Properties

Label 1587.1.h.c.995.1
Level $1587$
Weight $1$
Character 1587.995
Analytic conductor $0.792$
Analytic rank $0$
Dimension $20$
Projective image $D_{4}$
CM discriminant -3
Inner twists $40$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1587,1,Mod(170,1587)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1587, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1587.170");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1587.h (of order \(22\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.792016175049\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{22})\)
Coefficient field: 20.0.5969915757478328440239161344.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 2x^{18} + 4x^{16} + 8x^{14} + 16x^{12} + 32x^{10} + 64x^{8} + 128x^{6} + 256x^{4} + 512x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.36501.1
Artin image: $C_{11}\times D_8$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{88} - \cdots)\)

Embedding invariants

Embedding label 995.1
Root \(-0.587486 + 1.28641i\) of defining polynomial
Character \(\chi\) \(=\) 1587.995
Dual form 1587.1.h.c.1016.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.959493 + 0.281733i) q^{3} +(-0.654861 - 0.755750i) q^{4} +(-0.201264 + 1.39982i) q^{7} +(0.841254 + 0.540641i) q^{9} +(-0.415415 - 0.909632i) q^{12} +(-0.142315 + 0.989821i) q^{16} +(0.926113 + 1.06879i) q^{19} +(-0.587486 + 1.28641i) q^{21} +(0.415415 - 0.909632i) q^{25} +(0.654861 + 0.755750i) q^{27} +(1.18971 - 0.764582i) q^{28} +(-0.142315 - 0.989821i) q^{36} +(-1.18971 - 0.764582i) q^{37} +(1.35693 + 0.398430i) q^{43} +(-0.415415 + 0.909632i) q^{48} +(-0.959493 - 0.281733i) q^{49} +(0.587486 + 1.28641i) q^{57} +(-1.35693 + 0.398430i) q^{61} +(-0.926113 + 1.06879i) q^{63} +(0.841254 - 0.540641i) q^{64} +(0.587486 - 1.28641i) q^{67} +(0.654861 - 0.755750i) q^{75} +(0.201264 - 1.39982i) q^{76} +(-0.201264 - 1.39982i) q^{79} +(0.415415 + 0.909632i) q^{81} +(1.35693 - 0.398430i) q^{84} +(-1.18971 + 0.764582i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{3} - 2 q^{4} - 2 q^{9} + 2 q^{12} - 2 q^{16} - 2 q^{25} + 2 q^{27} - 2 q^{36} + 2 q^{48} - 2 q^{49} - 2 q^{64} + 2 q^{75} - 2 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1587\mathbb{Z}\right)^\times\).

\(n\) \(530\) \(1063\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(3\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(4\) −0.654861 0.755750i −0.654861 0.755750i
\(5\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(6\) 0 0
\(7\) −0.201264 + 1.39982i −0.201264 + 1.39982i 0.599278 + 0.800541i \(0.295455\pi\)
−0.800541 + 0.599278i \(0.795455\pi\)
\(8\) 0 0
\(9\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(10\) 0 0
\(11\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(12\) −0.415415 0.909632i −0.415415 0.909632i
\(13\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(17\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(18\) 0 0
\(19\) 0.926113 + 1.06879i 0.926113 + 1.06879i 0.997452 + 0.0713392i \(0.0227273\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(20\) 0 0
\(21\) −0.587486 + 1.28641i −0.587486 + 1.28641i
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) 0.415415 0.909632i 0.415415 0.909632i
\(26\) 0 0
\(27\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(28\) 1.18971 0.764582i 1.18971 0.764582i
\(29\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(30\) 0 0
\(31\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.142315 0.989821i −0.142315 0.989821i
\(37\) −1.18971 0.764582i −1.18971 0.764582i −0.212565 0.977147i \(-0.568182\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(42\) 0 0
