(95\) 193.436 0.208906
\(96\) 0 0
\(97\) −1882.24 −1.97023 −0.985116 0.171889i \(-0.945013\pi\)
−0.985116 + 0.171889i \(0.945013\pi\)
\(98\) 252.355 0.260119
\(99\) 0 0
\(100\) 463.088 0.463088
\(101\) 190.791 0.187964 0.0939821 0.995574i \(-0.470040\pi\)
0.0939821 + 0.995574i \(0.470040\pi\)
\(102\) 0 0
\(103\) −1496.53 −1.43163 −0.715813 0.698292i \(-0.753944\pi\)
−0.715813 + 0.698292i \(0.753944\pi\)
\(104\) −574.114 −0.541312
\(105\) 0 0
\(106\) 1254.76 1.14975
\(107\) −1965.85 −1.77613 −0.888066 0.459716i \(-0.847951\pi\)
−0.888066 + 0.459716i \(0.847951\pi\)
\(108\) 0 0
\(109\) −870.482 −0.764927 −0.382464 0.923971i \(-0.624924\pi\)
−0.382464 + 0.923971i \(0.624924\pi\)
\(110\) −360.696 −0.312645
\(111\) 0 0
\(112\) 916.527 0.773247
\(113\) 2051.20 1.70762 0.853809 0.520587i \(-0.174287\pi\)
0.853809 + 0.520587i \(0.174287\pi\)
\(114\) 0 0
\(115\) −512.405 −0.415496
\(116\) −4304.42 −3.44531
\(117\) 0 0
\(118\) 2917.43 2.27603
\(119\) 922.608 0.710717
\(120\) 0 0
\(121\) −1134.79 −0.852588
\(122\) −968.279 −0.718556
\(123\) 0 0
\(124\) −3065.66 −2.22020
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 2501.15 1.74757 0.873785 0.486313i \(-0.161659\pi\)
0.873785 + 0.486313i \(0.161659\pi\)
\(128\) −935.209 −0.645793
\(129\) 0 0
\(130\) −272.777 −0.184032
\(131\) 534.190 0.356278 0.178139 0.984005i \(-0.442992\pi\)
0.178139 + 0.984005i \(0.442992\pi\)
\(132\) 0 0
\(133\) 270.810 0.176558
\(134\) −4489.07 −2.89400
\(135\) 0 0
\(136\) 7143.24 4.50388
\(137\) 503.159 0.313779 0.156890 0.987616i \(-0.449853\pi\)
0.156890 + 0.987616i \(0.449853\pi\)
\(138\) 0 0
\(139\) 1424.87 0.869466 0.434733 0.900559i \(-0.356843\pi\)
0.434733 + 0.900559i \(0.356843\pi\)
\(140\) 648.323 0.391381
\(141\) 0 0
\(142\) −910.536 −0.538102
\(143\) 148.381 0.0867707
\(144\) 0 0
\(145\) −1161.88 −0.665441
\(146\) −1135.72 −0.643786
\(147\) 0 0
\(148\) 5186.66 2.88068
\(149\) 1482.49 0.815105 0.407552 0.913182i \(-0.366382\pi\)
0.407552 + 0.913182i \(0.366382\pi\)
\(150\) 0 0
\(151\) −1267.34 −0.683008 −0.341504 0.939880i \(-0.610936\pi\)
−0.341504 + 0.939880i \(0.610936\pi\)
\(152\) 2096.73 1.11886
\(153\) 0 0
\(154\) −504.974 −0.264233
\(155\) −827.505 −0.428818
\(156\) 0 0
\(157\) 3234.00 1.64396 0.821979 0.569517i \(-0.192870\pi\)
0.821979 + 0.569517i \(0.192870\pi\)
\(158\) −981.063 −0.493982
\(159\) 0 0
\(160\) 1203.69 0.594750
\(161\) −717.367 −0.351158
\(162\) 0 0
\(163\) 1758.52 0.845017 0.422508 0.906359i \(-0.361150\pi\)
0.422508 + 0.906359i \(0.361150\pi\)
\(164\) −2264.90 −1.07841
\(165\) 0 0
\(166\) 2668.99 1.24791
\(167\) 1682.57 0.779646 0.389823 0.920890i \(-0.372536\pi\)
0.389823 + 0.920890i \(0.372536\pi\)
\(168\) 0 0
\(169\) −2084.79 −0.948924
\(170\) 3393.95 1.53120
\(171\) 0 0
\(172\) −7999.28 −3.54616
\(173\) 3211.53 1.41138 0.705688 0.708523i \(-0.250638\pi\)
0.705688 + 0.708523i \(0.250638\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) −1834.01 −0.785477
\(177\) 0 0
\(178\) −3081.59 −1.29761
\(179\) 3311.97 1.38295 0.691476 0.722399i \(-0.256961\pi\)
0.691476 + 0.722399i \(0.256961\pi\)
\(180\) 0 0
\(181\) 2062.42 0.846954 0.423477 0.905907i \(-0.360809\pi\)
0.423477 + 0.905907i \(0.360809\pi\)
\(182\) −381.887 −0.155535
\(183\) 0 0
\(184\) −5554.17 −2.22532
\(185\) 1400.02 0.556386
\(186\) 0 0
\(187\) −1846.18 −0.721958
\(188\) 5477.26 2.12484
\(189\) 0 0
\(190\) 996.212 0.380383
\(191\) 2783.01 1.05430 0.527150 0.849772i \(-0.323261\pi\)
0.527150 + 0.849772i \(0.323261\pi\)
\(192\) 0 0
\(193\) 300.293 0.111998 0.0559988 0.998431i \(-0.482166\pi\)
0.0559988 + 0.998431i \(0.482166\pi\)
\(194\) −9693.72 −3.58747
\(195\) 0 0
\(196\) 907.652 0.330777
\(197\) −1485.64 −0.537295 −0.268648 0.963239i \(-0.586577\pi\)
−0.268648 + 0.963239i \(0.586577\pi\)
\(198\) 0 0
\(199\) −3040.55 −1.08311 −0.541555 0.840665i \(-0.682164\pi\)
