Properties

Label 1575.4.a.bj.1.2
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 24x^{2} - 3x + 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 525)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.52801\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.52801 q^{2} -5.66519 q^{4} -7.00000 q^{7} +20.8805 q^{8} -51.3481 q^{11} +87.2268 q^{13} +10.6960 q^{14} +13.4160 q^{16} +80.6781 q^{17} -29.8288 q^{19} +78.4602 q^{22} +1.71385 q^{23} -133.283 q^{26} +39.6564 q^{28} +204.810 q^{29} -150.176 q^{31} -187.544 q^{32} -123.277 q^{34} -366.397 q^{37} +45.5786 q^{38} -176.696 q^{41} -394.793 q^{43} +290.897 q^{44} -2.61877 q^{46} +507.757 q^{47} +49.0000 q^{49} -494.157 q^{52} -149.869 q^{53} -146.164 q^{56} -312.952 q^{58} -463.249 q^{59} +380.956 q^{61} +229.471 q^{62} +179.240 q^{64} +797.666 q^{67} -457.057 q^{68} +220.174 q^{71} -1013.61 q^{73} +559.857 q^{74} +168.986 q^{76} +359.437 q^{77} -111.805 q^{79} +269.993 q^{82} +853.761 q^{83} +603.247 q^{86} -1072.17 q^{88} +935.860 q^{89} -610.588 q^{91} -9.70929 q^{92} -775.857 q^{94} -783.811 q^{97} -74.8723 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} - 28 q^{7} + 9 q^{8} - 21 q^{11} - 5 q^{13} + 72 q^{16} + 99 q^{17} + 72 q^{19} - 221 q^{22} + 102 q^{23} - 129 q^{26} - 112 q^{28} + 240 q^{29} + 351 q^{31} + 72 q^{32} - 285 q^{34} - 399 q^{37}+ \cdots + 372 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.52801 −0.540232 −0.270116 0.962828i \(-0.587062\pi\)
−0.270116 + 0.962828i \(0.587062\pi\)
\(3\) 0 0
\(4\) −5.66519 −0.708149
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 20.8805 0.922797
\(9\) 0 0
\(10\) 0 0
\(11\) −51.3481 −1.40746 −0.703729 0.710469i \(-0.748483\pi\)
−0.703729 + 0.710469i \(0.748483\pi\)
\(12\) 0 0
\(13\) 87.2268 1.86095 0.930476 0.366353i \(-0.119394\pi\)
0.930476 + 0.366353i \(0.119394\pi\)
\(14\) 10.6960 0.204189
\(15\) 0 0
\(16\) 13.4160 0.209625
\(17\) 80.6781 1.15102 0.575509 0.817795i \(-0.304804\pi\)
0.575509 + 0.817795i \(0.304804\pi\)
\(18\) 0 0
\(19\) −29.8288 −0.360168 −0.180084 0.983651i \(-0.557637\pi\)
−0.180084 + 0.983651i \(0.557637\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 78.4602 0.760354
\(23\) 1.71385 0.0155375 0.00776874 0.999970i \(-0.497527\pi\)
0.00776874 + 0.999970i \(0.497527\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −133.283 −1.00535
\(27\) 0 0
\(28\) 39.6564 0.267655
\(29\) 204.810 1.31146 0.655730 0.754996i \(-0.272361\pi\)
0.655730 + 0.754996i \(0.272361\pi\)
\(30\) 0 0
\(31\) −150.176 −0.870080 −0.435040 0.900411i \(-0.643266\pi\)
−0.435040 + 0.900411i \(0.643266\pi\)
\(32\) −187.544 −1.03604
\(33\) 0 0
\(34\) −123.277 −0.621817
\(35\) 0 0
\(36\) 0 0
\(37\) −366.397 −1.62798 −0.813990 0.580879i \(-0.802709\pi\)
−0.813990 + 0.580879i \(0.802709\pi\)
\(38\) 45.5786 0.194575
\(39\) 0 0
\(40\) 0 0
\(41\) −176.696 −0.673057 −0.336528 0.941673i \(-0.609253\pi\)
−0.336528 + 0.941673i \(0.609253\pi\)
\(42\) 0 0
\(43\) −394.793 −1.40013 −0.700063 0.714081i \(-0.746845\pi\)
−0.700063 + 0.714081i \(0.746845\pi\)
\(44\) 290.897 0.996690
\(45\) 0 0
\(46\) −2.61877 −0.00839385
\(47\) 507.757 1.57583 0.787915 0.615784i \(-0.211161\pi\)
0.787915 + 0.615784i \(0.211161\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −494.157 −1.31783
\(53\) −149.869 −0.388416 −0.194208 0.980960i \(-0.562214\pi\)
−0.194208 + 0.980960i \(0.562214\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −146.164 −0.348785
\(57\) 0 0
\(58\) −312.952 −0.708493
\(59\) −463.249 −1.02220 −0.511101 0.859521i \(-0.670762\pi\)
−0.511101 + 0.859521i \(0.670762\pi\)
\(60\) 0 0
\(61\) 380.956 0.799613 0.399807 0.916600i \(-0.369077\pi\)
0.399807 + 0.916600i \(0.369077\pi\)
\(62\) 229.471 0.470045
\(63\) 0 0
\(64\) 179.240 0.350079
\(65\) 0 0
\(66\) 0 0
\(67\) 797.666 1.45448 0.727242 0.686381i \(-0.240802\pi\)
0.727242 + 0.686381i \(0.240802\pi\)
\(68\) −457.057 −0.815093
\(69\) 0 0
\(70\) 0 0
\(71\) 220.174 0.368025 0.184013 0.982924i \(-0.441091\pi\)
0.184013 + 0.982924i \(0.441091\pi\)
\(72\) 0 0
\(73\) −1013.61 −1.62512 −0.812559 0.582878i \(-0.801926\pi\)
−0.812559 + 0.582878i \(0.801926\pi\)
\(74\) 559.857 0.879487
\(75\) 0 0
\(76\) 168.986 0.255053
\(77\) 359.437 0.531969
\(78\) 0 0
\(79\) −111.805 −0.159228 −0.0796140 0.996826i \(-0.525369\pi\)