\(43\) 1.35693 + 0.398430i 1.35693 + 0.398430i 0.877679 0.479249i \(-0.159091\pi\)
0.479249 + 0.877679i \(0.340909\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(49\) −0.959493 0.281733i −0.959493 0.281733i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.587486 + 1.28641i 0.587486 + 1.28641i
\(58\) 0 0
\(59\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(60\) 0 0
\(61\) −1.35693 + 0.398430i −1.35693 + 0.398430i −0.877679 0.479249i \(-0.840909\pi\)
−0.479249 + 0.877679i \(0.659091\pi\)
\(62\) 0 0
\(63\) −0.926113 + 1.06879i −0.926113 + 1.06879i
\(64\) 0.841254 0.540641i 0.841254 0.540641i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.587486 1.28641i 0.587486 1.28641i −0.349464 0.936950i \(-0.613636\pi\)
0.936950 0.349464i \(-0.113636\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(72\) 0 0
\(73\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(74\) 0 0
\(75\) 0.654861 0.755750i 0.654861 0.755750i
\(76\) 0.201264 1.39982i 0.201264 1.39982i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.201264 1.39982i −0.201264 1.39982i −0.800541 0.599278i \(-0.795455\pi\)
0.599278 0.800541i \(-0.295455\pi\)
\(80\) 0 0
\(81\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(82\) 0 0
\(83\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(84\) 1.35693 0.398430i 1.35693 0.398430i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.18971 + 0.764582i −1.18971 + 0.764582i −0.977147 0.212565i \(-0.931818\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(101\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(102\) 0 0
\(103\) −0.587486 1.28641i −0.587486 1.28641i −0.936950 0.349464i \(-0.886364\pi\)
0.349464 0.936950i \(-0.386364\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(108\) 0.142315 0.989821i 0.142315 0.989821i
\(109\) 0.926113 1.06879i 0.926113 1.06879i −0.0713392 0.997452i \(-0.522727\pi\)
0.997452 0.0713392i \(-0.0227273\pi\)
\(110\) 0 0
\(111\) −0.926113 1.06879i −0.926113 1.06879i
\(112\) −1.35693 0.398430i −1.35693 0.398430i
\(113\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(128\) 0 0
\(129\) 1.18971 + 0.764582i 1.18971 + 0.764582i
\(130\) 0 0
\(131\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(132\) 0 0
\(133\) −1.68251 + 1.08128i −1.68251 + 1.08128i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.841254 0.540641i −0.841254 0.540641i
\(148\) 0.201264 + 1.39982i 0.201264 + 1.39982i
\(149\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(150\) 0 0
\(151\) 0.284630 + 1.97964i 0.284630 + 1.97964i 0.142315 + 0.989821i \(0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.926113 1.06879i −0.926113 1.06879i −0.997452 0.0713392i \(-0.977273\pi\)
0.0713392 0.997452i \(-0.477273\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(168\) 0 0
\(169\) 0.959493 0.281733i 0.959493 0.281733i
\(170\) 0 0
\(171\) 0.201264 + 1.39982i 0.201264 + 1.39982i
\(172\) −0.587486 1.28641i −0.587486 1.28641i
\(173\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(174\) 0 0
\(175\) 1.18971 + 0.764582i 1.18971 + 0.764582i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(180\) 0 0
\(181\) −1.35693 0.398430i −1.35693 0.398430i −0.479249 0.877679i \(-0.659091\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(182\) 0 0
\(183\) −1.41421 −1.41421
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.18971 + 0.764582i −1.18971 + 0.764582i
\(190\) 0 0
\(191\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(192\) 0.959493 0.281733i 0.959493 0.281733i