−0.541555 + 0.840665i \(0.682164\pi\)
\(200\) 1354.93 0.479039
\(201\) 0 0
\(202\) 982.591 0.342252
\(203\) −1626.63 −0.562400
\(204\) 0 0
\(205\) −611.357 −0.208288
\(206\) −7707.28 −2.60676
\(207\) 0 0
\(208\) −1386.98 −0.462353
\(209\) −541.903 −0.179350
\(210\) 0 0
\(211\) −2886.74 −0.941855 −0.470928 0.882172i \(-0.656081\pi\)
−0.470928 + 0.882172i \(0.656081\pi\)
\(212\) 4513.05 1.46206
\(213\) 0 0
\(214\) −10124.3 −3.23404
\(215\) −2159.22 −0.684920
\(216\) 0 0
\(217\) −1158.51 −0.362417
\(218\) −4483.07 −1.39281
\(219\) 0 0
\(220\) −1297.32 −0.397571
\(221\) −1396.18 −0.424964
\(222\) 0 0
\(223\) 4591.34 1.37874 0.689369 0.724410i \(-0.257888\pi\)
0.689369 + 0.724410i \(0.257888\pi\)
\(224\) 1685.16 0.502655
\(225\) 0 0
\(226\) 10563.9 3.10929
\(227\) −2547.05 −0.744729 −0.372364 0.928087i \(-0.621453\pi\)
−0.372364 + 0.928087i \(0.621453\pi\)
\(228\) 0 0
\(229\) 2007.40 0.579269 0.289635 0.957137i \(-0.406466\pi\)
0.289635 + 0.957137i \(0.406466\pi\)
\(230\) −2638.94 −0.756549
\(231\) 0 0
\(232\) −12594.1 −3.56399
\(233\) 2810.65 0.790266 0.395133 0.918624i \(-0.370699\pi\)
0.395133 + 0.918624i \(0.370699\pi\)
\(234\) 0 0
\(235\) 1478.46 0.410401
\(236\) 10493.2 2.89428
\(237\) 0 0
\(238\) 4751.52 1.29410
\(239\) 1848.68 0.500339 0.250170 0.968202i \(-0.419514\pi\)
0.250170 + 0.968202i \(0.419514\pi\)
\(240\) 0 0
\(241\) 5722.64 1.52958 0.764788 0.644283i \(-0.222844\pi\)
0.764788 + 0.644283i \(0.222844\pi\)
\(242\) −5844.30 −1.55242
\(243\) 0 0
\(244\) −3482.64 −0.913742
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) −409.815 −0.105571
\(248\) −8969.68 −2.29667
\(249\) 0 0
\(250\) 643.762 0.162860
\(251\) 1723.38 0.433381 0.216691 0.976240i \(-0.430474\pi\)
0.216691 + 0.976240i \(0.430474\pi\)
\(252\) 0 0
\(253\) 1435.48 0.356712
\(254\) 12881.2 3.18203
\(255\) 0 0
\(256\) −6355.33 −1.55159
\(257\) −5754.01 −1.39660 −0.698298 0.715807i \(-0.746059\pi\)
−0.698298 + 0.715807i \(0.746059\pi\)
\(258\) 0 0
\(259\) 1960.03 0.470232
\(260\) −981.104 −0.234021
\(261\) 0 0
\(262\) 2751.13 0.648723
\(263\) −6680.33 −1.56626 −0.783130 0.621857i \(-0.786378\pi\)
−0.783130 + 0.621857i \(0.786378\pi\)
\(264\) 0 0
\(265\) 1218.19 0.282389
\(266\) 1394.70 0.321483
\(267\) 0 0
\(268\) −16146.0 −3.68012
\(269\) 7468.96 1.69290 0.846451 0.532466i \(-0.178735\pi\)
0.846451 + 0.532466i \(0.178735\pi\)
\(270\) 0 0
\(271\) −757.673 −0.169835 −0.0849176 0.996388i \(-0.527063\pi\)
−0.0849176 + 0.996388i \(0.527063\pi\)
\(272\) 17257.0 3.84692
\(273\) 0 0
\(274\) 2591.32 0.571340
\(275\) −350.183 −0.0767885
\(276\) 0 0
\(277\) 1169.29 0.253632 0.126816 0.991926i \(-0.459524\pi\)
0.126816 + 0.991926i \(0.459524\pi\)
\(278\) 7338.22 1.58315
\(279\) 0 0
\(280\) 1896.90 0.404862
\(281\) 5735.20 1.21756 0.608778 0.793341i \(-0.291660\pi\)
0.608778 + 0.793341i \(0.291660\pi\)
\(282\) 0 0
\(283\) −9010.69 −1.89269 −0.946343 0.323164i \(-0.895253\pi\)
−0.946343 + 0.323164i \(0.895253\pi\)
\(284\) −3274.95 −0.684270
\(285\) 0 0
\(286\) 764.174 0.157995
\(287\) −855.900 −0.176035
\(288\) 0 0
\(289\) 12458.6 2.53583
\(290\) −5983.80 −1.21166
\(291\) 0 0
\(292\) −4084.87 −0.818662
\(293\) 5303.84 1.05752 0.528760 0.848771i \(-0.322657\pi\)
0.528760 + 0.848771i \(0.322657\pi\)
\(294\) 0 0
\(295\) 2832.40 0.559013
\(296\) 15175.4 2.97991
\(297\) 0 0
\(298\) 7634.99 1.48417
\(299\) 1085.59 0.209970
\(300\) 0 0
\(301\) −3022.91 −0.578863
\(302\) −6526.90 −1.24365
\(303\) 0 0
\(304\) 5065.40 0.955659
\(305\) −940.059 −0.176484
\(306\) 0 0
\(307\) 8783.81 1.63296 0.816480 0.577374i \(-0.195922\pi\)
0.816480 + 0.577374i \(0.195922\pi\)
\(308\) −1816.25 −0.336009
\(309\) 0 0
\(310\) −4261.73 −0.780807
\(311\) −2357.25 −0.429799 −0.214899 0.976636i \(-0.568942\pi\)
−0.214899 + 0.976636i \(0.568942\pi\)
\(312\) 0 0
