Properties

Label 1587.2.a.s.1.5
Level $1587$
Weight $2$
Character 1587.1
Self dual yes
Analytic conductor $12.672$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1587,2,Mod(1,1587)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1587, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1587.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.6722588008\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.2803712.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 6x^{4} + 8x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.20864\) of defining polynomial
Character \(\chi\) \(=\) 1587.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.70928 q^{2} +1.00000 q^{3} +5.34017 q^{4} -0.762528 q^{5} +2.70928 q^{6} -0.651685 q^{7} +9.04945 q^{8} +1.00000 q^{9} -2.06590 q^{10} +6.13793 q^{11} +5.34017 q^{12} -3.41855 q^{13} -1.76560 q^{14} -0.762528 q^{15} +13.8371 q^{16} -3.59096 q^{17} +2.70928 q^{18} -3.96119 q^{19} -4.07203 q^{20} -0.651685 q^{21} +16.6293 q^{22} +9.04945 q^{24} -4.41855 q^{25} -9.26180 q^{26} +1.00000 q^{27} -3.48011 q^{28} +0.921622 q^{29} -2.06590 q^{30} +3.07838 q^{31} +19.3896 q^{32} +6.13793 q^{33} -9.72889 q^{34} +0.496928 q^{35} +5.34017 q^{36} -1.89529 q^{37} -10.7320 q^{38} -3.41855 q^{39} -6.90046 q^{40} -6.68035 q^{41} -1.76560 q^{42} +3.48011 q^{43} +32.7776 q^{44} -0.762528 q^{45} -0.183417 q^{47} +13.8371 q^{48} -6.57531 q^{49} -11.9711 q^{50} -3.59096 q^{51} -18.2557 q^{52} +10.2100 q^{53} +2.70928 q^{54} -4.68035 q^{55} -5.89739 q^{56} -3.96119 q^{57} +2.49693 q^{58} +5.65983 q^{59} -4.07203 q^{60} -2.93927 q^{61} +8.34017 q^{62} -0.651685 q^{63} +24.8576 q^{64} +2.60674 q^{65} +16.6293 q^{66} -7.01130 q^{67} -19.1763 q^{68} +1.34632 q^{70} -4.00000 q^{71} +9.04945 q^{72} -0.680346 q^{73} -5.13486 q^{74} -4.41855 q^{75} -21.1534 q^{76} -4.00000 q^{77} -9.26180 q^{78} +11.1431 q^{79} -10.5512 q^{80} +1.00000 q^{81} -18.0989 q^{82} +12.4975 q^{83} -3.48011 q^{84} +2.73820 q^{85} +9.42858 q^{86} +0.921622 q^{87} +55.5449 q^{88} -3.36927 q^{89} -2.06590 q^{90} +2.22782 q^{91} +3.07838 q^{93} -0.496928 q^{94} +3.02052 q^{95} +19.3896 q^{96} -5.54601 q^{97} -17.8143 q^{98} +6.13793 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 6 q^{3} + 10 q^{4} + 2 q^{6} + 18 q^{8} + 6 q^{9} + 10 q^{12} + 8 q^{13} + 26 q^{16} + 2 q^{18} + 18 q^{24} + 2 q^{25} - 40 q^{26} + 6 q^{27} + 12 q^{29} + 12 q^{31} + 58 q^{32} - 32 q^{35}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.70928 1.91575 0.957873 0.287190i \(-0.0927213\pi\)
0.957873 + 0.287190i \(0.0927213\pi\)
\(3\) 1.00000 0.577350
\(4\) 5.34017 2.67009
\(5\) −0.762528 −0.341013 −0.170506 0.985357i \(-0.554540\pi\)
−0.170506 + 0.985357i \(0.554540\pi\)
\(6\) 2.70928 1.10606
\(7\) −0.651685 −0.246314 −0.123157 0.992387i \(-0.539302\pi\)
−0.123157 + 0.992387i \(0.539302\pi\)
\(8\) 9.04945 3.19946
\(9\) 1.00000 0.333333
\(10\) −2.06590 −0.653295
\(11\) 6.13793 1.85066 0.925328 0.379168i \(-0.123790\pi\)
0.925328 + 0.379168i \(0.123790\pi\)
\(12\) 5.34017 1.54158
\(13\) −3.41855 −0.948135 −0.474068 0.880488i \(-0.657215\pi\)
−0.474068 + 0.880488i \(0.657215\pi\)
\(14\) −1.76560 −0.471875
\(15\) −0.762528 −0.196884
\(16\) 13.8371 3.45928
\(17\) −3.59096 −0.870935 −0.435467 0.900205i \(-0.643417\pi\)
−0.435467 + 0.900205i \(0.643417\pi\)
\(18\) 2.70928 0.638582
\(19\) −3.96119 −0.908759 −0.454380 0.890808i \(-0.650139\pi\)
−0.454380 + 0.890808i \(0.650139\pi\)
\(20\) −4.07203 −0.910534
\(21\) −0.651685 −0.142209
\(22\) 16.6293 3.54539
\(23\) 0 0
\(24\) 9.04945 1.84721
\(25\) −4.41855 −0.883710
\(26\) −9.26180 −1.81639
\(27\) 1.00000 0.192450
\(28\) −3.48011 −0.657679
\(29\) 0.921622 0.171141 0.0855705 0.996332i \(-0.472729\pi\)
0.0855705 + 0.996332i \(0.472729\pi\)
\(30\) −2.06590 −0.377180
\(31\) 3.07838 0.552893 0.276446 0.961029i \(-0.410843\pi\)
0.276446 + 0.961029i \(0.410843\pi\)
\(32\) 19.3896 3.42763
\(33\) 6.13793 1.06848
\(34\) −9.72889 −1.66849
\(35\) 0.496928 0.0839962
\(36\) 5.34017 0.890029
\(37\) −1.89529 −0.311584 −0.155792 0.987790i \(-0.549793\pi\)