−0.0796140 + 0.996826i \(0.525369\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 269.993 0.363607
\(83\) 853.761 1.12907 0.564533 0.825411i \(-0.309056\pi\)
0.564533 + 0.825411i \(0.309056\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 603.247 0.756393
\(87\) 0 0
\(88\) −1072.17 −1.29880
\(89\) 935.860 1.11462 0.557309 0.830305i \(-0.311834\pi\)
0.557309 + 0.830305i \(0.311834\pi\)
\(90\) 0 0
\(91\) −610.588 −0.703374
\(92\) −9.70929 −0.0110029
\(93\) 0 0
\(94\) −775.857 −0.851314
\(95\) 0 0
\(96\) 0 0
\(97\) −783.811 −0.820453 −0.410227 0.911984i \(-0.634550\pi\)
−0.410227 + 0.911984i \(0.634550\pi\)
\(98\) −74.8723 −0.0771760
\(99\) 0 0
\(100\) 0 0
\(101\) −1805.17 −1.77842 −0.889212 0.457495i \(-0.848747\pi\)
−0.889212 + 0.457495i \(0.848747\pi\)
\(102\) 0 0
\(103\) −578.608 −0.553514 −0.276757 0.960940i \(-0.589260\pi\)
−0.276757 + 0.960940i \(0.589260\pi\)
\(104\) 1821.34 1.71728
\(105\) 0 0
\(106\) 229.000 0.209835
\(107\) −214.800 −0.194070 −0.0970349 0.995281i \(-0.530936\pi\)
−0.0970349 + 0.995281i \(0.530936\pi\)
\(108\) 0 0
\(109\) 812.409 0.713896 0.356948 0.934124i \(-0.383817\pi\)
0.356948 + 0.934124i \(0.383817\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −93.9119 −0.0792307
\(113\) 1596.30 1.32891 0.664457 0.747326i \(-0.268663\pi\)
0.664457 + 0.747326i \(0.268663\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1160.29 −0.928709
\(117\) 0 0
\(118\) 707.848 0.552227
\(119\) −564.747 −0.435044
\(120\) 0 0
\(121\) 1305.63 0.980936
\(122\) −582.103 −0.431977
\(123\) 0 0
\(124\) 850.778 0.616146
\(125\) 0 0
\(126\) 0 0
\(127\) −1469.71 −1.02690 −0.513449 0.858120i \(-0.671632\pi\)
−0.513449 + 0.858120i \(0.671632\pi\)
\(128\) 1226.47 0.846919
\(129\) 0 0
\(130\) 0 0
\(131\) 1217.36 0.811919 0.405959 0.913891i \(-0.366937\pi\)
0.405959 + 0.913891i \(0.366937\pi\)
\(132\) 0 0
\(133\) 208.802 0.136131
\(134\) −1218.84 −0.785759
\(135\) 0 0
\(136\) 1684.60 1.06216
\(137\) 1637.23 1.02101 0.510503 0.859876i \(-0.329459\pi\)
0.510503 + 0.859876i \(0.329459\pi\)
\(138\) 0 0
\(139\) 44.7736 0.0273212 0.0136606 0.999907i \(-0.495652\pi\)
0.0136606 + 0.999907i \(0.495652\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −336.427 −0.198819
\(143\) −4478.93 −2.61921
\(144\) 0 0
\(145\) 0 0
\(146\) 1548.80 0.877941
\(147\) 0 0
\(148\) 2075.71 1.15285
\(149\) 2153.29 1.18392 0.591960 0.805967i \(-0.298354\pi\)
0.591960 + 0.805967i \(0.298354\pi\)
\(150\) 0 0
\(151\) −3037.34 −1.63692 −0.818461 0.574562i \(-0.805172\pi\)
−0.818461 + 0.574562i \(0.805172\pi\)
\(152\) −622.841 −0.332362
\(153\) 0 0
\(154\) −549.222 −0.287387
\(155\) 0 0
\(156\) 0 0
\(157\) 1353.92 0.688245 0.344122 0.938925i \(-0.388177\pi\)
0.344122 + 0.938925i \(0.388177\pi\)
\(158\) 170.838 0.0860201
\(159\) 0 0
\(160\) 0 0
\(161\) −11.9969 −0.00587262
\(162\) 0 0
\(163\) −3174.14 −1.52526 −0.762631 0.646834i \(-0.776093\pi\)
−0.762631 + 0.646834i \(0.776093\pi\)
\(164\) 1001.02 0.476625
\(165\) 0 0
\(166\) −1304.55 −0.609957
\(167\) −999.272 −0.463030 −0.231515 0.972831i \(-0.574368\pi\)
−0.231515 + 0.972831i \(0.574368\pi\)
\(168\) 0 0
\(169\) 5411.52 2.46314
\(170\) 0 0
\(171\) 0 0
\(172\) 2236.58 0.991499
\(173\) −1208.55 −0.531122 −0.265561 0.964094i \(-0.585557\pi\)
−0.265561 + 0.964094i \(0.585557\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −688.885 −0.295038
\(177\) 0 0
\(178\) −1430.00 −0.602152
\(179\) 894.985 0.373711 0.186856 0.982387i \(-0.440170\pi\)
0.186856 + 0.982387i \(0.440170\pi\)
\(180\) 0 0
\(181\) 2030.68 0.833917 0.416959 0.908925i \(-0.363096\pi\)
0.416959 + 0.908925i \(0.363096\pi\)
\(182\) 932.983 0.379985
\(183\) 0 0
\(184\) 35.7861 0.0143379
\(185\) 0 0
\(186\) 0 0
\(187\) −4142.67 −1.62001
\(188\) −2876.54 −1.11592
\(189\) 0 0
\(190\) 0 0
\(191\) 4527.59 1.71521 0.857604 0.514311i \(-0.171952\pi\)
0.857604 + 0.514311i \(0.171952\pi\)
\(192\) 0 0
\(193\) 2539.92 0.947294 0.473647 0.880715i \(-0.342937\pi\)
0.473647 + 0.880715i \(0.342937\pi\)
\(194\) 1197.67 0.443235
\(195\) 0 0
\(196\) −277.595 −0.101164
\(197\) 2344.75 0.848002 0.424001 0.905662i \(-0.360625\pi\)
0.424001 + 0.905662i \(0.360625\pi\)
\(198\) 0 0
\(199\) 3253.14 1.15884 0.579420 0.815029i \(-0.303279\pi\)