\(313\) −2633.84 −0.475635 −0.237817 0.971310i \(-0.576432\pi\)
−0.237817 + 0.971310i \(0.576432\pi\)
\(314\) 16655.4 2.99338
\(315\) 0 0
\(316\) −3528.62 −0.628166
\(317\) −842.572 −0.149286 −0.0746428 0.997210i \(-0.523782\pi\)
−0.0746428 + 0.997210i \(0.523782\pi\)
\(318\) 0 0
\(319\) 3254.97 0.571296
\(320\) 961.820 0.168023
\(321\) 0 0
\(322\) −3694.51 −0.639401
\(323\) 5099.01 0.878379
\(324\) 0 0
\(325\) −264.827 −0.0451998
\(326\) 9056.54 1.53864
\(327\) 0 0
\(328\) −6626.76 −1.11555
\(329\) 2069.85 0.346852
\(330\) 0 0
\(331\) 11058.8 1.83639 0.918197 0.396125i \(-0.129645\pi\)
0.918197 + 0.396125i \(0.129645\pi\)
\(332\) 9599.64 1.58689
\(333\) 0 0
\(334\) 8665.38 1.41961
\(335\) −4358.24 −0.710794
\(336\) 0 0
\(337\) −1197.28 −0.193531 −0.0967657 0.995307i \(-0.530850\pi\)
−0.0967657 + 0.995307i \(0.530850\pi\)
\(338\) −10736.9 −1.72783
\(339\) 0 0
\(340\) 12207.1 1.94713
\(341\) 2318.23 0.368150
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −23404.7 −3.66831
\(345\) 0 0
\(346\) 16539.7 2.56988
\(347\) −518.087 −0.0801509 −0.0400755 0.999197i \(-0.512760\pi\)
−0.0400755 + 0.999197i \(0.512760\pi\)
\(348\) 0 0
\(349\) −1776.08 −0.272412 −0.136206 0.990681i \(-0.543491\pi\)
−0.136206 + 0.990681i \(0.543491\pi\)
\(350\) 901.267 0.137642
\(351\) 0 0
\(352\) −3372.09 −0.510606
\(353\) −7507.35 −1.13194 −0.565972 0.824425i \(-0.691499\pi\)
−0.565972 + 0.824425i \(0.691499\pi\)
\(354\) 0 0
\(355\) −883.999 −0.132163
\(356\) −11083.6 −1.65009
\(357\) 0 0
\(358\) 17057.0 2.51813
\(359\) −4915.58 −0.722658 −0.361329 0.932438i \(-0.617677\pi\)
−0.361329 + 0.932438i \(0.617677\pi\)
\(360\) 0 0
\(361\) −5362.31 −0.781791
\(362\) 10621.7 1.54216
\(363\) 0 0
\(364\) −1373.55 −0.197784
\(365\) −1102.62 −0.158120
\(366\) 0 0
\(367\) −3628.98 −0.516161 −0.258080 0.966123i \(-0.583090\pi\)
−0.258080 + 0.966123i \(0.583090\pi\)
\(368\) −13418.1 −1.90072
\(369\) 0 0
\(370\) 7210.24 1.01309
\(371\) 1705.47 0.238662
\(372\) 0 0
\(373\) −2836.97 −0.393814 −0.196907 0.980422i \(-0.563090\pi\)
−0.196907 + 0.980422i \(0.563090\pi\)
\(374\) −9508.02 −1.31457
\(375\) 0 0
\(376\) 16025.7 2.19804
\(377\) 2461.58 0.336280
\(378\) 0 0
\(379\) 9703.96 1.31519 0.657597 0.753370i \(-0.271573\pi\)
0.657597 + 0.753370i \(0.271573\pi\)
\(380\) 3583.11 0.483709
\(381\) 0 0
\(382\) 14332.8 1.91971
\(383\) −3855.90 −0.514431 −0.257216 0.966354i \(-0.582805\pi\)
−0.257216 + 0.966354i \(0.582805\pi\)
\(384\) 0 0
\(385\) −490.256 −0.0648981
\(386\) 1546.54 0.203929
\(387\) 0 0
\(388\) −34865.7 −4.56195
\(389\) 7106.46 0.926251 0.463125 0.886293i \(-0.346728\pi\)
0.463125 + 0.886293i \(0.346728\pi\)
\(390\) 0 0
\(391\) −13507.1 −1.74702
\(392\) 2655.66 0.342171
\(393\) 0 0
\(394\) −7651.17 −0.978326
\(395\) −952.470 −0.121327
\(396\) 0 0
\(397\) −6775.82 −0.856596 −0.428298 0.903637i \(-0.640887\pi\)
−0.428298 + 0.903637i \(0.640887\pi\)
\(398\) −15659.1 −1.97217
\(399\) 0 0
\(400\) 3273.31 0.409164
\(401\) 6444.62 0.802566 0.401283 0.915954i \(-0.368564\pi\)
0.401283 + 0.915954i \(0.368564\pi\)
\(402\) 0 0
\(403\) 1753.16 0.216703
\(404\) 3534.11 0.435220
\(405\) 0 0
\(406\) −8377.32 −1.02404
\(407\) −3922.11 −0.477670
\(408\) 0 0
\(409\) 4807.99 0.581270 0.290635 0.956834i \(-0.406133\pi\)
0.290635 + 0.956834i \(0.406133\pi\)
\(410\) −3148.55 −0.379258
\(411\) 0 0
\(412\) −27721.0 −3.31484
\(413\) 3965.36 0.472452
\(414\) 0 0
\(415\) 2591.20 0.306499
\(416\) −2550.15 −0.300556
\(417\) 0 0
\(418\) −2790.85 −0.326567
\(419\) −4521.51 −0.527184 −0.263592 0.964634i \(-0.584907\pi\)
−0.263592 + 0.964634i \(0.584907\pi\)
\(420\) 0 0
\(421\) −5821.82 −0.673962 −0.336981 0.941511i \(-0.609406\pi\)
−0.336981 + 0.941511i \(0.609406\pi\)
\(422\) −14867.0 −1.71496
\(423\) 0 0
\(424\) 13204.5 1.51243
\(425\) 3295.03 0.376076
\(426\) 0 0
\(427\) −1316.08 −0.149156