−0.155792 + 0.987790i \(0.549793\pi\)
\(38\) −10.7320 −1.74095
\(39\) −3.41855 −0.547406
\(40\) −6.90046 −1.09106
\(41\) −6.68035 −1.04329 −0.521647 0.853161i \(-0.674682\pi\)
−0.521647 + 0.853161i \(0.674682\pi\)
\(42\) −1.76560 −0.272437
\(43\) 3.48011 0.530712 0.265356 0.964150i \(-0.414510\pi\)
0.265356 + 0.964150i \(0.414510\pi\)
\(44\) 32.7776 4.94141
\(45\) −0.762528 −0.113671
\(46\) 0 0
\(47\) −0.183417 −0.0267542 −0.0133771 0.999911i \(-0.504258\pi\)
−0.0133771 + 0.999911i \(0.504258\pi\)
\(48\) 13.8371 1.99721
\(49\) −6.57531 −0.939329
\(50\) −11.9711 −1.69297
\(51\) −3.59096 −0.502834
\(52\) −18.2557 −2.53160
\(53\) 10.2100 1.40245 0.701223 0.712942i \(-0.252638\pi\)
0.701223 + 0.712942i \(0.252638\pi\)
\(54\) 2.70928 0.368686
\(55\) −4.68035 −0.631098
\(56\) −5.89739 −0.788072
\(57\) −3.96119 −0.524672
\(58\) 2.49693 0.327863
\(59\) 5.65983 0.736847 0.368423 0.929658i \(-0.379898\pi\)
0.368423 + 0.929658i \(0.379898\pi\)
\(60\) −4.07203 −0.525697
\(61\) −2.93927 −0.376335 −0.188167 0.982137i \(-0.560255\pi\)
−0.188167 + 0.982137i \(0.560255\pi\)
\(62\) 8.34017 1.05920
\(63\) −0.651685 −0.0821046
\(64\) 24.8576 3.10720
\(65\) 2.60674 0.323326
\(66\) 16.6293 2.04693
\(67\) −7.01130 −0.856567 −0.428283 0.903644i \(-0.640882\pi\)
−0.428283 + 0.903644i \(0.640882\pi\)
\(68\) −19.1763 −2.32547
\(69\) 0 0
\(70\) 1.34632 0.160916
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 9.04945 1.06649
\(73\) −0.680346 −0.0796285 −0.0398142 0.999207i \(-0.512677\pi\)
−0.0398142 + 0.999207i \(0.512677\pi\)
\(74\) −5.13486 −0.596916
\(75\) −4.41855 −0.510210
\(76\) −21.1534 −2.42647
\(77\) −4.00000 −0.455842
\(78\) −9.26180 −1.04869
\(79\) 11.1431 1.25370 0.626848 0.779141i \(-0.284345\pi\)
0.626848 + 0.779141i \(0.284345\pi\)
\(80\) −10.5512 −1.17966
\(81\) 1.00000 0.111111
\(82\) −18.0989 −1.99869
\(83\) 12.4975 1.37178 0.685892 0.727703i \(-0.259412\pi\)
0.685892 + 0.727703i \(0.259412\pi\)
\(84\) −3.48011 −0.379711
\(85\) 2.73820 0.297000
\(86\) 9.42858 1.01671
\(87\) 0.921622 0.0988083
\(88\) 55.5449 5.92111
\(89\) −3.36927 −0.357142 −0.178571 0.983927i \(-0.557147\pi\)
−0.178571 + 0.983927i \(0.557147\pi\)
\(90\) −2.06590 −0.217765
\(91\) 2.22782 0.233539
\(92\) 0 0
\(93\) 3.07838 0.319213
\(94\) −0.496928 −0.0512543
\(95\) 3.02052 0.309899
\(96\) 19.3896 1.97894
\(97\) −5.54601 −0.563112 −0.281556 0.959545i \(-0.590851\pi\)
−0.281556 + 0.959545i \(0.590851\pi\)
\(98\) −17.8143 −1.79952
\(99\) 6.13793 0.616885
\(100\) −23.5958 −2.35958
\(101\) −9.51745 −0.947021 −0.473511 0.880788i \(-0.657013\pi\)
−0.473511 + 0.880788i \(0.657013\pi\)
\(102\) −9.72889 −0.963303
\(103\) 15.4966 1.52692 0.763462 0.645853i \(-0.223498\pi\)
0.763462 + 0.645853i \(0.223498\pi\)
\(104\) −30.9360 −3.03352
\(105\) 0.496928 0.0484953
\(106\) 27.6616 2.68673
\(107\) −12.7569 −1.23326 −0.616630 0.787253i \(-0.711503\pi\)
−0.616630 + 0.787253i \(0.711503\pi\)
\(108\) 5.34017 0.513858
\(109\) −16.7402 −1.60342 −0.801710 0.597714i \(-0.796076\pi\)
−0.801710 + 0.597714i \(0.796076\pi\)
\(110\) −12.6803 −1.20902
\(111\) −1.89529 −0.179893
\(112\) −9.01744 −0.852068
\(113\) −7.38154 −0.694397 −0.347198 0.937792i \(-0.612867\pi\)
−0.347198 + 0.937792i \(0.612867\pi\)
\(114\) −10.7320 −1.00514
\(115\) 0 0
\(116\) 4.92162 0.456961
\(117\) −3.41855 −0.316045
\(118\) 15.3340 1.41161
\(119\) 2.34017 0.214523
\(120\) −6.90046 −0.629923
\(121\) 26.6742 2.42493
\(122\) −7.96329 −0.720963
\(123\) −6.68035 −0.602347
\(124\) 16.4391 1.47627
\(125\) 7.18191 0.642370
\(126\) −1.76560 −0.157292
\(127\) 7.44521 0.660656 0.330328 0.943866i \(-0.392841\pi\)
0.330328 + 0.943866i \(0.392841\pi\)
\(128\) 28.5669 2.52498
\(129\) 3.48011 0.306407
\(130\) 7.06238 0.619412
\(131\) −18.8371 −1.64581 −0.822903 0.568182i \(-0.807647\pi\)
−0.822903 + 0.568182i \(0.807647\pi\)
\(132\) 32.7776 2.85293
\(133\) 2.58145 0.223840
\(134\) −18.9955 −1.64097
\(135\) −0.762528 −0.0656280
\(136\) −32.4962 −2.78652
\(137\) −3.81264 −0.325736 −0.162868 0.986648i \(-0.552074\pi\)
−0.162868 + 0.986648i \(0.552074\pi\)
\(138\) 0 0