0.579420 + 0.815029i \(0.303279\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2758.31 0.960762
\(203\) −1433.67 −0.495685
\(204\) 0 0
\(205\) 0 0
\(206\) 884.117 0.299026
\(207\) 0 0
\(208\) 1170.23 0.390101
\(209\) 1531.65 0.506922
\(210\) 0 0
\(211\) 2528.43 0.824949 0.412475 0.910969i \(-0.364665\pi\)
0.412475 + 0.910969i \(0.364665\pi\)
\(212\) 849.035 0.275056
\(213\) 0 0
\(214\) 328.215 0.104843
\(215\) 0 0
\(216\) 0 0
\(217\) 1051.23 0.328859
\(218\) −1241.37 −0.385669
\(219\) 0 0
\(220\) 0 0
\(221\) 7037.30 2.14199
\(222\) 0 0
\(223\) 3930.00 1.18015 0.590073 0.807350i \(-0.299099\pi\)
0.590073 + 0.807350i \(0.299099\pi\)
\(224\) 1312.81 0.391587
\(225\) 0 0
\(226\) −2439.16 −0.717922
\(227\) 512.698 0.149907 0.0749536 0.997187i \(-0.476119\pi\)
0.0749536 + 0.997187i \(0.476119\pi\)
\(228\) 0 0
\(229\) 1865.41 0.538296 0.269148 0.963099i \(-0.413258\pi\)
0.269148 + 0.963099i \(0.413258\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4276.55 1.21021
\(233\) −1509.17 −0.424329 −0.212165 0.977234i \(-0.568051\pi\)
−0.212165 + 0.977234i \(0.568051\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2624.40 0.723872
\(237\) 0 0
\(238\) 862.937 0.235025
\(239\) 5852.90 1.58407 0.792035 0.610476i \(-0.209022\pi\)
0.792035 + 0.610476i \(0.209022\pi\)
\(240\) 0 0
\(241\) −3050.88 −0.815454 −0.407727 0.913104i \(-0.633678\pi\)
−0.407727 + 0.913104i \(0.633678\pi\)
\(242\) −1995.01 −0.529933
\(243\) 0 0
\(244\) −2158.19 −0.566246
\(245\) 0 0
\(246\) 0 0
\(247\) −2601.87 −0.670256
\(248\) −3135.76 −0.802907
\(249\) 0 0
\(250\) 0 0
\(251\) −5905.16 −1.48498 −0.742491 0.669856i \(-0.766356\pi\)
−0.742491 + 0.669856i \(0.766356\pi\)
\(252\) 0 0
\(253\) −88.0029 −0.0218684
\(254\) 2245.73 0.554763
\(255\) 0 0
\(256\) −3307.98 −0.807612
\(257\) 544.470 0.132152 0.0660761 0.997815i \(-0.478952\pi\)
0.0660761 + 0.997815i \(0.478952\pi\)
\(258\) 0 0
\(259\) 2564.78 0.615319
\(260\) 0 0
\(261\) 0 0
\(262\) −1860.14 −0.438625
\(263\) −1706.22 −0.400039 −0.200019 0.979792i \(-0.564100\pi\)
−0.200019 + 0.979792i \(0.564100\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −319.051 −0.0735423
\(267\) 0 0
\(268\) −4518.93 −1.02999
\(269\) −289.872 −0.0657019 −0.0328509 0.999460i \(-0.510459\pi\)
−0.0328509 + 0.999460i \(0.510459\pi\)
\(270\) 0 0
\(271\) −1408.35 −0.315687 −0.157843 0.987464i \(-0.550454\pi\)
−0.157843 + 0.987464i \(0.550454\pi\)
\(272\) 1082.38 0.241282
\(273\) 0 0
\(274\) −2501.70 −0.551580
\(275\) 0 0
\(276\) 0 0
\(277\) 6467.17 1.40280 0.701398 0.712770i \(-0.252560\pi\)
0.701398 + 0.712770i \(0.252560\pi\)
\(278\) −68.4144 −0.0147598
\(279\) 0 0
\(280\) 0 0
\(281\) 4271.00 0.906714 0.453357 0.891329i \(-0.350226\pi\)
0.453357 + 0.891329i \(0.350226\pi\)
\(282\) 0 0
\(283\) 3761.13 0.790021 0.395011 0.918677i \(-0.370741\pi\)
0.395011 + 0.918677i \(0.370741\pi\)
\(284\) −1247.33 −0.260617
\(285\) 0 0
\(286\) 6843.84 1.41498
\(287\) 1236.87 0.254392
\(288\) 0 0
\(289\) 1595.96 0.324843
\(290\) 0 0
\(291\) 0 0
\(292\) 5742.28 1.15083
\(293\) 468.982 0.0935093 0.0467547 0.998906i \(-0.485112\pi\)
0.0467547 + 0.998906i \(0.485112\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −7650.56 −1.50230
\(297\) 0 0
\(298\) −3290.24 −0.639592
\(299\) 149.494 0.0289145
\(300\) 0 0
\(301\) 2763.55 0.529198
\(302\) 4641.08 0.884318
\(303\) 0 0
\(304\) −400.183 −0.0755002
\(305\) 0 0
\(306\) 0 0
\(307\) −4130.28 −0.767841 −0.383921 0.923366i \(-0.625426\pi\)
−0.383921 + 0.923366i \(0.625426\pi\)
\(308\) −2036.28 −0.376713
\(309\) 0 0
\(310\) 0 0
\(311\) 3179.75 0.579765 0.289883 0.957062i \(-0.406384\pi\)
0.289883 + 0.957062i \(0.406384\pi\)
\(312\) 0 0
\(313\) 4719.06 0.852194 0.426097 0.904677i \(-0.359888\pi\)
0.426097 + 0.904677i \(0.359888\pi\)
\(314\) −2068.80 −0.371812
\(315\) 0 0
\(316\) 633.395 0.112757
\(317\) 4807.13 0.851720 0.425860 0.904789i \(-0.359972\pi\)
0.425860 + 0.904789i \(0.359972\pi\)
\(318\) 0 0
\(319\) −10516.6 −1.84582
\(320\) 0 0
\(321\) 0 0
\(322\) 18.3314 0.00317258
\(323\) −2406.53 −0.414561
\(324\) 0 0
\(325\) 0 0
\(326\) 4850.10 0.823995
\(327\) 0 0
\(328\) −3689.51 −0.621095
\(329\) −3554.30 −0.595608
\(330\) 0 0
\(331\) −2243.42 −0.372537 −0.186268 0.982499i \(-0.559639\pi\)
−0.186268 + 0.982499i \(0.559639\pi\)
\(332\) −4836.72 −0.799547
\(333\) 0 0
\(334\) 1526.89 0.250144