\(428\) −36414.5 −4.11252
\(429\) 0 0
\(430\) −11120.2 −1.24713
\(431\) −8382.59 −0.936833 −0.468417 0.883508i \(-0.655175\pi\)
−0.468417 + 0.883508i \(0.655175\pi\)
\(432\) 0 0
\(433\) 2628.05 0.291677 0.145838 0.989308i \(-0.453412\pi\)
0.145838 + 0.989308i \(0.453412\pi\)
\(434\) −5966.42 −0.659902
\(435\) 0 0
\(436\) −16124.4 −1.77114
\(437\) −3964.69 −0.433998
\(438\) 0 0
\(439\) −4122.97 −0.448243 −0.224121 0.974561i \(-0.571951\pi\)
−0.224121 + 0.974561i \(0.571951\pi\)
\(440\) −3795.78 −0.411266
\(441\) 0 0
\(442\) −7190.46 −0.773790
\(443\) −210.327 −0.0225574 −0.0112787 0.999936i \(-0.503590\pi\)
−0.0112787 + 0.999936i \(0.503590\pi\)
\(444\) 0 0
\(445\) −2991.77 −0.318705
\(446\) 23645.8 2.51045
\(447\) 0 0
\(448\) 1346.55 0.142005
\(449\) 4414.35 0.463978 0.231989 0.972718i \(-0.425477\pi\)
0.231989 + 0.972718i \(0.425477\pi\)
\(450\) 0 0
\(451\) 1712.70 0.178820
\(452\) 37995.4 3.95388
\(453\) 0 0
\(454\) −13117.5 −1.35603
\(455\) −370.757 −0.0382008
\(456\) 0 0
\(457\) 14355.4 1.46941 0.734704 0.678388i \(-0.237321\pi\)
0.734704 + 0.678388i \(0.237321\pi\)
\(458\) 10338.3 1.05475
\(459\) 0 0
\(460\) −9491.54 −0.962055
\(461\) −14366.9 −1.45149 −0.725744 0.687965i \(-0.758504\pi\)
−0.725744 + 0.687965i \(0.758504\pi\)
\(462\) 0 0
\(463\) 11634.1 1.16778 0.583892 0.811832i \(-0.301529\pi\)
0.583892 + 0.811832i \(0.301529\pi\)
\(464\) −30425.6 −3.04412
\(465\) 0 0
\(466\) 14475.1 1.43894
\(467\) −12112.2 −1.20019 −0.600094 0.799929i \(-0.704870\pi\)
−0.600094 + 0.799929i \(0.704870\pi\)
\(468\) 0 0
\(469\) −6101.53 −0.600730
\(470\) 7614.23 0.747273
\(471\) 0 0
\(472\) 30701.6 2.99397
\(473\) 6048.99 0.588018
\(474\) 0 0
\(475\) 967.178 0.0934256
\(476\) 17089.9 1.64562
\(477\) 0 0
\(478\) 9520.88 0.911035
\(479\) 11380.8 1.08560 0.542801 0.839861i \(-0.317364\pi\)
0.542801 + 0.839861i \(0.317364\pi\)
\(480\) 0 0
\(481\) −2966.10 −0.281170
\(482\) 29472.2 2.78510
\(483\) 0 0
\(484\) −21020.4 −1.97412
\(485\) −9411.20 −0.881115
\(486\) 0 0
\(487\) −11615.5 −1.08080 −0.540401 0.841408i \(-0.681727\pi\)
−0.540401 + 0.841408i \(0.681727\pi\)
\(488\) −10189.7 −0.945217
\(489\) 0 0
\(490\) 1261.77 0.116329
\(491\) −6045.64 −0.555674 −0.277837 0.960628i \(-0.589617\pi\)
−0.277837 + 0.960628i \(0.589617\pi\)
\(492\) 0 0
\(493\) −30627.5 −2.79795
\(494\) −2110.59 −0.192226
\(495\) 0 0
\(496\) −21669.4 −1.96167
\(497\) −1237.60 −0.111698
\(498\) 0 0
\(499\) 860.279 0.0771771 0.0385886 0.999255i \(-0.487714\pi\)
0.0385886 + 0.999255i \(0.487714\pi\)
\(500\) 2315.44 0.207099
\(501\) 0 0
\(502\) 8875.57 0.789115
\(503\) 3341.49 0.296202 0.148101 0.988972i \(-0.452684\pi\)
0.148101 + 0.988972i \(0.452684\pi\)
\(504\) 0 0
\(505\) 953.953 0.0840601
\(506\) 7392.89 0.649514
\(507\) 0 0
\(508\) 46330.1 4.04639
\(509\) 19754.5 1.72024 0.860122 0.510088i \(-0.170387\pi\)
0.860122 + 0.510088i \(0.170387\pi\)
\(510\) 0 0
\(511\) −1543.67 −0.133636
\(512\) −25248.9 −2.17940
\(513\) 0 0
\(514\) −29633.7 −2.54297
\(515\) −7482.65 −0.640243
\(516\) 0 0
\(517\) −4141.86 −0.352338
\(518\) 10094.3 0.856215
\(519\) 0 0
\(520\) −2870.57 −0.242082
\(521\) 20754.2 1.74522 0.872609 0.488420i \(-0.162427\pi\)
0.872609 + 0.488420i \(0.162427\pi\)
\(522\) 0 0
\(523\) −9495.26 −0.793879 −0.396940 0.917845i \(-0.629928\pi\)
−0.396940 + 0.917845i \(0.629928\pi\)
\(524\) 9895.07 0.824939
\(525\) 0 0
\(526\) −34404.3 −2.85190
\(527\) −21813.2 −1.80303
\(528\) 0 0
\(529\) −1664.65 −0.136817
\(530\) 6273.82 0.514184
\(531\) 0 0
\(532\) 5016.35 0.408809
\(533\) 1295.23 0.105258
\(534\) 0 0
\(535\) −9829.26 −0.794310
\(536\) −47240.8 −3.80689
\(537\) 0 0
\(538\) 38465.9 3.08250
\(539\) −686.359 −0.0548489
\(540\) 0 0
\(541\) 15585.9 1.23862 0.619308 0.785148i \(-0.287413\pi\)
0.619308 + 0.785148i \(0.287413\pi\)
\(542\) −3902.09 −0.309242