\(139\) 6.15676 0.522209 0.261105 0.965311i \(-0.415913\pi\)
0.261105 + 0.965311i \(0.415913\pi\)
\(140\) 2.65368 0.224277
\(141\) −0.183417 −0.0154465
\(142\) −10.8371 −0.909429
\(143\) −20.9828 −1.75467
\(144\) 13.8371 1.15309
\(145\) −0.702763 −0.0583613
\(146\) −1.84324 −0.152548
\(147\) −6.57531 −0.542322
\(148\) −10.1212 −0.831956
\(149\) −7.94444 −0.650834 −0.325417 0.945571i \(-0.605505\pi\)
−0.325417 + 0.945571i \(0.605505\pi\)
\(150\) −11.9711 −0.977434
\(151\) 10.5236 0.856398 0.428199 0.903685i \(-0.359148\pi\)
0.428199 + 0.903685i \(0.359148\pi\)
\(152\) −35.8466 −2.90754
\(153\) −3.59096 −0.290312
\(154\) −10.8371 −0.873279
\(155\) −2.34735 −0.188544
\(156\) −18.2557 −1.46162
\(157\) −20.0497 −1.60014 −0.800070 0.599907i \(-0.795204\pi\)
−0.800070 + 0.599907i \(0.795204\pi\)
\(158\) 30.1897 2.40177
\(159\) 10.2100 0.809703
\(160\) −14.7851 −1.16887
\(161\) 0 0
\(162\) 2.70928 0.212861
\(163\) −14.5958 −1.14323 −0.571617 0.820521i \(-0.693684\pi\)
−0.571617 + 0.820521i \(0.693684\pi\)
\(164\) −35.6742 −2.78569
\(165\) −4.68035 −0.364364
\(166\) 33.8593 2.62799
\(167\) 14.8371 1.14813 0.574065 0.818810i \(-0.305366\pi\)
0.574065 + 0.818810i \(0.305366\pi\)
\(168\) −5.89739 −0.454994
\(169\) −1.31351 −0.101039
\(170\) 7.41855 0.568977
\(171\) −3.96119 −0.302920
\(172\) 18.5844 1.41705
\(173\) −9.23513 −0.702134 −0.351067 0.936350i \(-0.614181\pi\)
−0.351067 + 0.936350i \(0.614181\pi\)
\(174\) 2.49693 0.189292
\(175\) 2.87950 0.217670
\(176\) 84.9312 6.40193
\(177\) 5.65983 0.425419
\(178\) −9.12828 −0.684193
\(179\) 2.02666 0.151480 0.0757399 0.997128i \(-0.475868\pi\)
0.0757399 + 0.997128i \(0.475868\pi\)
\(180\) −4.07203 −0.303511
\(181\) −22.9977 −1.70940 −0.854701 0.519121i \(-0.826260\pi\)
−0.854701 + 0.519121i \(0.826260\pi\)
\(182\) 6.03578 0.447402
\(183\) −2.93927 −0.217277
\(184\) 0 0
\(185\) 1.44521 0.106254
\(186\) 8.34017 0.611531
\(187\) −22.0410 −1.61180
\(188\) −0.979481 −0.0714360
\(189\) −0.651685 −0.0474031
\(190\) 8.18342 0.593688
\(191\) −11.2319 −0.812711 −0.406355 0.913715i \(-0.633200\pi\)
−0.406355 + 0.913715i \(0.633200\pi\)
\(192\) 24.8576 1.79394
\(193\) 14.0989 1.01486 0.507430 0.861693i \(-0.330595\pi\)
0.507430 + 0.861693i \(0.330595\pi\)
\(194\) −15.0257 −1.07878
\(195\) 2.60674 0.186673
\(196\) −35.1133 −2.50809
\(197\) 2.39803 0.170853 0.0854263 0.996344i \(-0.472775\pi\)
0.0854263 + 0.996344i \(0.472775\pi\)
\(198\) 16.6293 1.18180
\(199\) 17.2810 1.22502 0.612510 0.790463i \(-0.290160\pi\)
0.612510 + 0.790463i \(0.290160\pi\)
\(200\) −39.9854 −2.82740
\(201\) −7.01130 −0.494539
\(202\) −25.7854 −1.81425
\(203\) −0.600608 −0.0421544
\(204\) −19.1763 −1.34261
\(205\) 5.09395 0.355777
\(206\) 41.9845 2.92520
\(207\) 0 0
\(208\) −47.3028 −3.27986
\(209\) −24.3135 −1.68180
\(210\) 1.34632 0.0929046
\(211\) 13.6020 0.936398 0.468199 0.883623i \(-0.344903\pi\)
0.468199 + 0.883623i \(0.344903\pi\)
\(212\) 54.5230 3.74465
\(213\) −4.00000 −0.274075
\(214\) −34.5621 −2.36261
\(215\) −2.65368 −0.180980
\(216\) 9.04945 0.615737
\(217\) −2.00613 −0.136185
\(218\) −45.3538 −3.07175
\(219\) −0.680346 −0.0459735
\(220\) −24.9939 −1.68509
\(221\) 12.2759 0.825764
\(222\) −5.13486 −0.344630
\(223\) 15.2039 1.01813 0.509065 0.860728i \(-0.329991\pi\)
0.509065 + 0.860728i \(0.329991\pi\)
\(224\) −12.6359 −0.844274
\(225\) −4.41855 −0.294570
\(226\) −19.9986 −1.33029
\(227\) 7.44130 0.493897 0.246948 0.969029i \(-0.420572\pi\)
0.246948 + 0.969029i \(0.420572\pi\)
\(228\) −21.1534 −1.40092
\(229\) 22.3970 1.48004 0.740019 0.672586i \(-0.234816\pi\)
0.740019 + 0.672586i \(0.234816\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 8.34017 0.547559
\(233\) 16.8371 1.10304 0.551518 0.834163i \(-0.314049\pi\)
0.551518 + 0.834163i \(0.314049\pi\)
\(234\) −9.26180 −0.605462
\(235\) 0.139861 0.00912353
\(236\) 30.2245 1.96744
\(237\) 11.1431 0.723822
\(238\) 6.34017 0.410972
\(239\) −9.84324 −0.636707 −0.318353 0.947972i \(-0.603130\pi\)
−0.318353 + 0.947972i \(0.603130\pi\)
\(240\) −10.5512 −0.681076
\(241\) 13.4307 0.865146 0.432573 0.901599i \(-0.357606\pi\)