\(335\) 0 0
\(336\) 0 0
\(337\) 760.365 0.122907 0.0614536 0.998110i \(-0.480426\pi\)
0.0614536 + 0.998110i \(0.480426\pi\)
\(338\) −8268.84 −1.33067
\(339\) 0 0
\(340\) 0 0
\(341\) 7711.27 1.22460
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −8243.49 −1.29203
\(345\) 0 0
\(346\) 1846.67 0.286929
\(347\) −2619.75 −0.405289 −0.202645 0.979252i \(-0.564954\pi\)
−0.202645 + 0.979252i \(0.564954\pi\)
\(348\) 0 0
\(349\) 5950.25 0.912635 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 9630.02 1.45819
\(353\) −1571.79 −0.236991 −0.118496 0.992955i \(-0.537807\pi\)
−0.118496 + 0.992955i \(0.537807\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −5301.83 −0.789315
\(357\) 0 0
\(358\) −1367.54 −0.201891
\(359\) 1292.38 0.189998 0.0949988 0.995477i \(-0.469715\pi\)
0.0949988 + 0.995477i \(0.469715\pi\)
\(360\) 0 0
\(361\) −5969.24 −0.870279
\(362\) −3102.89 −0.450509
\(363\) 0 0
\(364\) 3459.10 0.498094
\(365\) 0 0
\(366\) 0 0
\(367\) −1193.60 −0.169770 −0.0848849 0.996391i \(-0.527052\pi\)
−0.0848849 + 0.996391i \(0.527052\pi\)
\(368\) 22.9930 0.00325704
\(369\) 0 0
\(370\) 0 0
\(371\) 1049.08 0.146807
\(372\) 0 0
\(373\) −1817.49 −0.252295 −0.126148 0.992011i \(-0.540261\pi\)
−0.126148 + 0.992011i \(0.540261\pi\)
\(374\) 6330.02 0.875181
\(375\) 0 0
\(376\) 10602.2 1.45417
\(377\) 17865.0 2.44056
\(378\) 0 0
\(379\) −2201.44 −0.298366 −0.149183 0.988810i \(-0.547664\pi\)
−0.149183 + 0.988810i \(0.547664\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6918.18 −0.926610
\(383\) 11487.2 1.53255 0.766275 0.642512i \(-0.222108\pi\)
0.766275 + 0.642512i \(0.222108\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3881.02 −0.511758
\(387\) 0 0
\(388\) 4440.44 0.581003
\(389\) 284.996 0.0371462 0.0185731 0.999828i \(-0.494088\pi\)
0.0185731 + 0.999828i \(0.494088\pi\)
\(390\) 0 0
\(391\) 138.270 0.0178839
\(392\) 1023.15 0.131828
\(393\) 0 0
\(394\) −3582.79 −0.458118
\(395\) 0 0
\(396\) 0 0
\(397\) 9446.19 1.19418 0.597092 0.802173i \(-0.296323\pi\)
0.597092 + 0.802173i \(0.296323\pi\)
\(398\) −4970.82 −0.626042
\(399\) 0 0
\(400\) 0 0
\(401\) −11303.8 −1.40769 −0.703845 0.710353i \(-0.748535\pi\)
−0.703845 + 0.710353i \(0.748535\pi\)
\(402\) 0 0
\(403\) −13099.4 −1.61918
\(404\) 10226.6 1.25939
\(405\) 0 0
\(406\) 2190.66 0.267785
\(407\) 18813.8 2.29131
\(408\) 0 0
\(409\) 10022.2 1.21165 0.605827 0.795596i \(-0.292842\pi\)
0.605827 + 0.795596i \(0.292842\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3277.92 0.391970
\(413\) 3242.75 0.386356
\(414\) 0 0
\(415\) 0 0
\(416\) −16358.9 −1.92803
\(417\) 0 0
\(418\) −2340.38 −0.273855
\(419\) −9033.23 −1.05323 −0.526614 0.850105i \(-0.676538\pi\)
−0.526614 + 0.850105i \(0.676538\pi\)
\(420\) 0 0
\(421\) 13162.6 1.52377 0.761883 0.647715i \(-0.224275\pi\)
0.761883 + 0.647715i \(0.224275\pi\)
\(422\) −3863.46 −0.445664
\(423\) 0 0
\(424\) −3129.34 −0.358429
\(425\) 0 0
\(426\) 0 0
\(427\) −2666.69 −0.302225
\(428\) 1216.88 0.137430
\(429\) 0 0
\(430\) 0 0
\(431\) 15992.1 1.78727 0.893634 0.448796i \(-0.148147\pi\)
0.893634 + 0.448796i \(0.148147\pi\)
\(432\) 0 0
\(433\) 1526.80 0.169453 0.0847266 0.996404i \(-0.472998\pi\)
0.0847266 + 0.996404i \(0.472998\pi\)
\(434\) −1606.29 −0.177660
\(435\) 0 0
\(436\) −4602.45 −0.505545
\(437\) −51.1221 −0.00559611
\(438\) 0 0
\(439\) 8620.34 0.937190 0.468595 0.883413i \(-0.344760\pi\)
0.468595 + 0.883413i \(0.344760\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −10753.0 −1.15717
\(443\) 17733.9 1.90194 0.950972 0.309278i \(-0.100087\pi\)
0.950972 + 0.309278i \(0.100087\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6005.07 −0.637552
\(447\) 0 0
\(448\) −1254.68 −0.132317
\(449\) 12508.1 1.31469 0.657344 0.753591i \(-0.271680\pi\)
0.657344 + 0.753591i \(0.271680\pi\)
\(450\) 0 0
\(451\) 9073.02 0.947299
\(452\) −9043.35 −0.941070
\(453\) 0 0
\(454\) −783.406 −0.0809847
\(455\) 0 0
\(456\) 0 0
\(457\) 6138.41 0.628321 0.314160 0.949370i \(-0.398277\pi\)
0.314160 + 0.949370i \(0.398277\pi\)
\(458\) −2850.36 −0.290805
\(459\) 0 0
\(460\) 0 0
\(461\) −534.711 −0.0540216 −0.0270108 0.999635i \(-0.508599\pi\)
−0.0270108 + 0.999635i \(0.508599\pi\)
\(462\) 0 0
\(463\) −5081.20 −0.510029 −0.255014 0.966937i \(-0.582080\pi\)
−0.255014 + 0.966937i \(0.582080\pi\)