\(543\) 0 0
\(544\) 31729.5 2.50072
\(545\) −4352.41 −0.342086
\(546\) 0 0
\(547\) −23104.6 −1.80600 −0.902998 0.429644i \(-0.858639\pi\)
−0.902998 + 0.429644i \(0.858639\pi\)
\(548\) 9320.27 0.726537
\(549\) 0 0
\(550\) −1803.48 −0.139819
\(551\) −8989.96 −0.695073
\(552\) 0 0
\(553\) −1333.46 −0.102540
\(554\) 6021.98 0.461822
\(555\) 0 0
\(556\) 26393.6 2.01320
\(557\) −21731.2 −1.65311 −0.826553 0.562859i \(-0.809701\pi\)
−0.826553 + 0.562859i \(0.809701\pi\)
\(558\) 0 0
\(559\) 4574.56 0.346124
\(560\) 4582.63 0.345807
\(561\) 0 0
\(562\) 29536.8 2.21697
\(563\) 13595.1 1.01770 0.508850 0.860855i \(-0.330071\pi\)
0.508850 + 0.860855i \(0.330071\pi\)
\(564\) 0 0
\(565\) 10256.0 0.763670
\(566\) −46405.9 −3.44627
\(567\) 0 0
\(568\) −9582.04 −0.707840
\(569\) −10018.2 −0.738107 −0.369054 0.929408i \(-0.620318\pi\)
−0.369054 + 0.929408i \(0.620318\pi\)
\(570\) 0 0
\(571\) −6658.73 −0.488020 −0.244010 0.969773i \(-0.578463\pi\)
−0.244010 + 0.969773i \(0.578463\pi\)
\(572\) 2748.53 0.200912
\(573\) 0 0
\(574\) −4407.97 −0.320531
\(575\) −2562.02 −0.185815
\(576\) 0 0
\(577\) −12676.0 −0.914570 −0.457285 0.889320i \(-0.651178\pi\)
−0.457285 + 0.889320i \(0.651178\pi\)
\(578\) 64162.8 4.61733
\(579\) 0 0
\(580\) −21522.1 −1.54079
\(581\) 3627.68 0.259039
\(582\) 0 0
\(583\) −3412.73 −0.242437
\(584\) −11951.8 −0.846861
\(585\) 0 0
\(586\) 27315.3 1.92557
\(587\) −18625.6 −1.30965 −0.654823 0.755782i \(-0.727257\pi\)
−0.654823 + 0.755782i \(0.727257\pi\)
\(588\) 0 0
\(589\) −6402.76 −0.447913
\(590\) 14587.1 1.01787
\(591\) 0 0
\(592\) 36661.6 2.54524
\(593\) −19417.3 −1.34465 −0.672323 0.740258i \(-0.734703\pi\)
−0.672323 + 0.740258i \(0.734703\pi\)
\(594\) 0 0
\(595\) 4613.04 0.317842
\(596\) 27461.0 1.88733
\(597\) 0 0
\(598\) 5590.88 0.382321
\(599\) −13376.9 −0.912461 −0.456231 0.889862i \(-0.650801\pi\)
−0.456231 + 0.889862i \(0.650801\pi\)
\(600\) 0 0
\(601\) 14963.9 1.01562 0.507812 0.861468i \(-0.330454\pi\)
0.507812 + 0.861468i \(0.330454\pi\)
\(602\) −15568.3 −1.05401
\(603\) 0 0
\(604\) −23475.5 −1.58146
\(605\) −5673.97 −0.381289
\(606\) 0 0
\(607\) 20270.8 1.35546 0.677731 0.735310i \(-0.262963\pi\)
0.677731 + 0.735310i \(0.262963\pi\)
\(608\) 9313.45 0.621234
\(609\) 0 0
\(610\) −4841.40 −0.321348
\(611\) −3132.29 −0.207396
\(612\) 0 0
\(613\) 13005.1 0.856888 0.428444 0.903568i \(-0.359062\pi\)
0.428444 + 0.903568i \(0.359062\pi\)
\(614\) 45237.5 2.97335
\(615\) 0 0
\(616\) −5314.10 −0.347583
\(617\) −11107.4 −0.724745 −0.362372 0.932033i \(-0.618033\pi\)
−0.362372 + 0.932033i \(0.618033\pi\)
\(618\) 0 0
\(619\) 348.077 0.0226016 0.0113008 0.999936i \(-0.496403\pi\)
0.0113008 + 0.999936i \(0.496403\pi\)
\(620\) −15328.3 −0.992902
\(621\) 0 0
\(622\) −12140.1 −0.782593
\(623\) −4188.48 −0.269355
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −13564.6 −0.866052
\(627\) 0 0
\(628\) 59905.1 3.80649
\(629\) 36904.8 2.33942
\(630\) 0 0
\(631\) 7548.88 0.476254 0.238127 0.971234i \(-0.423467\pi\)
0.238127 + 0.971234i \(0.423467\pi\)
\(632\) −10324.2 −0.649804
\(633\) 0 0
\(634\) −4339.33 −0.271825
\(635\) 12505.8 0.781537
\(636\) 0 0
\(637\) −519.060 −0.0322856
\(638\) 16763.4 1.04023
\(639\) 0 0
\(640\) −4676.04 −0.288808
\(641\) 8720.39 0.537340 0.268670 0.963232i \(-0.413416\pi\)
0.268670 + 0.963232i \(0.413416\pi\)
\(642\) 0 0
\(643\) −10517.6 −0.645061 −0.322530 0.946559i \(-0.604533\pi\)
−0.322530 + 0.946559i \(0.604533\pi\)
\(644\) −13288.2 −0.813085
\(645\) 0 0
\(646\) 26260.4 1.59938
\(647\) −6194.54 −0.376402 −0.188201 0.982130i \(-0.560266\pi\)
−0.188201 + 0.982130i \(0.560266\pi\)
\(648\) 0 0
\(649\) −7934.87 −0.479925
\(650\) −1363.88 −0.0823014
\(651\) 0 0
\(652\) 32573.9 1.95658
\(653\) 16726.9 1.00241 0.501205 0.865329i \(-0.332890\pi\)
0.501205 + 0.865329i \(0.332890\pi\)
\(654\) 0 0