\(193\) −1.68251 1.08128i −1.68251 1.08128i −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 0.540641i \(-0.818182\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(197\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(198\) 0 0
\(199\) 1.35693 0.398430i 1.35693 0.398430i 0.479249 0.877679i \(-0.340909\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(200\) 0 0
\(201\) 0.926113 1.06879i 0.926113 1.06879i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.284630 1.97964i 0.284630 1.97964i 0.142315 0.989821i \(-0.454545\pi\)
0.142315 0.989821i \(-0.454545\pi\)
\(224\) 0 0
\(225\) 0.841254 0.540641i 0.841254 0.540641i
\(226\) 0 0
\(227\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(228\) 0.587486 1.28641i 0.587486 1.28641i
\(229\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.201264 1.39982i 0.201264 1.39982i
\(238\) 0 0
\(239\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(240\) 0 0
\(241\) 0.587486 + 1.28641i 0.587486 + 1.28641i 0.936950 + 0.349464i \(0.113636\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(242\) 0 0
\(243\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(244\) 1.18971 + 0.764582i 1.18971 + 0.764582i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(252\) 1.41421 1.41421
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.959493 0.281733i −0.959493 0.281733i
\(257\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(258\) 0 0
\(259\) 1.30972 1.51150i 1.30972 1.51150i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.35693 + 0.398430i −1.35693 + 0.398430i
\(269\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(270\) 0 0
\(271\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(282\) 0 0
\(283\) 0.201264 1.39982i 0.201264 1.39982i −0.599278 0.800541i \(-0.704545\pi\)
0.800541 0.599278i \(-0.204545\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.142315 0.989821i −0.142315 0.989821i
\(290\) 0 0
\(291\) −1.35693 + 0.398430i −1.35693 + 0.398430i
\(292\) 0 0
\(293\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −1.00000 −1.00000
\(301\) −0.830830 + 1.81926i −0.830830 + 1.81926i
\(302\) 0 0
\(303\) 0 0
\(304\) −1.18971 + 0.764582i −1.18971 + 0.764582i
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(308\) 0 0
\(309\) −0.201264 1.39982i −0.201264 1.39982i
\(310\) 0 0
\(311\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(312\) 0 0
\(313\) −1.18971 0.764582i −1.18971 0.764582i −0.212565 0.977147i \(-0.568182\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.926113 + 1.06879i −0.926113 + 1.06879i
\(317\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.415415 0.909632i 0.415415 0.909632i
\(325\) 0 0
\(326\) 0 0
\(327\) 1.18971 0.764582i 1.18971 0.764582i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(332\) 0 0
\(333\) −0.587486 1.28641i −0.587486 1.28641i
\(334\) 0 0
\(335\) 0 0
\(336\) −1.18971 0.764582i −1.18971 0.764582i
\(337\) 1.35693 0.398430i 1.35693 0.398430i 0.479249 0.877679i \(-0.340909\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(348\) 0 0
\(349\) 1.30972 + 1.51150i 1.30972 + 1.51150i 0.654861 + 0.755750i \(0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(360\) 0 0
\(361\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(362\) 0 0
\(363\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.18971 0.764582i 1.18971 0.764582i 0.212565 0.977147i \(-0.431818\pi\)
0.977147 + 0.212565i \(0.0681818\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.587486 + 1.28641i 0.587486 + 1.28641i 0.936950 + 0.349464i \(0.113636\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.926113 + 1.06879i 0.926113 + 1.06879i
\(388\) 1.35693 + 0.398430i 1.35693 + 0.398430i