\(464\) 2747.73 0.274914
\(465\) 0 0
\(466\) 2306.02 0.229236
\(467\) −17073.9 −1.69183 −0.845915 0.533318i \(-0.820945\pi\)
−0.845915 + 0.533318i \(0.820945\pi\)
\(468\) 0 0
\(469\) −5583.66 −0.549743
\(470\) 0 0
\(471\) 0 0
\(472\) −9672.89 −0.943285
\(473\) 20271.9 1.97062
\(474\) 0 0
\(475\) 0 0
\(476\) 3199.40 0.308076
\(477\) 0 0
\(478\) −8943.27 −0.855765
\(479\) 7075.25 0.674899 0.337449 0.941344i \(-0.390436\pi\)
0.337449 + 0.941344i \(0.390436\pi\)
\(480\) 0 0
\(481\) −31959.6 −3.02959
\(482\) 4661.76 0.440534
\(483\) 0 0
\(484\) −7396.63 −0.694649
\(485\) 0 0
\(486\) 0 0
\(487\) 15770.2 1.46738 0.733690 0.679485i \(-0.237797\pi\)
0.733690 + 0.679485i \(0.237797\pi\)
\(488\) 7954.56 0.737881
\(489\) 0 0
\(490\) 0 0
\(491\) −8301.12 −0.762982 −0.381491 0.924373i \(-0.624589\pi\)
−0.381491 + 0.924373i \(0.624589\pi\)
\(492\) 0 0
\(493\) 16523.7 1.50951
\(494\) 3975.68 0.362094
\(495\) 0 0
\(496\) −2014.76 −0.182390
\(497\) −1541.22 −0.139101
\(498\) 0 0
\(499\) −3575.29 −0.320745 −0.160373 0.987057i \(-0.551270\pi\)
−0.160373 + 0.987057i \(0.551270\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 9023.13 0.802235
\(503\) 11686.3 1.03592 0.517960 0.855405i \(-0.326692\pi\)
0.517960 + 0.855405i \(0.326692\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 134.469 0.0118140
\(507\) 0 0
\(508\) 8326.21 0.727197
\(509\) 7736.09 0.673666 0.336833 0.941564i \(-0.390644\pi\)
0.336833 + 0.941564i \(0.390644\pi\)
\(510\) 0 0
\(511\) 7095.25 0.614237
\(512\) −4757.14 −0.410621
\(513\) 0 0
\(514\) −831.955 −0.0713929
\(515\) 0 0
\(516\) 0 0
\(517\) −26072.4 −2.21791
\(518\) −3919.00 −0.332415
\(519\) 0 0
\(520\) 0 0
\(521\) −47.6564 −0.00400741 −0.00200371 0.999998i \(-0.500638\pi\)
−0.00200371 + 0.999998i \(0.500638\pi\)
\(522\) 0 0
\(523\) −13429.0 −1.12277 −0.561385 0.827555i \(-0.689731\pi\)
−0.561385 + 0.827555i \(0.689731\pi\)
\(524\) −6896.59 −0.574960
\(525\) 0 0
\(526\) 2607.12 0.216114
\(527\) −12115.9 −1.00148
\(528\) 0 0
\(529\) −12164.1 −0.999759
\(530\) 0 0
\(531\) 0 0
\(532\) −1182.90 −0.0964010
\(533\) −15412.7 −1.25253
\(534\) 0 0
\(535\) 0 0
\(536\) 16655.7 1.34219
\(537\) 0 0
\(538\) 442.926 0.0354943
\(539\) −2516.06 −0.201065
\(540\) 0 0
\(541\) 13627.6 1.08299 0.541493 0.840705i \(-0.317859\pi\)
0.541493 + 0.840705i \(0.317859\pi\)
\(542\) 2151.97 0.170544
\(543\) 0 0
\(544\) −15130.7 −1.19250
\(545\) 0 0
\(546\) 0 0
\(547\) 1691.42 0.132212 0.0661058 0.997813i \(-0.478943\pi\)
0.0661058 + 0.997813i \(0.478943\pi\)
\(548\) −9275.21 −0.723024
\(549\) 0 0
\(550\) 0 0
\(551\) −6109.25 −0.472346
\(552\) 0 0
\(553\) 782.633 0.0601825
\(554\) −9881.88 −0.757836
\(555\) 0 0
\(556\) −253.651 −0.0193475
\(557\) −4741.73 −0.360706 −0.180353 0.983602i \(-0.557724\pi\)
−0.180353 + 0.983602i \(0.557724\pi\)
\(558\) 0 0
\(559\) −34436.6 −2.60557
\(560\) 0 0
\(561\) 0 0
\(562\) −6526.12 −0.489836
\(563\) 1073.78 0.0803808 0.0401904 0.999192i \(-0.487204\pi\)
0.0401904 + 0.999192i \(0.487204\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −5747.03 −0.426795
\(567\) 0 0
\(568\) 4597.34 0.339613
\(569\) −3530.34 −0.260105 −0.130052 0.991507i \(-0.541515\pi\)
−0.130052 + 0.991507i \(0.541515\pi\)
\(570\) 0 0
\(571\) −2949.59 −0.216176 −0.108088 0.994141i \(-0.534473\pi\)
−0.108088 + 0.994141i \(0.534473\pi\)
\(572\) 25374.0 1.85479
\(573\) 0 0
\(574\) −1889.95 −0.137430
\(575\) 0 0
\(576\) 0 0
\(577\) −22580.2 −1.62916 −0.814580 0.580051i \(-0.803032\pi\)
−0.814580 + 0.580051i \(0.803032\pi\)
\(578\) −2438.63 −0.175491
\(579\) 0 0
\(580\) 0 0
\(581\) −5976.32 −0.426747
\(582\) 0 0
\(583\) 7695.47 0.546679
\(584\) −21164.6 −1.49965
\(585\) 0 0
\(586\) −716.608 −0.0505168
\(587\) −18289.4 −1.28600 −0.643002 0.765864i \(-0.722311\pi\)
−0.643002 + 0.765864i \(0.722311\pi\)
\(588\) 0 0
\(589\) 4479.58 0.313375
\(590\) 0 0
\(591\) 0 0
\(592\) −4915.57 −0.341265
\(593\) 9131.08 0.632325 0.316162 0.948705i \(-0.397606\pi\)
0.316162 + 0.948705i \(0.397606\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12198.8 −0.838393
\(597\) 0 0
\(598\) −228.427 −0.0156206
\(599\) −5457.56 −0.372270 −0.186135 0.982524i \(-0.559596\pi\)
−0.186135 + 0.982524i \(0.559596\pi\)
\(600\) 0 0
\(601\) 6527.79 0.443052 0.221526 0.975154i \(-0.428896\pi\)