0.432573 + 0.901599i \(0.357606\pi\)
\(242\) 72.2678 4.64555
\(243\) 1.00000 0.0641500
\(244\) −15.6962 −1.00485
\(245\) 5.01386 0.320324
\(246\) −18.0989 −1.15394
\(247\) 13.5415 0.861627
\(248\) 27.8576 1.76896
\(249\) 12.4975 0.792000
\(250\) 19.4578 1.23062
\(251\) −13.3575 −0.843121 −0.421560 0.906800i \(-0.638517\pi\)
−0.421560 + 0.906800i \(0.638517\pi\)
\(252\) −3.48011 −0.219226
\(253\) 0 0
\(254\) 20.1711 1.26565
\(255\) 2.73820 0.171473
\(256\) 27.6803 1.73002
\(257\) 4.52359 0.282174 0.141087 0.989997i \(-0.454940\pi\)
0.141087 + 0.989997i \(0.454940\pi\)
\(258\) 9.42858 0.586998
\(259\) 1.23513 0.0767474
\(260\) 13.9204 0.863310
\(261\) 0.921622 0.0570470
\(262\) −51.0349 −3.15295
\(263\) 25.5957 1.57830 0.789149 0.614201i \(-0.210522\pi\)
0.789149 + 0.614201i \(0.210522\pi\)
\(264\) 55.5449 3.41855
\(265\) −7.78539 −0.478252
\(266\) 6.99386 0.428821
\(267\) −3.36927 −0.206196
\(268\) −37.4416 −2.28711
\(269\) 25.4329 1.55067 0.775336 0.631548i \(-0.217580\pi\)
0.775336 + 0.631548i \(0.217580\pi\)
\(270\) −2.06590 −0.125727
\(271\) −31.6430 −1.92218 −0.961088 0.276243i \(-0.910911\pi\)
−0.961088 + 0.276243i \(0.910911\pi\)
\(272\) −49.6884 −3.01280
\(273\) 2.22782 0.134834
\(274\) −10.3295 −0.624028
\(275\) −27.1208 −1.63544
\(276\) 0 0
\(277\) 13.0472 0.783929 0.391965 0.919980i \(-0.371796\pi\)
0.391965 + 0.919980i \(0.371796\pi\)
\(278\) 16.6803 1.00042
\(279\) 3.07838 0.184298
\(280\) 4.49693 0.268743
\(281\) 3.93217 0.234574 0.117287 0.993098i \(-0.462580\pi\)
0.117287 + 0.993098i \(0.462580\pi\)
\(282\) −0.496928 −0.0295917
\(283\) 20.9318 1.24426 0.622132 0.782913i \(-0.286267\pi\)
0.622132 + 0.782913i \(0.286267\pi\)
\(284\) −21.3607 −1.26752
\(285\) 3.02052 0.178920
\(286\) −56.8483 −3.36151
\(287\) 4.35348 0.256978
\(288\) 19.3896 1.14254
\(289\) −4.10504 −0.241473
\(290\) −1.90398 −0.111805
\(291\) −5.54601 −0.325113
\(292\) −3.63317 −0.212615
\(293\) 15.8668 0.926949 0.463475 0.886110i \(-0.346602\pi\)
0.463475 + 0.886110i \(0.346602\pi\)
\(294\) −17.8143 −1.03895
\(295\) −4.31578 −0.251274
\(296\) −17.1513 −0.996901
\(297\) 6.13793 0.356159
\(298\) −21.5237 −1.24683
\(299\) 0 0
\(300\) −23.5958 −1.36231
\(301\) −2.26794 −0.130722
\(302\) 28.5113 1.64064
\(303\) −9.51745 −0.546763
\(304\) −54.8114 −3.14365
\(305\) 2.24128 0.128335
\(306\) −9.72889 −0.556163
\(307\) 32.7526 1.86929 0.934644 0.355584i \(-0.115718\pi\)
0.934644 + 0.355584i \(0.115718\pi\)
\(308\) −21.3607 −1.21714
\(309\) 15.4966 0.881570
\(310\) −6.35962 −0.361202
\(311\) −14.0267 −0.795379 −0.397690 0.917520i \(-0.630188\pi\)
−0.397690 + 0.917520i \(0.630188\pi\)
\(312\) −30.9360 −1.75141
\(313\) 15.4745 0.874672 0.437336 0.899298i \(-0.355922\pi\)
0.437336 + 0.899298i \(0.355922\pi\)
\(314\) −54.3201 −3.06546
\(315\) 0.496928 0.0279987
\(316\) 59.5061 3.34748
\(317\) 19.4452 1.09215 0.546076 0.837736i \(-0.316121\pi\)
0.546076 + 0.837736i \(0.316121\pi\)
\(318\) 27.6616 1.55119
\(319\) 5.65685 0.316723
\(320\) −18.9546 −1.05960
\(321\) −12.7569 −0.712023
\(322\) 0 0
\(323\) 14.2245 0.791470
\(324\) 5.34017 0.296676
\(325\) 15.1050 0.837877
\(326\) −39.5441 −2.19015
\(327\) −16.7402 −0.925735
\(328\) −60.4534 −3.33798
\(329\) 0.119530 0.00658993
\(330\) −12.6803 −0.698030
\(331\) 17.1194 0.940968 0.470484 0.882408i \(-0.344079\pi\)
0.470484 + 0.882408i \(0.344079\pi\)
\(332\) 66.7391 3.66278
\(333\) −1.89529 −0.103861
\(334\) 40.1978 2.19953
\(335\) 5.34632 0.292100
\(336\) −9.01744 −0.491941
\(337\) −11.2029 −0.610259 −0.305129 0.952311i \(-0.598700\pi\)
−0.305129 + 0.952311i \(0.598700\pi\)
\(338\) −3.55866 −0.193566
\(339\) −7.38154 −0.400910
\(340\) 14.6225 0.793016
\(341\) 18.8949 1.02321
\(342\) −10.7320 −0.580318
\(343\) 8.84683 0.477684
\(344\) 31.4931 1.69799
\(345\) 0 0
\(346\) −25.0205 −1.34511
\(347\) 9.17727 0.492662 0.246331 0.969186i \(-0.420775\pi\)
0.246331 + 0.969186i \(0.420775\pi\)
\(348\) 4.92162 0.263827
\(349\) 29.2495 1.56569 0.782845 0.622217i \(-0.213768\pi\)
0.782845 + 0.622217i \(0.213768\pi\)
\(350\) 7.80137 0.417001
\(351\) −3.41855 −0.182469
\(352\) 119.012 6.34337