\(389\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.30972 + 1.51150i −1.30972 + 1.51150i −0.654861 + 0.755750i \(0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(398\) 0 0
\(399\) −1.91899 + 0.563465i −1.91899 + 0.563465i
\(400\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(401\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i \(-0.181818\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.587486 + 1.28641i −0.587486 + 1.28641i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.91899 0.563465i −1.91899 0.563465i
\(418\) 0 0
\(419\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(420\) 0 0
\(421\) −0.201264 + 1.39982i −0.201264 + 1.39982i 0.599278 + 0.800541i \(0.295455\pi\)
−0.800541 + 0.599278i \(0.795455\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.284630 1.97964i −0.284630 1.97964i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(432\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(433\) −0.926113 1.06879i −0.926113 1.06879i −0.997452 0.0713392i \(-0.977273\pi\)
0.0713392 0.997452i \(-0.477273\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.41421 −1.41421
\(437\) 0 0
\(438\) 0 0
\(439\) 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i \(-0.363636\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(440\) 0 0
\(441\) −0.654861 0.755750i −0.654861 0.755750i
\(442\) 0 0
\(443\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(444\) −0.201264 + 1.39982i −0.201264 + 1.39982i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.587486 + 1.28641i 0.587486 + 1.28641i
\(449\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −0.284630 + 1.97964i −0.284630 + 1.97964i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.35693 + 0.398430i 1.35693 + 0.398430i 0.877679 0.479249i \(-0.159091\pi\)
0.479249 + 0.877679i \(0.340909\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 1.91899 + 0.563465i 1.91899 + 0.563465i 0.959493 + 0.281733i \(0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(468\) 0 0
\(469\) 1.68251 + 1.08128i 1.68251 + 1.08128i
\(470\) 0 0
\(471\) −0.587486 1.28641i −0.587486 1.28641i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.35693 0.398430i 1.35693 0.398430i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000 1.00000
\(508\) 0 0
\(509\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −0.201264 + 1.39982i −0.201264 + 1.39982i
\(514\) 0 0
\(515\) 0 0
\(516\) −0.201264 1.39982i −0.201264 1.39982i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(522\) 0 0
\(523\) −0.926113 + 1.06879i −0.926113 + 1.06879i 0.0713392 + 0.997452i \(0.477273\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(524\) 0 0
\(525\) 0.926113 + 1.06879i 0.926113 + 1.06879i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) 1.91899 + 0.563465i 1.91899 + 0.563465i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.830830 1.81926i −0.830830 1.81926i −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 0.909632i \(-0.636364\pi\)
\(542\) 0 0
\(543\) −1.18971 0.764582i −1.18971 0.764582i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(548\) 0 0
\(549\) −1.35693 0.398430i −1.35693 0.398430i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 2.00000 2.00000
\(554\) 0 0
\(555\) 0 0
\(556\) 1.30972 + 1.51150i 1.30972 + 1.51150i
\(557\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.35693 + 0.398430i −1.35693 + 0.398430i
\(568\) 0 0
\(569\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(570\) 0 0
\(571\) 0.926113 + 1.06879i 0.926113 + 1.06879i 0.997452 + 0.0713392i \(0.0227273\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 1.00000
\(577\) −0.830830 + 1.81926i −0.830830 + 1.81926i −0.415415 + 0.909632i \(0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(578\) 0 0