\(655\) 2670.95 0.159332
\(656\) −16009.3 −0.952832
\(657\) 0 0
\(658\) 10659.9 0.631561
\(659\) −9874.87 −0.583718 −0.291859 0.956461i \(-0.594274\pi\)
−0.291859 + 0.956461i \(0.594274\pi\)
\(660\) 0 0
\(661\) −26873.6 −1.58134 −0.790668 0.612245i \(-0.790267\pi\)
−0.790668 + 0.612245i \(0.790267\pi\)
\(662\) 56953.9 3.34377
\(663\) 0 0
\(664\) 28087.1 1.64156
\(665\) 1354.05 0.0789591
\(666\) 0 0
\(667\) 23814.1 1.38244
\(668\) 31167.0 1.80522
\(669\) 0 0
\(670\) −22445.3 −1.29424
\(671\) 2633.54 0.151515
\(672\) 0 0
\(673\) 270.279 0.0154807 0.00774034 0.999970i \(-0.497536\pi\)
0.00774034 + 0.999970i \(0.497536\pi\)
\(674\) −6166.12 −0.352389
\(675\) 0 0
\(676\) −38617.6 −2.19718
\(677\) −5216.49 −0.296139 −0.148070 0.988977i \(-0.547306\pi\)
−0.148070 + 0.988977i \(0.547306\pi\)
\(678\) 0 0
\(679\) −13175.7 −0.744678
\(680\) 35716.2 2.01420
\(681\) 0 0
\(682\) 11939.1 0.670339
\(683\) 597.154 0.0334546 0.0167273 0.999860i \(-0.494675\pi\)
0.0167273 + 0.999860i \(0.494675\pi\)
\(684\) 0 0
\(685\) 2515.79 0.140326
\(686\) 1766.48 0.0983158
\(687\) 0 0
\(688\) −56542.4 −3.13323
\(689\) −2580.88 −0.142705
\(690\) 0 0
\(691\) −32491.9 −1.78878 −0.894392 0.447283i \(-0.852392\pi\)
−0.894392 + 0.447283i \(0.852392\pi\)
\(692\) 59488.8 3.26795
\(693\) 0 0
\(694\) −2668.20 −0.145942
\(695\) 7124.35 0.388837
\(696\) 0 0
\(697\) −16115.5 −0.875780
\(698\) −9147.01 −0.496016
\(699\) 0 0
\(700\) 3241.61 0.175031
\(701\) 25288.3 1.36252 0.681260 0.732041i \(-0.261432\pi\)
0.681260 + 0.732041i \(0.261432\pi\)
\(702\) 0 0
\(703\) 10832.5 0.581162
\(704\) −2694.51 −0.144251
\(705\) 0 0
\(706\) −38663.6 −2.06108
\(707\) 1335.53 0.0710438
\(708\) 0 0
\(709\) 20110.2 1.06524 0.532618 0.846355i \(-0.321208\pi\)
0.532618 + 0.846355i \(0.321208\pi\)
\(710\) −4552.68 −0.240647
\(711\) 0 0
\(712\) −32429.1 −1.70693
\(713\) 16960.7 0.890860
\(714\) 0 0
\(715\) 741.903 0.0388050
\(716\) 61349.4 3.20214
\(717\) 0 0
\(718\) −25315.7 −1.31584
\(719\) −5650.46 −0.293083 −0.146542 0.989205i \(-0.546814\pi\)
−0.146542 + 0.989205i \(0.546814\pi\)
\(720\) 0 0
\(721\) −10475.7 −0.541104
\(722\) −27616.4 −1.42351
\(723\) 0 0
\(724\) 38203.3 1.96107
\(725\) −5809.40 −0.297594
\(726\) 0 0
\(727\) 6571.94 0.335268 0.167634 0.985849i \(-0.446387\pi\)
0.167634 + 0.985849i \(0.446387\pi\)
\(728\) −4018.80 −0.204597
\(729\) 0 0
\(730\) −5678.59 −0.287910
\(731\) −56917.6 −2.87985
\(732\) 0 0
\(733\) −31444.0 −1.58446 −0.792231 0.610222i \(-0.791080\pi\)
−0.792231 + 0.610222i \(0.791080\pi\)
\(734\) −18689.6 −0.939843
\(735\) 0 0
\(736\) −24671.0 −1.23558
\(737\) 12209.4 0.610232
\(738\) 0 0
\(739\) 8157.80 0.406075 0.203038 0.979171i \(-0.434919\pi\)
0.203038 + 0.979171i \(0.434919\pi\)
\(740\) 25933.3 1.28828
\(741\) 0 0
\(742\) 8783.35 0.434565
\(743\) −5705.69 −0.281725 −0.140862 0.990029i \(-0.544987\pi\)
−0.140862 + 0.990029i \(0.544987\pi\)
\(744\) 0 0
\(745\) 7412.47 0.364526
\(746\) −14610.7 −0.717070
\(747\) 0 0
\(748\) −34197.8 −1.67165
\(749\) −13761.0 −0.671315
\(750\) 0 0
\(751\) −7296.31 −0.354522 −0.177261 0.984164i \(-0.556724\pi\)
−0.177261 + 0.984164i \(0.556724\pi\)
\(752\) 38715.7 1.87742
\(753\) 0 0
\(754\) 12677.4 0.612311
\(755\) −6336.68 −0.305451
\(756\) 0 0
\(757\) 8240.48 0.395648 0.197824 0.980238i \(-0.436613\pi\)
0.197824 + 0.980238i \(0.436613\pi\)
\(758\) 49976.3 2.39475
\(759\) 0 0
\(760\) 10483.7 0.500371
\(761\) −30887.8 −1.47133 −0.735665 0.677345i \(-0.763130\pi\)
−0.735665 + 0.677345i \(0.763130\pi\)
\(762\) 0 0
\(763\) −6093.37 −0.289115
\(764\) 51551.1 2.44117
\(765\) 0 0
\(766\) −19858.2 −0.936694
\(767\) −6000.76 −0.282497
\(768\) 0 0
\(769\) 30953.0 1.45149 0.725743 0.687966i \(-0.241496\pi\)
0.725743 + 0.687966i \(0.241496\pi\)
\(770\) −2524.87 −0.118169
\(771\) 0 0
\(772\) 5562.48 0.259324