\(353\) −30.2823 −1.61176 −0.805882 0.592076i \(-0.798309\pi\)
−0.805882 + 0.592076i \(0.798309\pi\)
\(354\) 15.3340 0.814994
\(355\) 3.05011 0.161883
\(356\) −17.9925 −0.953600
\(357\) 2.34017 0.123855
\(358\) 5.49079 0.290197
\(359\) −7.66299 −0.404437 −0.202219 0.979340i \(-0.564815\pi\)
−0.202219 + 0.979340i \(0.564815\pi\)
\(360\) −6.90046 −0.363686
\(361\) −3.30898 −0.174157
\(362\) −62.3070 −3.27478
\(363\) 26.6742 1.40003
\(364\) 11.8969 0.623569
\(365\) 0.518783 0.0271543
\(366\) −7.96329 −0.416248
\(367\) 25.1657 1.31364 0.656820 0.754048i \(-0.271901\pi\)
0.656820 + 0.754048i \(0.271901\pi\)
\(368\) 0 0
\(369\) −6.68035 −0.347765
\(370\) 3.91548 0.203556
\(371\) −6.65368 −0.345442
\(372\) 16.4391 0.852326
\(373\) −3.07913 −0.159431 −0.0797157 0.996818i \(-0.525401\pi\)
−0.0797157 + 0.996818i \(0.525401\pi\)
\(374\) −59.7152 −3.08780
\(375\) 7.18191 0.370872
\(376\) −1.65983 −0.0855990
\(377\) −3.15061 −0.162265
\(378\) −1.76560 −0.0908124
\(379\) −11.0613 −0.568180 −0.284090 0.958798i \(-0.591691\pi\)
−0.284090 + 0.958798i \(0.591691\pi\)
\(380\) 16.1301 0.827456
\(381\) 7.44521 0.381430
\(382\) −30.4303 −1.55695
\(383\) 24.3742 1.24546 0.622731 0.782436i \(-0.286023\pi\)
0.622731 + 0.782436i \(0.286023\pi\)
\(384\) 28.5669 1.45780
\(385\) 3.05011 0.155448
\(386\) 38.1978 1.94422
\(387\) 3.48011 0.176904
\(388\) −29.6167 −1.50356
\(389\) −1.10374 −0.0559621 −0.0279810 0.999608i \(-0.508908\pi\)
−0.0279810 + 0.999608i \(0.508908\pi\)
\(390\) 7.06238 0.357618
\(391\) 0 0
\(392\) −59.5029 −3.00535
\(393\) −18.8371 −0.950206
\(394\) 6.49693 0.327311
\(395\) −8.49693 −0.427527
\(396\) 32.7776 1.64714
\(397\) 3.47641 0.174476 0.0872380 0.996187i \(-0.472196\pi\)
0.0872380 + 0.996187i \(0.472196\pi\)
\(398\) 46.8191 2.34683
\(399\) 2.58145 0.129234
\(400\) −61.1399 −3.05700
\(401\) −21.5237 −1.07484 −0.537420 0.843314i \(-0.680601\pi\)
−0.537420 + 0.843314i \(0.680601\pi\)
\(402\) −18.9955 −0.947412
\(403\) −10.5236 −0.524217
\(404\) −50.8248 −2.52863
\(405\) −0.762528 −0.0378903
\(406\) −1.62721 −0.0807572
\(407\) −11.6332 −0.576635
\(408\) −32.4962 −1.60880
\(409\) 25.3028 1.25114 0.625572 0.780166i \(-0.284866\pi\)
0.625572 + 0.780166i \(0.284866\pi\)
\(410\) 13.8009 0.681579
\(411\) −3.81264 −0.188064
\(412\) 82.7544 4.07702
\(413\) −3.68843 −0.181496
\(414\) 0 0
\(415\) −9.52973 −0.467796
\(416\) −66.2844 −3.24986
\(417\) 6.15676 0.301498
\(418\) −65.8720 −3.22190
\(419\) −25.4558 −1.24360 −0.621800 0.783176i \(-0.713598\pi\)
−0.621800 + 0.783176i \(0.713598\pi\)
\(420\) 2.65368 0.129487
\(421\) −27.5287 −1.34167 −0.670833 0.741608i \(-0.734063\pi\)
−0.670833 + 0.741608i \(0.734063\pi\)
\(422\) 36.8515 1.79390
\(423\) −0.183417 −0.00891806
\(424\) 92.3945 4.48708
\(425\) 15.8668 0.769654
\(426\) −10.8371 −0.525059
\(427\) 1.91548 0.0926965
\(428\) −68.1243 −3.29291
\(429\) −20.9828 −1.01306
\(430\) −7.18956 −0.346711
\(431\) −28.3046 −1.36338 −0.681692 0.731639i \(-0.738756\pi\)
−0.681692 + 0.731639i \(0.738756\pi\)
\(432\) 13.8371 0.665738
\(433\) −29.0161 −1.39442 −0.697211 0.716866i \(-0.745576\pi\)
−0.697211 + 0.716866i \(0.745576\pi\)
\(434\) −5.43517 −0.260896
\(435\) −0.702763 −0.0336949
\(436\) −89.3955 −4.28127
\(437\) 0 0
\(438\) −1.84324 −0.0880736
\(439\) 34.3545 1.63965 0.819827 0.572612i \(-0.194070\pi\)
0.819827 + 0.572612i \(0.194070\pi\)
\(440\) −42.3545 −2.01917
\(441\) −6.57531 −0.313110
\(442\) 33.2587 1.58195
\(443\) −22.8371 −1.08502 −0.542512 0.840048i \(-0.682527\pi\)
−0.542512 + 0.840048i \(0.682527\pi\)
\(444\) −10.1212 −0.480330
\(445\) 2.56916 0.121790
\(446\) 41.1917 1.95048
\(447\) −7.94444 −0.375759
\(448\) −16.1993 −0.765347
\(449\) −16.4703 −0.777280 −0.388640 0.921390i \(-0.627055\pi\)
−0.388640 + 0.921390i \(0.627055\pi\)
\(450\) −11.9711 −0.564322
\(451\) −41.0035 −1.93078
\(452\) −39.4187 −1.85410
\(453\) 10.5236 0.494441
\(454\) 20.1605 0.946181
\(455\) −1.69878 −0.0796398
\(456\) −35.8466 −1.67867
\(457\) −15.0753 −0.705191 −0.352596 0.935776i \(-0.614701\pi\)
−0.352596 + 0.935776i \(0.614701\pi\)
\(458\) 60.6798 2.83538