\(579\) −1.30972 1.51150i −1.30972 1.51150i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(588\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.926113 1.06879i 0.926113 1.06879i
\(593\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.41421 1.41421
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 1.91899 + 0.563465i 1.91899 + 0.563465i 0.959493 + 0.281733i \(0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(602\) 0 0
\(603\) 1.18971 0.764582i 1.18971 0.764582i
\(604\) 1.30972 1.51150i 1.30972 1.51150i
\(605\) 0 0
\(606\) 0 0
\(607\) 1.68251 + 1.08128i 1.68251 + 1.08128i 0.841254 + 0.540641i \(0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.35693 + 0.398430i −1.35693 + 0.398430i −0.877679 0.479249i \(-0.840909\pi\)
−0.479249 + 0.877679i \(0.659091\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(618\) 0 0
\(619\) −0.587486 + 1.28641i −0.587486 + 1.28641i 0.349464 + 0.936950i \(0.386364\pi\)
−0.936950 + 0.349464i \(0.886364\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.654861 0.755750i −0.654861 0.755750i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.201264 + 1.39982i −0.201264 + 1.39982i
\(629\) 0 0
\(630\) 0 0
\(631\) 0.201264 + 1.39982i 0.201264 + 1.39982i 0.800541 + 0.599278i \(0.204545\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(642\) 0 0
\(643\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(660\) 0 0
\(661\) −0.926113 + 1.06879i −0.926113 + 1.06879i 0.0713392 + 0.997452i \(0.477273\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0.830830 1.81926i 0.830830 1.81926i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(674\) 0 0
\(675\) 0.959493 0.281733i 0.959493 0.281733i
\(676\) −0.841254 0.540641i −0.841254 0.540641i
\(677\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(678\) 0 0
\(679\) −0.830830 1.81926i −0.830830 1.81926i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(684\) 0.926113 1.06879i 0.926113 1.06879i
\(685\) 0 0
\(686\) 0 0
\(687\) 1.35693 + 0.398430i 1.35693 + 0.398430i
\(688\) −0.587486 + 1.28641i −0.587486 + 1.28641i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.201264 1.39982i −0.201264 1.39982i
\(701\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(702\) 0 0
\(703\) −0.284630 1.97964i −0.284630 1.97964i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.926113 + 1.06879i 0.926113 + 1.06879i 0.997452 + 0.0713392i \(0.0227273\pi\)
−0.0713392 + 0.997452i \(0.522727\pi\)
\(710\) 0 0
\(711\) 0.587486 1.28641i 0.587486 1.28641i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(720\) 0 0
\(721\) 1.91899 0.563465i 1.91899 0.563465i
\(722\) 0 0
\(723\) 0.201264 + 1.39982i 0.201264 + 1.39982i
\(724\) 0.587486 + 1.28641i 0.587486 + 1.28641i
\(725\) 0 0
\(726\) 0 0
\(727\) 1.18971 + 0.764582i 1.18971 + 0.764582i 0.977147 0.212565i \(-0.0681818\pi\)
0.212565 + 0.977147i \(0.431818\pi\)
\(728\) 0 0
\(729\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.926113 + 1.06879i 0.926113 + 1.06879i
\(733\) −1.35693 0.398430i −1.35693 0.398430i −0.479249 0.877679i \(-0.659091\pi\)
−0.877679 + 0.479249i \(0.840909\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 0.281733i \(-0.909091\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.35693 0.398430i 1.35693 0.398430i 0.479249 0.877679i \(-0.340909\pi\)
0.877679 + 0.479249i \(0.159091\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 1.35693 + 0.398430i 1.35693 + 0.398430i
\(757\) −0.587486 + 1.28641i −0.587486 + 1.28641i 0.349464 + 0.936950i \(0.386364\pi\)
−0.936950 + 0.349464i \(0.886364\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(762\) 0 0