0.221526 + 0.975154i \(0.428896\pi\)
\(602\) −4222.73 −0.285890
\(603\) 0 0
\(604\) 17207.1 1.15919
\(605\) 0 0
\(606\) 0 0
\(607\) −10959.4 −0.732833 −0.366416 0.930451i \(-0.619415\pi\)
−0.366416 + 0.930451i \(0.619415\pi\)
\(608\) 5594.21 0.373150
\(609\) 0 0
\(610\) 0 0
\(611\) 44290.1 2.93254
\(612\) 0 0
\(613\) −28164.2 −1.85569 −0.927846 0.372963i \(-0.878342\pi\)
−0.927846 + 0.372963i \(0.878342\pi\)
\(614\) 6311.09 0.414813
\(615\) 0 0
\(616\) 7505.22 0.490899
\(617\) −20764.0 −1.35483 −0.677413 0.735603i \(-0.736899\pi\)
−0.677413 + 0.735603i \(0.736899\pi\)
\(618\) 0 0
\(619\) −9.21158 −0.000598134 0 −0.000299067 1.00000i \(-0.500095\pi\)
−0.000299067 1.00000i \(0.500095\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −4858.68 −0.313208
\(623\) −6551.02 −0.421286
\(624\) 0 0
\(625\) 0 0
\(626\) −7210.75 −0.460383
\(627\) 0 0
\(628\) −7670.21 −0.487380
\(629\) −29560.2 −1.87384
\(630\) 0 0
\(631\) −15005.5 −0.946684 −0.473342 0.880879i \(-0.656953\pi\)
−0.473342 + 0.880879i \(0.656953\pi\)
\(632\) −2334.54 −0.146935
\(633\) 0 0
\(634\) −7345.32 −0.460126
\(635\) 0 0
\(636\) 0 0
\(637\) 4274.12 0.265850
\(638\) 16069.5 0.997173
\(639\) 0 0
\(640\) 0 0
\(641\) 19610.6 1.20838 0.604191 0.796839i \(-0.293496\pi\)
0.604191 + 0.796839i \(0.293496\pi\)
\(642\) 0 0
\(643\) 26668.9 1.63564 0.817820 0.575474i \(-0.195182\pi\)
0.817820 + 0.575474i \(0.195182\pi\)
\(644\) 67.9650 0.00415869
\(645\) 0 0
\(646\) 3677.20 0.223959
\(647\) −6895.91 −0.419020 −0.209510 0.977806i \(-0.567187\pi\)
−0.209510 + 0.977806i \(0.567187\pi\)
\(648\) 0 0
\(649\) 23787.0 1.43871
\(650\) 0 0
\(651\) 0 0
\(652\) 17982.1 1.08011
\(653\) −18809.2 −1.12720 −0.563598 0.826049i \(-0.690583\pi\)
−0.563598 + 0.826049i \(0.690583\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2370.55 −0.141089
\(657\) 0 0
\(658\) 5431.00 0.321766
\(659\) 6285.52 0.371547 0.185773 0.982593i \(-0.440521\pi\)
0.185773 + 0.982593i \(0.440521\pi\)
\(660\) 0 0
\(661\) 1910.45 0.112418 0.0562088 0.998419i \(-0.482099\pi\)
0.0562088 + 0.998419i \(0.482099\pi\)
\(662\) 3427.97 0.201256
\(663\) 0 0
\(664\) 17827.0 1.04190
\(665\) 0 0
\(666\) 0 0
\(667\) 351.014 0.0203768
\(668\) 5661.07 0.327894
\(669\) 0 0
\(670\) 0 0
\(671\) −19561.4 −1.12542
\(672\) 0 0
\(673\) 22754.2 1.30328 0.651641 0.758528i \(-0.274081\pi\)
0.651641 + 0.758528i \(0.274081\pi\)
\(674\) −1161.84 −0.0663984
\(675\) 0 0
\(676\) −30657.3 −1.74427
\(677\) −6327.54 −0.359213 −0.179606 0.983739i \(-0.557482\pi\)
−0.179606 + 0.983739i \(0.557482\pi\)
\(678\) 0 0
\(679\) 5486.68 0.310102
\(680\) 0 0
\(681\) 0 0
\(682\) −11782.9 −0.661568
\(683\) 12440.7 0.696969 0.348484 0.937315i \(-0.386696\pi\)
0.348484 + 0.937315i \(0.386696\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 524.106 0.0291698
\(687\) 0 0
\(688\) −5296.54 −0.293501
\(689\) −13072.6 −0.722823
\(690\) 0 0
\(691\) −13421.5 −0.738898 −0.369449 0.929251i \(-0.620454\pi\)
−0.369449 + 0.929251i \(0.620454\pi\)
\(692\) 6846.65 0.376114
\(693\) 0 0
\(694\) 4002.99 0.218950
\(695\) 0 0
\(696\) 0 0
\(697\) −14255.5 −0.774701
\(698\) −9092.03 −0.493035
\(699\) 0 0
\(700\) 0 0
\(701\) −3484.08 −0.187720 −0.0938601 0.995585i \(-0.529921\pi\)
−0.0938601 + 0.995585i \(0.529921\pi\)
\(702\) 0 0
\(703\) 10929.2 0.586347
\(704\) −9203.66 −0.492721
\(705\) 0 0
\(706\) 2401.70 0.128030
\(707\) 12636.2 0.672181
\(708\) 0 0
\(709\) 22952.1 1.21578 0.607888 0.794023i \(-0.292017\pi\)
0.607888 + 0.794023i \(0.292017\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 19541.2 1.02857
\(713\) −257.380 −0.0135189
\(714\) 0 0
\(715\) 0 0
\(716\) −5070.26 −0.264643
\(717\) 0 0
\(718\) −1974.76 −0.102643
\(719\) −11393.3 −0.590957 −0.295479 0.955349i \(-0.595479\pi\)
−0.295479 + 0.955349i \(0.595479\pi\)
\(720\) 0 0
\(721\) 4050.25 0.209209
\(722\) 9121.04 0.470152
\(723\) 0 0
\(724\) −11504.2 −0.590538
\(725\) 0 0
\(726\) 0 0
\(727\) −22822.6 −1.16430 −0.582149 0.813082i \(-0.697788\pi\)
−0.582149 + 0.813082i \(0.697788\pi\)
\(728\) −12749.4 −0.649071
\(729\) 0 0
\(730\) 0 0
\(731\) −31851.2 −1.61157
\(732\) 0 0
\(733\) 7923.03 0.399241 0.199621 0.979873i \(-0.436029\pi\)
0.199621 + 0.979873i \(0.436029\pi\)
\(734\) 1823.83 0.0917150
\(735\) 0 0
\(736\) −321.422 −0.0160975
\(737\) −40958.6 −2.04712
\(738\) 0 0