\(773\) −6620.92 −0.308070 −0.154035 0.988065i \(-0.549227\pi\)
−0.154035 + 0.988065i \(0.549227\pi\)
\(774\) 0 0
\(775\) −4137.52 −0.191773
\(776\) −102012. −4.71910
\(777\) 0 0
\(778\) 36598.9 1.68655
\(779\) −4730.33 −0.217563
\(780\) 0 0
\(781\) 2476.49 0.113465
\(782\) −69563.0 −3.18103
\(783\) 0 0
\(784\) 6415.69 0.292260
\(785\) 16170.0 0.735201
\(786\) 0 0
\(787\) −10068.6 −0.456044 −0.228022 0.973656i \(-0.573226\pi\)
−0.228022 + 0.973656i \(0.573226\pi\)
\(788\) −27519.2 −1.24407
\(789\) 0 0
\(790\) −4905.32 −0.220916
\(791\) 14358.4 0.645419
\(792\) 0 0
\(793\) 1991.62 0.0891861
\(794\) −34896.1 −1.55972
\(795\) 0 0
\(796\) −56321.7 −2.50788
\(797\) 42016.5 1.86738 0.933690 0.358084i \(-0.116570\pi\)
0.933690 + 0.358084i \(0.116570\pi\)
\(798\) 0 0
\(799\) 38972.6 1.72560
\(800\) 6018.45 0.265980
\(801\) 0 0
\(802\) 33190.4 1.46134
\(803\) 3088.95 0.135749
\(804\) 0 0
\(805\) −3586.83 −0.157043
\(806\) 9028.96 0.394580
\(807\) 0 0
\(808\) 10340.3 0.450211
\(809\) −32805.5 −1.42568 −0.712842 0.701324i \(-0.752593\pi\)
−0.712842 + 0.701324i \(0.752593\pi\)
\(810\) 0 0
\(811\) 15395.7 0.666606 0.333303 0.942820i \(-0.391837\pi\)
0.333303 + 0.942820i \(0.391837\pi\)
\(812\) −30131.0 −1.30220
\(813\) 0 0
\(814\) −20199.2 −0.869758
\(815\) 8792.59 0.377903
\(816\) 0 0
\(817\) −16706.8 −0.715419
\(818\) 24761.6 1.05840
\(819\) 0 0
\(820\) −11324.5 −0.482278
\(821\) 10626.7 0.451734 0.225867 0.974158i \(-0.427479\pi\)
0.225867 + 0.974158i \(0.427479\pi\)
\(822\) 0 0
\(823\) −42578.1 −1.80338 −0.901689 0.432384i \(-0.857672\pi\)
−0.901689 + 0.432384i \(0.857672\pi\)
\(824\) −81107.7 −3.42903
\(825\) 0 0
\(826\) 20422.0 0.860257
\(827\) 733.624 0.0308472 0.0154236 0.999881i \(-0.495090\pi\)
0.0154236 + 0.999881i \(0.495090\pi\)
\(828\) 0 0
\(829\) 15778.0 0.661028 0.330514 0.943801i \(-0.392778\pi\)
0.330514 + 0.943801i \(0.392778\pi\)
\(830\) 13344.9 0.558084
\(831\) 0 0
\(832\) −2037.73 −0.0849104
\(833\) 6458.26 0.268626
\(834\) 0 0
\(835\) 8412.83 0.348668
\(836\) −10037.9 −0.415275
\(837\) 0 0
\(838\) −23286.2 −0.959916
\(839\) 16776.8 0.690343 0.345172 0.938540i \(-0.387821\pi\)
0.345172 + 0.938540i \(0.387821\pi\)
\(840\) 0 0
\(841\) 29609.7 1.21406
\(842\) −29983.0 −1.22717
\(843\) 0 0
\(844\) −53472.6 −2.18081
\(845\) −10423.9 −0.424372
\(846\) 0 0
\(847\) −7943.56 −0.322248
\(848\) 31900.2 1.29181
\(849\) 0 0
\(850\) 16969.7 0.684773
\(851\) −28695.1 −1.15588
\(852\) 0 0
\(853\) 7646.57 0.306933 0.153466 0.988154i \(-0.450956\pi\)
0.153466 + 0.988154i \(0.450956\pi\)
\(854\) −6777.95 −0.271589
\(855\) 0 0
\(856\) −106544. −4.25419
\(857\) 26980.3 1.07541 0.537707 0.843132i \(-0.319291\pi\)
0.537707 + 0.843132i \(0.319291\pi\)
\(858\) 0 0
\(859\) 3034.02 0.120511 0.0602557 0.998183i \(-0.480808\pi\)
0.0602557 + 0.998183i \(0.480808\pi\)
\(860\) −39996.4 −1.58589
\(861\) 0 0
\(862\) −43171.2 −1.70582
\(863\) −25954.5 −1.02376 −0.511879 0.859058i \(-0.671050\pi\)
−0.511879 + 0.859058i \(0.671050\pi\)
\(864\) 0 0
\(865\) 16057.6 0.631186
\(866\) 13534.7 0.531095
\(867\) 0 0
\(868\) −21459.6 −0.839155
\(869\) 2668.31 0.104161
\(870\) 0 0
\(871\) 9233.42 0.359199
\(872\) −47177.6 −1.83215
\(873\) 0 0
\(874\) −20418.6 −0.790238
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −11235.7 −0.432616 −0.216308 0.976325i \(-0.569402\pi\)
−0.216308 + 0.976325i \(0.569402\pi\)
\(878\) −21233.7 −0.816176
\(879\) 0 0
\(880\) −9170.07 −0.351276
\(881\) −4594.31 −0.175694 −0.0878468 0.996134i \(-0.527999\pi\)
−0.0878468 + 0.996134i \(0.527999\pi\)
\(882\) 0 0
\(883\) −14162.1 −0.539741 −0.269871 0.962897i \(-0.586981\pi\)
−0.269871 + 0.962897i \(0.586981\pi\)
\(884\) −25862.1 −0.983979
\(885\) 0 0
\(886\) −1083.20 −0.0410733
\(887\) −31024.2 −1.17440 −0.587199 0.809442i \(-0.699770\pi\)
−0.587199 + 0.809442i \(0.699770\pi\)
\(888\) 0 0