\(763\) 1.30972 + 1.51150i 1.30972 + 1.51150i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −0.841254 0.540641i −0.841254 0.540641i
\(769\) 0.201264 + 1.39982i 0.201264 + 1.39982i 0.800541 + 0.599278i \(0.204545\pi\)
−0.599278 + 0.800541i \(0.704545\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.284630 + 1.97964i 0.284630 + 1.97964i
\(773\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.68251 1.08128i 1.68251 1.08128i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.415415 0.909632i 0.415415 0.909632i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.18971 0.764582i 1.18971 0.764582i 0.212565 0.977147i \(-0.431818\pi\)
0.977147 + 0.212565i \(0.0681818\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −1.18971 0.764582i −1.18971 0.764582i
\(797\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1.41421 −1.41421
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(810\) 0 0
\(811\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.830830 + 1.81926i 0.830830 + 1.81926i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(822\) 0 0
\(823\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(840\) 0 0
\(841\) −0.142315 0.989821i −0.142315 0.989821i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.926113 1.06879i −0.926113 1.06879i
\(848\) 0 0
\(849\) 0.587486 1.28641i 0.587486 1.28641i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −0.830830 + 1.81926i −0.830830 + 1.81926i −0.415415 + 0.909632i \(0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(858\) 0 0
\(859\) −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i \(0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.142315 0.989821i 0.142315 0.989821i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1.41421 −1.41421
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(882\) 0 0
\(883\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −1.68251 + 1.08128i −1.68251 + 1.08128i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.959493 0.281733i −0.959493 0.281733i
\(901\) 0 0
\(902\) 0 0
\(903\) −1.30972 + 1.51150i −1.30972 + 1.51150i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −0.201264 1.39982i −0.201264 1.39982i −0.800541 0.599278i \(-0.795455\pi\)
0.599278 0.800541i \(-0.295455\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(912\) −1.35693 + 0.398430i −1.35693 + 0.398430i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.926113 1.06879i −0.926113 1.06879i
\(917\) 0 0
\(918\) 0 0
\(919\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.18971 + 0.764582i −1.18971 + 0.764582i
\(926\) 0 0
\(927\) 0.201264 1.39982i 0.201264 1.39982i
\(928\) 0 0
\(929\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(930\) 0 0
\(931\) −0.587486 1.28641i −0.587486 1.28641i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.926113 + 1.06879i −0.926113 + 1.06879i 0.0713392 + 0.997452i \(0.477273\pi\)
−0.997452 + 0.0713392i \(0.977273\pi\)
\(938\) 0 0
\(939\) −0.926113 1.06879i −0.926113 1.06879i
\(940\) 0 0
\(941\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(948\) −1.18971 + 0.764582i −1.18971 + 0.764582i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(962\) 0 0
\(963\) 0 0
\(964\) 0.587486 1.28641i 0.587486 1.28641i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(972\) 0.654861 0.755750i 0.654861 0.755750i
\(973\) 0.402527 2.79964i 0.402527 2.79964i
\(974\) 0 0
\(975\) 0 0
\(976\) −0.201264 1.39982i −0.201264 1.39982i
\(977\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.35693 0.398430i 1.35693 0.398430i
\(982\) 0 0
\(983\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i \(0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(998\) 0 0