\(459\) −3.59096 −0.167611
\(460\) 0 0
\(461\) −15.8120 −0.736440 −0.368220 0.929739i \(-0.620033\pi\)
−0.368220 + 0.929739i \(0.620033\pi\)
\(462\) −10.8371 −0.504188
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 12.7526 0.592024
\(465\) −2.34735 −0.108856
\(466\) 45.6163 2.11314
\(467\) 29.1269 1.34783 0.673916 0.738808i \(-0.264611\pi\)
0.673916 + 0.738808i \(0.264611\pi\)
\(468\) −18.2557 −0.843868
\(469\) 4.56916 0.210984
\(470\) 0.378922 0.0174784
\(471\) −20.0497 −0.923841
\(472\) 51.2183 2.35751
\(473\) 21.3607 0.982166
\(474\) 30.1897 1.38666
\(475\) 17.5027 0.803080
\(476\) 12.4969 0.572796
\(477\) 10.2100 0.467482
\(478\) −26.6681 −1.21977
\(479\) 10.3719 0.473904 0.236952 0.971521i \(-0.423852\pi\)
0.236952 + 0.971521i \(0.423852\pi\)
\(480\) −14.7851 −0.674846
\(481\) 6.47915 0.295424
\(482\) 36.3874 1.65740
\(483\) 0 0
\(484\) 142.445 6.47477
\(485\) 4.22899 0.192029
\(486\) 2.70928 0.122895
\(487\) 17.1629 0.777725 0.388863 0.921296i \(-0.372868\pi\)
0.388863 + 0.921296i \(0.372868\pi\)
\(488\) −26.5988 −1.20407
\(489\) −14.5958 −0.660046
\(490\) 13.5839 0.613659
\(491\) −3.50307 −0.158091 −0.0790457 0.996871i \(-0.525187\pi\)
−0.0790457 + 0.996871i \(0.525187\pi\)
\(492\) −35.6742 −1.60832
\(493\) −3.30950 −0.149053
\(494\) 36.6877 1.65066
\(495\) −4.68035 −0.210366
\(496\) 42.5958 1.91261
\(497\) 2.60674 0.116928
\(498\) 33.8593 1.51727
\(499\) −8.92162 −0.399387 −0.199693 0.979858i \(-0.563995\pi\)
−0.199693 + 0.979858i \(0.563995\pi\)
\(500\) 38.3526 1.71518
\(501\) 14.8371 0.662873
\(502\) −36.1893 −1.61521
\(503\) 11.0543 0.492888 0.246444 0.969157i \(-0.420738\pi\)
0.246444 + 0.969157i \(0.420738\pi\)
\(504\) −5.89739 −0.262691
\(505\) 7.25732 0.322947
\(506\) 0 0
\(507\) −1.31351 −0.0583351
\(508\) 39.7587 1.76401
\(509\) 6.71154 0.297484 0.148742 0.988876i \(-0.452478\pi\)
0.148742 + 0.988876i \(0.452478\pi\)
\(510\) 7.41855 0.328499
\(511\) 0.443371 0.0196136
\(512\) 17.8599 0.789303
\(513\) −3.96119 −0.174891
\(514\) 12.2557 0.540574
\(515\) −11.8166 −0.520701
\(516\) 18.5844 0.818133
\(517\) −1.12580 −0.0495128
\(518\) 3.34632 0.147029
\(519\) −9.23513 −0.405377
\(520\) 23.5896 1.03447
\(521\) 26.9588 1.18109 0.590544 0.807005i \(-0.298913\pi\)
0.590544 + 0.807005i \(0.298913\pi\)
\(522\) 2.49693 0.109288
\(523\) −15.2749 −0.667925 −0.333962 0.942586i \(-0.608386\pi\)
−0.333962 + 0.942586i \(0.608386\pi\)
\(524\) −100.593 −4.39444
\(525\) 2.87950 0.125672
\(526\) 69.3458 3.02362
\(527\) −11.0543 −0.481534
\(528\) 84.9312 3.69616
\(529\) 0 0
\(530\) −21.0928 −0.916211
\(531\) 5.65983 0.245616
\(532\) 13.7854 0.597672
\(533\) 22.8371 0.989185
\(534\) −9.12828 −0.395019
\(535\) 9.72753 0.420558
\(536\) −63.4484 −2.74055
\(537\) 2.02666 0.0874569
\(538\) 68.9048 2.97070
\(539\) −40.3588 −1.73838
\(540\) −4.07203 −0.175232
\(541\) 33.9299 1.45876 0.729379 0.684110i \(-0.239809\pi\)
0.729379 + 0.684110i \(0.239809\pi\)
\(542\) −85.7296 −3.68240
\(543\) −22.9977 −0.986924
\(544\) −69.6273 −2.98524
\(545\) 12.7649 0.546787
\(546\) 6.03578 0.258307
\(547\) 2.45136 0.104812 0.0524062 0.998626i \(-0.483311\pi\)
0.0524062 + 0.998626i \(0.483311\pi\)
\(548\) −20.3602 −0.869743
\(549\) −2.93927 −0.125445
\(550\) −73.4776 −3.13310
\(551\) −3.65072 −0.155526
\(552\) 0 0
\(553\) −7.26180 −0.308803
\(554\) 35.3484 1.50181
\(555\) 1.44521 0.0613459
\(556\) 32.8781 1.39434
\(557\) 27.6239 1.17046 0.585231 0.810867i \(-0.301004\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(558\) 8.34017 0.353068
\(559\) −11.8969 −0.503187
\(560\) 6.87605 0.290566
\(561\) −22.0410 −0.930573
\(562\) 10.6533 0.449384
\(563\) −2.22782 −0.0938914 −0.0469457 0.998897i \(-0.514949\pi\)
−0.0469457 + 0.998897i \(0.514949\pi\)
\(564\) −0.979481 −0.0412436
\(565\) 5.62863 0.236798
\(566\) 56.7099 2.38369
\(567\) −0.651685 −0.0273682
\(568\) −36.1978 −1.51883
\(569\) 40.9814 1.71803 0.859016 0.511949i \(-0.171076\pi\)
0.859016 + 0.511949i \(0.171076\pi\)
\(570\) 8.18342 0.342766
\(571\) 19.5907 0.819844 0.409922 0.912121i \(-0.365556\pi\)
0.409922 + 0.912121i \(0.365556\pi\)