\(889\) 17508.1 0.660519
\(890\) −15407.9 −0.580309
\(891\) 0 0
\(892\) 85047.7 3.19238
\(893\) 11439.5 0.428676
\(894\) 0 0
\(895\) 16559.9 0.618475
\(896\) −6546.46 −0.244087
\(897\) 0 0
\(898\) 22734.4 0.844828
\(899\) 38458.5 1.42677
\(900\) 0 0
\(901\) 32111.9 1.18735
\(902\) 8820.55 0.325601
\(903\) 0 0
\(904\) 111169. 4.09008
\(905\) 10312.1 0.378770
\(906\) 0 0
\(907\) −10594.5 −0.387855 −0.193928 0.981016i \(-0.562123\pi\)
−0.193928 + 0.981016i \(0.562123\pi\)
\(908\) −47180.2 −1.72437
\(909\) 0 0
\(910\) −1909.44 −0.0695574
\(911\) 1469.37 0.0534384 0.0267192 0.999643i \(-0.491494\pi\)
0.0267192 + 0.999643i \(0.491494\pi\)
\(912\) 0 0
\(913\) −7259.17 −0.263136
\(914\) 73931.9 2.67555
\(915\) 0 0
\(916\) 37184.1 1.34126
\(917\) 3739.33 0.134660
\(918\) 0 0
\(919\) 41834.6 1.50163 0.750813 0.660515i \(-0.229662\pi\)
0.750813 + 0.660515i \(0.229662\pi\)
\(920\) −27770.9 −0.995194
\(921\) 0 0
\(922\) −73991.2 −2.64292
\(923\) 1872.85 0.0667884
\(924\) 0 0
\(925\) 7000.10 0.248824
\(926\) 59916.9 2.12634
\(927\) 0 0
\(928\) −55941.7 −1.97885
\(929\) 8570.23 0.302670 0.151335 0.988483i \(-0.451643\pi\)
0.151335 + 0.988483i \(0.451643\pi\)
\(930\) 0 0
\(931\) 1895.67 0.0667326
\(932\) 52063.1 1.82981
\(933\) 0 0
\(934\) −62379.3 −2.18534
\(935\) −9230.91 −0.322870
\(936\) 0 0
\(937\) 41260.3 1.43854 0.719271 0.694730i \(-0.244476\pi\)
0.719271 + 0.694730i \(0.244476\pi\)
\(938\) −31423.5 −1.09383
\(939\) 0 0
\(940\) 27386.3 0.950259
\(941\) 47969.6 1.66181 0.830905 0.556414i \(-0.187823\pi\)
0.830905 + 0.556414i \(0.187823\pi\)
\(942\) 0 0
\(943\) 12530.5 0.432714
\(944\) 74170.6 2.55725
\(945\) 0 0
\(946\) 31152.9 1.07068
\(947\) −15666.3 −0.537577 −0.268789 0.963199i \(-0.586623\pi\)
−0.268789 + 0.963199i \(0.586623\pi\)
\(948\) 0 0
\(949\) 2336.02 0.0799057
\(950\) 4981.06 0.170113
\(951\) 0 0
\(952\) 50002.7 1.70231
\(953\) 27495.7 0.934600 0.467300 0.884099i \(-0.345227\pi\)
0.467300 + 0.884099i \(0.345227\pi\)
\(954\) 0 0
\(955\) 13915.0 0.471497
\(956\) 34244.0 1.15851
\(957\) 0 0
\(958\) 58612.4 1.97670
\(959\) 3522.11 0.118597
\(960\) 0 0
\(961\) −2400.42 −0.0805755
\(962\) −15275.7 −0.511963
\(963\) 0 0
\(964\) 106003. 3.54164
\(965\) 1501.46 0.0500869
\(966\) 0 0
\(967\) 51246.2 1.70421 0.852103 0.523374i \(-0.175327\pi\)
0.852103 + 0.523374i \(0.175327\pi\)
\(968\) −61502.6 −2.04212
\(969\) 0 0
\(970\) −48468.6 −1.60436
\(971\) 40446.0 1.33674 0.668370 0.743829i \(-0.266992\pi\)
0.668370 + 0.743829i \(0.266992\pi\)
\(972\) 0 0
\(973\) 9974.08 0.328627
\(974\) −59821.2 −1.96796
\(975\) 0 0
\(976\) −24616.8 −0.807342
\(977\) 21457.8 0.702656 0.351328 0.936253i \(-0.385730\pi\)
0.351328 + 0.936253i \(0.385730\pi\)
\(978\) 0 0
\(979\) 8381.35 0.273615
\(980\) 4538.26 0.147928
\(981\) 0 0
\(982\) −31135.6 −1.01179
\(983\) −8746.68 −0.283801 −0.141900 0.989881i \(-0.545321\pi\)
−0.141900 + 0.989881i \(0.545321\pi\)
\(984\) 0 0
\(985\) −7428.18 −0.240286
\(986\) −157734. −5.09461
\(987\) 0 0
\(988\) −7591.22 −0.244442
\(989\) 44255.8 1.42291
\(990\) 0 0
\(991\) −29046.2 −0.931061 −0.465531 0.885032i \(-0.654137\pi\)
−0.465531 + 0.885032i \(0.654137\pi\)
\(992\) −39842.3 −1.27520
\(993\) 0 0
\(994\) −6373.75 −0.203383
\(995\) −15202.8 −0.484382
\(996\) 0 0
\(997\) −4656.30 −0.147910 −0.0739552 0.997262i \(-0.523562\pi\)
−0.0739552 + 0.997262i \(0.523562\pi\)
\(998\) 4430.52 0.140527
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.4.a.o.1.3 yes 3
3.2 odd 2 315.4.a.n.1.1 3
5.4 even 2 1575.4.a.bb.1.1 3
7.6 odd 2 2205.4.a.bl.1.3 3
15.14 odd 2 1575.4.a.be.1.3 3
21.20 even 2 2205.4.a.bk.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.4.a.n.1.1 3 3.2 odd 2
315.4.a.o.1.3 yes 3 1.1 even 1 trivial
1575.4.a.bb.1.1 3 5.4 even 2
1575.4.a.be.1.3 3 15.14 odd 2
2205.4.a.bk.1.1 3 21.20 even 2
2205.4.a.bl.1.3 3 7.6 odd 2