\(999\) −0.201264 1.39982i −0.201264 1.39982i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.1.h.c.995.1 20
3.2 odd 2 CM 1587.1.h.c.995.1 20
23.2 even 11 1587.1.b.b.530.2 yes 2
23.3 even 11 inner 1587.1.h.c.1457.2 20
23.4 even 11 inner 1587.1.h.c.1016.1 20
23.5 odd 22 inner 1587.1.h.c.863.2 20
23.6 even 11 inner 1587.1.h.c.170.2 20
23.7 odd 22 inner 1587.1.h.c.1559.1 20
23.8 even 11 inner 1587.1.h.c.1235.1 20
23.9 even 11 inner 1587.1.h.c.647.2 20
23.10 odd 22 inner 1587.1.h.c.1313.2 20
23.11 odd 22 inner 1587.1.h.c.266.2 20
23.12 even 11 inner 1587.1.h.c.266.1 20
23.13 even 11 inner 1587.1.h.c.1313.1 20
23.14 odd 22 inner 1587.1.h.c.647.1 20
23.15 odd 22 inner 1587.1.h.c.1235.2 20
23.16 even 11 inner 1587.1.h.c.1559.2 20
23.17 odd 22 inner 1587.1.h.c.170.1 20
23.18 even 11 inner 1587.1.h.c.863.1 20
23.19 odd 22 inner 1587.1.h.c.1016.2 20
23.20 odd 22 inner 1587.1.h.c.1457.1 20
23.21 odd 22 1587.1.b.b.530.1 2
23.22 odd 2 inner 1587.1.h.c.995.2 20
69.2 odd 22 1587.1.b.b.530.2 yes 2
69.5 even 22 inner 1587.1.h.c.863.2 20
69.8 odd 22 inner 1587.1.h.c.1235.1 20
69.11 even 22 inner 1587.1.h.c.266.2 20
69.14 even 22 inner 1587.1.h.c.647.1 20
69.17 even 22 inner 1587.1.h.c.170.1 20
69.20 even 22 inner 1587.1.h.c.1457.1 20
69.26 odd 22 inner 1587.1.h.c.1457.2 20
69.29 odd 22 inner 1587.1.h.c.170.2 20
69.32 odd 22 inner 1587.1.h.c.647.2 20
69.35 odd 22 inner 1587.1.h.c.266.1 20
69.38 even 22 inner 1587.1.h.c.1235.2 20
69.41 odd 22 inner 1587.1.h.c.863.1 20
69.44 even 22 1587.1.b.b.530.1 2
69.50 odd 22 inner 1587.1.h.c.1016.1 20
69.53 even 22 inner 1587.1.h.c.1559.1 20
69.56 even 22 inner 1587.1.h.c.1313.2 20
69.59 odd 22 inner 1587.1.h.c.1313.1 20
69.62 odd 22 inner 1587.1.h.c.1559.2 20
69.65 even 22 inner 1587.1.h.c.1016.2 20
69.68 even 2 inner 1587.1.h.c.995.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1587.1.b.b.530.1 2 23.21 odd 22
1587.1.b.b.530.1 2 69.44 even 22
1587.1.b.b.530.2 yes 2 23.2 even 11
1587.1.b.b.530.2 yes 2 69.2 odd 22
1587.1.h.c.170.1 20 23.17 odd 22 inner
1587.1.h.c.170.1 20 69.17 even 22 inner
1587.1.h.c.170.2 20 23.6 even 11 inner
1587.1.h.c.170.2 20 69.29 odd 22 inner
1587.1.h.c.266.1 20 23.12 even 11 inner
1587.1.h.c.266.1 20 69.35 odd 22 inner
1587.1.h.c.266.2 20 23.11 odd 22 inner
1587.1.h.c.266.2 20 69.11 even 22 inner
1587.1.h.c.647.1 20 23.14 odd 22 inner
1587.1.h.c.647.1 20 69.14 even 22 inner
1587.1.h.c.647.2 20 23.9 even 11 inner
1587.1.h.c.647.2 20 69.32 odd 22 inner
1587.1.h.c.863.1 20 23.18 even 11 inner
1587.1.h.c.863.1 20 69.41 odd 22 inner
1587.1.h.c.863.2 20 23.5 odd 22 inner
1587.1.h.c.863.2 20 69.5 even 22 inner
1587.1.h.c.995.1 20 1.1 even 1 trivial
1587.1.h.c.995.1 20 3.2 odd 2 CM
1587.1.h.c.995.2 20 23.22 odd 2 inner
1587.1.h.c.995.2 20 69.68 even 2 inner
1587.1.h.c.1016.1 20 23.4 even 11 inner
1587.1.h.c.1016.1 20 69.50 odd 22 inner
1587.1.h.c.1016.2 20 23.19 odd 22 inner
1587.1.h.c.1016.2 20 69.65 even 22 inner
1587.1.h.c.1235.1 20 23.8 even 11 inner
1587.1.h.c.1235.1 20 69.8 odd 22 inner
1587.1.h.c.1235.2 20 23.15 odd 22 inner
1587.1.h.c.1235.2 20 69.38 even 22 inner
1587.1.h.c.1313.1 20 23.13 even 11 inner
1587.1.h.c.1313.1 20 69.59 odd 22 inner
1587.1.h.c.1313.2 20 23.10 odd 22 inner
1587.1.h.c.1313.2 20 69.56 even 22 inner
1587.1.h.c.1457.1 20 23.20 odd 22 inner
1587.1.h.c.1457.1 20 69.20 even 22 inner
1587.1.h.c.1457.2 20 23.3 even 11 inner
1587.1.h.c.1457.2 20 69.26 odd 22 inner
1587.1.h.c.1559.1 20 23.7 odd 22 inner
1587.1.h.c.1559.1 20 69.53 even 22 inner
1587.1.h.c.1559.2 20 23.16 even 11 inner
1587.1.h.c.1559.2 20 69.62 odd 22 inner