\(572\) −112.052 −4.68513
\(573\) −11.2319 −0.469219
\(574\) 11.7948 0.492305
\(575\) 0 0
\(576\) 24.8576 1.03573
\(577\) 7.45959 0.310547 0.155273 0.987872i \(-0.450374\pi\)
0.155273 + 0.987872i \(0.450374\pi\)
\(578\) −11.1217 −0.462601
\(579\) 14.0989 0.585930
\(580\) −3.75288 −0.155830
\(581\) −8.14447 −0.337890
\(582\) −15.0257 −0.622834
\(583\) 62.6681 2.59545
\(584\) −6.15676 −0.254768
\(585\) 2.60674 0.107775
\(586\) 42.9876 1.77580
\(587\) −17.8432 −0.736470 −0.368235 0.929733i \(-0.620038\pi\)
−0.368235 + 0.929733i \(0.620038\pi\)
\(588\) −35.1133 −1.44805
\(589\) −12.1940 −0.502447
\(590\) −11.6926 −0.481378
\(591\) 2.39803 0.0986418
\(592\) −26.2253 −1.07785
\(593\) −6.73367 −0.276519 −0.138259 0.990396i \(-0.544151\pi\)
−0.138259 + 0.990396i \(0.544151\pi\)
\(594\) 16.6293 0.682310
\(595\) −1.78445 −0.0731552
\(596\) −42.4247 −1.73778
\(597\) 17.2810 0.707266
\(598\) 0 0
\(599\) −33.8720 −1.38397 −0.691986 0.721911i \(-0.743264\pi\)
−0.691986 + 0.721911i \(0.743264\pi\)
\(600\) −39.9854 −1.63240
\(601\) −19.2618 −0.785705 −0.392853 0.919601i \(-0.628512\pi\)
−0.392853 + 0.919601i \(0.628512\pi\)
\(602\) −6.14447 −0.250430
\(603\) −7.01130 −0.285522
\(604\) 56.1978 2.28666
\(605\) −20.3398 −0.826932
\(606\) −25.7854 −1.04746
\(607\) 11.6865 0.474340 0.237170 0.971468i \(-0.423780\pi\)
0.237170 + 0.971468i \(0.423780\pi\)
\(608\) −76.8060 −3.11489
\(609\) −0.600608 −0.0243379
\(610\) 6.07223 0.245858
\(611\) 0.627022 0.0253666
\(612\) −19.1763 −0.775157
\(613\) 34.6352 1.39890 0.699451 0.714680i \(-0.253428\pi\)
0.699451 + 0.714680i \(0.253428\pi\)
\(614\) 88.7358 3.58108
\(615\) 5.09395 0.205408
\(616\) −36.1978 −1.45845
\(617\) 23.2704 0.936832 0.468416 0.883508i \(-0.344825\pi\)
0.468416 + 0.883508i \(0.344825\pi\)
\(618\) 41.9845 1.68886
\(619\) −16.7181 −0.671958 −0.335979 0.941869i \(-0.609067\pi\)
−0.335979 + 0.941869i \(0.609067\pi\)
\(620\) −12.5353 −0.503428
\(621\) 0 0
\(622\) −38.0021 −1.52374
\(623\) 2.19570 0.0879690
\(624\) −47.3028 −1.89363
\(625\) 16.6163 0.664654
\(626\) 41.9247 1.67565
\(627\) −24.3135 −0.970988
\(628\) −107.069 −4.27251
\(629\) 6.80590 0.271369
\(630\) 1.34632 0.0536385
\(631\) −5.10732 −0.203319 −0.101660 0.994819i \(-0.532415\pi\)
−0.101660 + 0.994819i \(0.532415\pi\)
\(632\) 100.839 4.01116
\(633\) 13.6020 0.540630
\(634\) 52.6824 2.09229
\(635\) −5.67718 −0.225292
\(636\) 54.5230 2.16198
\(637\) 22.4780 0.890611
\(638\) 15.3260 0.606761
\(639\) −4.00000 −0.158238
\(640\) −21.7831 −0.861051
\(641\) −28.2622 −1.11629 −0.558145 0.829743i \(-0.688487\pi\)
−0.558145 + 0.829743i \(0.688487\pi\)
\(642\) −34.5621 −1.36406
\(643\) −4.88564 −0.192671 −0.0963354 0.995349i \(-0.530712\pi\)
−0.0963354 + 0.995349i \(0.530712\pi\)
\(644\) 0 0
\(645\) −2.65368 −0.104489
\(646\) 38.5380 1.51626
\(647\) 1.49079 0.0586088 0.0293044 0.999571i \(-0.490671\pi\)
0.0293044 + 0.999571i \(0.490671\pi\)
\(648\) 9.04945 0.355496
\(649\) 34.7396 1.36365
\(650\) 40.9237 1.60516
\(651\) −2.00613 −0.0786266
\(652\) −77.9442 −3.05253
\(653\) 40.6681 1.59146 0.795732 0.605649i \(-0.207086\pi\)
0.795732 + 0.605649i \(0.207086\pi\)
\(654\) −45.3538 −1.77347
\(655\) 14.3638 0.561241
\(656\) −92.4366 −3.60904
\(657\) −0.680346 −0.0265428
\(658\) 0.323841 0.0126246
\(659\) −3.61301 −0.140743 −0.0703715 0.997521i \(-0.522418\pi\)
−0.0703715 + 0.997521i \(0.522418\pi\)
\(660\) −24.9939 −0.972885
\(661\) 13.2090 0.513771 0.256885 0.966442i \(-0.417304\pi\)
0.256885 + 0.966442i \(0.417304\pi\)
\(662\) 46.3812 1.80266
\(663\) 12.2759 0.476755
\(664\) 113.096 4.38897
\(665\) −1.96843 −0.0763324
\(666\) −5.13486 −0.198972
\(667\) 0 0
\(668\) 79.2327 3.06560
\(669\) 15.2039 0.587818
\(670\) 14.4846 0.559591
\(671\) −18.0410 −0.696467
\(672\) −12.6359 −0.487442
\(673\) 14.9360 0.575740 0.287870 0.957669i \(-0.407053\pi\)
0.287870 + 0.957669i \(0.407053\pi\)
\(674\) −30.3516 −1.16910
\(675\) −4.41855 −0.170070
\(676\) −7.01438 −0.269784
\(677\) −7.10181 −0.272945 −0.136472 0.990644i \(-0.543577\pi\)
−0.136472 + 0.990644i \(0.543577\pi\)
\(678\) −19.9986 −0.768042