\(739\) 23588.4 1.17417 0.587087 0.809524i \(-0.300275\pi\)
0.587087 + 0.809524i \(0.300275\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1603.00 −0.0793101
\(743\) 30296.2 1.49591 0.747953 0.663752i \(-0.231037\pi\)
0.747953 + 0.663752i \(0.231037\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2777.14 0.136298
\(747\) 0 0
\(748\) 23469.0 1.14721
\(749\) 1503.60 0.0733515
\(750\) 0 0
\(751\) −3326.15 −0.161615 −0.0808076 0.996730i \(-0.525750\pi\)
−0.0808076 + 0.996730i \(0.525750\pi\)
\(752\) 6812.06 0.330333
\(753\) 0 0
\(754\) −27297.8 −1.31847
\(755\) 0 0
\(756\) 0 0
\(757\) 21829.2 1.04808 0.524040 0.851694i \(-0.324424\pi\)
0.524040 + 0.851694i \(0.324424\pi\)
\(758\) 3363.82 0.161187
\(759\) 0 0
\(760\) 0 0
\(761\) −32402.3 −1.54347 −0.771736 0.635943i \(-0.780611\pi\)
−0.771736 + 0.635943i \(0.780611\pi\)
\(762\) 0 0
\(763\) −5686.86 −0.269827
\(764\) −25649.7 −1.21462
\(765\) 0 0
\(766\) −17552.5 −0.827933
\(767\) −40407.8 −1.90227
\(768\) 0 0
\(769\) 12942.0 0.606894 0.303447 0.952848i \(-0.401863\pi\)
0.303447 + 0.952848i \(0.401863\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −14389.2 −0.670825
\(773\) −33087.0 −1.53953 −0.769766 0.638326i \(-0.779627\pi\)
−0.769766 + 0.638326i \(0.779627\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −16366.4 −0.757112
\(777\) 0 0
\(778\) −435.476 −0.0200676
\(779\) 5270.64 0.242414
\(780\) 0 0
\(781\) −11305.5 −0.517980
\(782\) −211.278 −0.00966148
\(783\) 0 0
\(784\) 657.383 0.0299464
\(785\) 0 0
\(786\) 0 0
\(787\) 30248.7 1.37008 0.685038 0.728507i \(-0.259785\pi\)
0.685038 + 0.728507i \(0.259785\pi\)
\(788\) −13283.5 −0.600512
\(789\) 0 0
\(790\) 0 0
\(791\) −11174.1 −0.502282
\(792\) 0 0
\(793\) 33229.6 1.48804
\(794\) −14433.8 −0.645136
\(795\) 0 0
\(796\) −18429.7 −0.820631
\(797\) 3123.69 0.138829 0.0694145 0.997588i \(-0.477887\pi\)
0.0694145 + 0.997588i \(0.477887\pi\)
\(798\) 0 0
\(799\) 40964.9 1.81381
\(800\) 0 0
\(801\) 0 0
\(802\) 17272.3 0.760480
\(803\) 52046.8 2.28729
\(804\) 0 0
\(805\) 0 0
\(806\) 20016.0 0.874731
\(807\) 0 0
\(808\) −37692.8 −1.64112
\(809\) −35088.2 −1.52489 −0.762444 0.647055i \(-0.776001\pi\)
−0.762444 + 0.647055i \(0.776001\pi\)
\(810\) 0 0
\(811\) −29394.0 −1.27271 −0.636353 0.771398i \(-0.719558\pi\)
−0.636353 + 0.771398i \(0.719558\pi\)
\(812\) 8122.03 0.351019
\(813\) 0 0
\(814\) −28747.6 −1.23784
\(815\) 0 0
\(816\) 0 0
\(817\) 11776.2 0.504281
\(818\) −15314.0 −0.654575
\(819\) 0 0
\(820\) 0 0
\(821\) 36702.5 1.56020 0.780100 0.625654i \(-0.215168\pi\)
0.780100 + 0.625654i \(0.215168\pi\)
\(822\) 0 0
\(823\) 21436.3 0.907924 0.453962 0.891021i \(-0.350010\pi\)
0.453962 + 0.891021i \(0.350010\pi\)
\(824\) −12081.6 −0.510781
\(825\) 0 0
\(826\) −4954.94 −0.208722
\(827\) 4079.17 0.171520 0.0857598 0.996316i \(-0.472668\pi\)
0.0857598 + 0.996316i \(0.472668\pi\)
\(828\) 0 0
\(829\) −35727.1 −1.49681 −0.748404 0.663244i \(-0.769179\pi\)
−0.748404 + 0.663244i \(0.769179\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 15634.6 0.651480
\(833\) 3953.23 0.164431
\(834\) 0 0
\(835\) 0 0
\(836\) −8677.11 −0.358976
\(837\) 0 0
\(838\) 13802.8 0.568987
\(839\) 22421.8 0.922628 0.461314 0.887237i \(-0.347378\pi\)
0.461314 + 0.887237i \(0.347378\pi\)
\(840\) 0 0
\(841\) 17558.3 0.719927
\(842\) −20112.5 −0.823187
\(843\) 0 0
\(844\) −14324.0 −0.584187
\(845\) 0 0
\(846\) 0 0
\(847\) −9139.38 −0.370759
\(848\) −2010.64 −0.0814216
\(849\) 0 0
\(850\) 0 0
\(851\) −627.949 −0.0252947
\(852\) 0 0
\(853\) 43300.2 1.73807 0.869034 0.494753i \(-0.164741\pi\)
0.869034 + 0.494753i \(0.164741\pi\)
\(854\) 4074.72 0.163272
\(855\) 0 0
\(856\) −4485.13 −0.179087
\(857\) −44562.7 −1.77623 −0.888116 0.459619i \(-0.847986\pi\)
−0.888116 + 0.459619i \(0.847986\pi\)
\(858\) 0 0
\(859\) −26003.7 −1.03287 −0.516434 0.856327i \(-0.672741\pi\)
−0.516434 + 0.856327i \(0.672741\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −24436.1 −0.965540
\(863\) −28719.8 −1.13283 −0.566416 0.824119i \(-0.691671\pi\)
−0.566416 + 0.824119i \(0.691671\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2332.96 −0.0915441
\(867\) 0 0
\(868\) −5955.45 −0.232881
\(869\) 5740.96 0.224107
\(870\) 0 0
\(871\) 69577.9 2.70672
\(872\) 16963.5 0.658781
\(873\) 0 0
\(874\) 78.1149 0.00302320
\(875\) 0 0
\(876\) 0 0
\(877\) 4042.01 0.155632 0.0778159 0.996968i \(-0.475205\pi\)
0.0778159 + 0.996968i \(0.475205\pi\)
\(878\) −13171.9 −0.506300
\(879\) 0 0
\(880\) 0 0
\(881\) 45388.8 1.73574 0.867871 0.496790i \(-0.165488\pi\)
0.867871 + 0.496790i \(0.165488\pi\)
\(882\) 0 0
\(883\) −10622.5 −0.404842 −0.202421 0.979299i \(-0.564881\pi\)
−0.202421 + 0.979299i \(0.564881\pi\)
\(884\) −39867.6 −1.51685
\(885\) 0 0
\(886\) −27097.5 −1.02749
\(887\) 943.623 0.0357201 0.0178601 0.999840i \(-0.494315\pi\)
0.0178601 + 0.999840i \(0.494315\pi\)
\(888\) 0 0
\(889\) 10288.0 0.388131
\(890\) 0 0
\(891\) 0 0
\(892\) −22264.2 −0.835719
\(893\) −15145.8 −0.567564
\(894\) 0 0
\(895\) 0 0
\(896\) −8585.29 −0.320105
\(897\) 0 0
\(898\) −19112.5 −0.710236
\(899\) −30757.7 −1.14107
\(900\) 0 0
\(901\) −12091.1 −0.447074
\(902\) −13863.6 −0.511761
\(903\) 0 0
\(904\) 33331.6 1.22632
\(905\) 0 0
\(906\) 0 0
\(907\) −24087.8 −0.881834 −0.440917 0.897548i \(-0.645347\pi\)
−0.440917 + 0.897548i \(0.645347\pi\)
\(908\) −2904.53 −0.106157
\(909\) 0 0
\(910\) 0 0
\(911\) −44542.8 −1.61994 −0.809972 0.586468i \(-0.800518\pi\)
−0.809972 + 0.586468i \(0.800518\pi\)
\(912\) 0 0
\(913\) −43839.0 −1.58911
\(914\) −9379.53 −0.339439
\(915\) 0 0
\(916\) −10567.9 −0.381194
\(917\) −8521.53 −0.306876
\(918\) 0 0
\(919\) −22333.9 −0.801661 −0.400830 0.916152i \(-0.631278\pi\)
−0.400830 + 0.916152i \(0.631278\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 817.042 0.0291842
\(923\) 19205.1 0.684878
\(924\) 0 0
\(925\) 0 0
\(926\) 7764.11 0.275534
\(927\) 0 0
\(928\) −38410.9 −1.35873
\(929\) 48395.4 1.70915 0.854576 0.519327i \(-0.173817\pi\)
0.854576 + 0.519327i \(0.173817\pi\)
\(930\) 0 0
\(931\) −1461.61 −0.0514526
\(932\) 8549.71 0.300488
\(933\) 0 0
\(934\) 26089.0 0.913981
\(935\) 0 0
\(936\) 0 0
\(937\) −10547.8 −0.367749 −0.183874 0.982950i \(-0.558864\pi\)
−0.183874 + 0.982950i \(0.558864\pi\)
\(938\) 8531.88 0.296989
\(939\) 0 0
\(940\) 0 0
\(941\) 47214.8 1.63566 0.817831 0.575458i \(-0.195176\pi\)
0.817831 + 0.575458i \(0.195176\pi\)
\(942\) 0 0
\(943\) −302.831 −0.0104576
\(944\) −6214.94 −0.214279
\(945\) 0 0
\(946\) −30975.6 −1.06459
\(947\) 30737.7 1.05474 0.527370 0.849635i \(-0.323178\pi\)
0.527370 + 0.849635i \(0.323178\pi\)
\(948\) 0 0
\(949\) −88413.7 −3.02427
\(950\) 0 0
\(951\) 0 0
\(952\) −11792.2 −0.401457
\(953\) −17032.1 −0.578933 −0.289466 0.957188i \(-0.593478\pi\)
−0.289466 + 0.957188i \(0.593478\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −33157.8 −1.12176
\(957\) 0 0
\(958\) −10811.0 −0.364602
\(959\) −11460.6 −0.385904
\(960\) 0 0
\(961\) −7238.05 −0.242961
\(962\) 48834.6 1.63668
\(963\) 0 0
\(964\) 17283.8 0.577463
\(965\) 0 0
\(966\) 0 0
\(967\) −7597.47 −0.252656 −0.126328 0.991989i \(-0.540319\pi\)
−0.126328 + 0.991989i \(0.540319\pi\)
\(968\) 27262.1 0.905205
\(969\) 0 0
\(970\) 0 0
\(971\) −19134.9 −0.632410 −0.316205 0.948691i \(-0.602409\pi\)
−0.316205 + 0.948691i \(0.602409\pi\)
\(972\) 0 0
\(973\) −313.415 −0.0103265
\(974\) −24096.9 −0.792726
\(975\) 0 0
\(976\) 5110.90 0.167619
\(977\) −44846.1 −1.46853 −0.734266 0.678862i \(-0.762473\pi\)
−0.734266 + 0.678862i \(0.762473\pi\)
\(978\) 0 0
\(979\) −48054.6 −1.56878
\(980\) 0 0
\(981\) 0 0
\(982\) 12684.2 0.412187
\(983\) 7385.31 0.239628 0.119814 0.992796i \(-0.461770\pi\)
0.119814 + 0.992796i \(0.461770\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −25248.3 −0.815488
\(987\) 0 0
\(988\) 14740.1 0.474641
\(989\) −676.616 −0.0217545
\(990\) 0 0
\(991\) 56089.0 1.79791 0.898953 0.438045i \(-0.144329\pi\)
0.898953 + 0.438045i \(0.144329\pi\)
\(992\) 28164.7 0.901440
\(993\) 0 0
\(994\) 2354.99 0.0751466
\(995\) 0 0
\(996\) 0 0
\(997\) −11762.2 −0.373633 −0.186816 0.982395i \(-0.559817\pi\)
−0.186816 + 0.982395i \(0.559817\pi\)
\(998\) 5463.07 0.173277
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bj.1.2 4
3.2 odd 2 525.4.a.t.1.3 4
5.4 even 2 1575.4.a.bk.1.3 4
15.2 even 4 525.4.d.n.274.6 8
15.8 even 4 525.4.d.n.274.3 8
15.14 odd 2 525.4.a.u.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
525.4.a.t.1.3 4 3.2 odd 2
525.4.a.u.1.2 yes 4 15.14 odd 2
525.4.d.n.274.3 8 15.8 even 4
525.4.d.n.274.6 8 15.2 even 4
1575.4.a.bj.1.2 4 1.1 even 1 trivial
1575.4.a.bk.1.3 4 5.4 even 2