\(679\) 3.61425 0.138702
\(680\) 24.7792 0.950241
\(681\) 7.44130 0.285151
\(682\) 51.1914 1.96022
\(683\) −41.7275 −1.59666 −0.798330 0.602221i \(-0.794283\pi\)
−0.798330 + 0.602221i \(0.794283\pi\)
\(684\) −21.1534 −0.808822
\(685\) 2.90725 0.111080
\(686\) 23.9685 0.915121
\(687\) 22.3970 0.854501
\(688\) 48.1547 1.83588
\(689\) −34.9033 −1.32971
\(690\) 0 0
\(691\) 11.7587 0.447323 0.223661 0.974667i \(-0.428199\pi\)
0.223661 + 0.974667i \(0.428199\pi\)
\(692\) −49.3172 −1.87476
\(693\) −4.00000 −0.151947
\(694\) 24.8638 0.943816
\(695\) −4.69470 −0.178080
\(696\) 8.34017 0.316133
\(697\) 23.9888 0.908642
\(698\) 79.2450 2.99947
\(699\) 16.8371 0.636838
\(700\) 15.3771 0.581198
\(701\) −52.0735 −1.96679 −0.983394 0.181484i \(-0.941910\pi\)
−0.983394 + 0.181484i \(0.941910\pi\)
\(702\) −9.26180 −0.349564
\(703\) 7.50761 0.283155
\(704\) 152.574 5.75036
\(705\) 0.139861 0.00526747
\(706\) −82.0431 −3.08773
\(707\) 6.20238 0.233265
\(708\) 30.2245 1.13590
\(709\) −6.10891 −0.229425 −0.114713 0.993399i \(-0.536595\pi\)
−0.114713 + 0.993399i \(0.536595\pi\)
\(710\) 8.26360 0.310127
\(711\) 11.1431 0.417899
\(712\) −30.4900 −1.14266
\(713\) 0 0
\(714\) 6.34017 0.237275
\(715\) 16.0000 0.598366
\(716\) 10.8227 0.404464
\(717\) −9.84324 −0.367603
\(718\) −20.7611 −0.774799
\(719\) 3.81658 0.142335 0.0711673 0.997464i \(-0.477328\pi\)
0.0711673 + 0.997464i \(0.477328\pi\)
\(720\) −10.5512 −0.393219
\(721\) −10.0989 −0.376103
\(722\) −8.96493 −0.333640
\(723\) 13.4307 0.499493
\(724\) −122.811 −4.56425
\(725\) −4.07223 −0.151239
\(726\) 72.2678 2.68211
\(727\) −44.8452 −1.66322 −0.831608 0.555364i \(-0.812579\pi\)
−0.831608 + 0.555364i \(0.812579\pi\)
\(728\) 20.1605 0.747199
\(729\) 1.00000 0.0370370
\(730\) 1.40553 0.0520208
\(731\) −12.4969 −0.462216
\(732\) −15.6962 −0.580149
\(733\) −28.4154 −1.04955 −0.524774 0.851241i \(-0.675850\pi\)
−0.524774 + 0.851241i \(0.675850\pi\)
\(734\) 68.1808 2.51660
\(735\) 5.01386 0.184939
\(736\) 0 0
\(737\) −43.0349 −1.58521
\(738\) −18.0989 −0.666230
\(739\) 6.52359 0.239974 0.119987 0.992775i \(-0.461715\pi\)
0.119987 + 0.992775i \(0.461715\pi\)
\(740\) 7.71769 0.283708
\(741\) 13.5415 0.497460
\(742\) −18.0267 −0.661780
\(743\) 3.22768 0.118412 0.0592060 0.998246i \(-0.481143\pi\)
0.0592060 + 0.998246i \(0.481143\pi\)
\(744\) 27.8576 1.02131
\(745\) 6.05786 0.221943
\(746\) −8.34221 −0.305430
\(747\) 12.4975 0.457261
\(748\) −117.703 −4.30365
\(749\) 8.31351 0.303769
\(750\) 19.4578 0.710497
\(751\) 9.87744 0.360433 0.180216 0.983627i \(-0.442320\pi\)
0.180216 + 0.983627i \(0.442320\pi\)
\(752\) −2.53797 −0.0925501
\(753\) −13.3575 −0.486776
\(754\) −8.53588 −0.310858
\(755\) −8.02453 −0.292043
\(756\) −3.48011 −0.126570
\(757\) 11.1652 0.405805 0.202902 0.979199i \(-0.434963\pi\)
0.202902 + 0.979199i \(0.434963\pi\)
\(758\) −29.9680 −1.08849
\(759\) 0 0
\(760\) 27.3340 0.991509
\(761\) −4.12556 −0.149551 −0.0747757 0.997200i \(-0.523824\pi\)
−0.0747757 + 0.997200i \(0.523824\pi\)
\(762\) 20.1711 0.730723
\(763\) 10.9093 0.394944
\(764\) −59.9802 −2.17001
\(765\) 2.73820 0.0990000
\(766\) 66.0363 2.38599
\(767\) −19.3484 −0.698630
\(768\) 27.6803 0.998828
\(769\) −23.8844 −0.861293 −0.430647 0.902521i \(-0.641714\pi\)
−0.430647 + 0.902521i \(0.641714\pi\)
\(770\) 8.26360 0.297799
\(771\) 4.52359 0.162913
\(772\) 75.2905 2.70977
\(773\) 8.38781 0.301689 0.150844 0.988558i \(-0.451801\pi\)
0.150844 + 0.988558i \(0.451801\pi\)
\(774\) 9.42858 0.338903
\(775\) −13.6020 −0.488597
\(776\) −50.1883 −1.80166
\(777\) 1.23513 0.0443102
\(778\) −2.99035 −0.107209
\(779\) 26.4621 0.948104
\(780\) 13.9204 0.498432
\(781\) −24.5517 −0.878530
\(782\) 0 0
\(783\) 0.921622 0.0329361
\(784\) −90.9832 −3.24940
\(785\) 15.2885 0.545668
\(786\) −51.0349 −1.82035
\(787\) 5.67023 0.202122 0.101061 0.994880i \(-0.467776\pi\)
0.101061 + 0.994880i \(0.467776\pi\)
\(788\) 12.8059 0.456191
\(789\) 25.5957 0.911231
\(790\) −23.0205 −0.819033
\(791\) 4.81044 0.171040
\(792\) 55.5449 1.97370
\(793\) 10.0480 0.356816
\(794\) 9.41855 0.334252
\(795\) −7.78539 −0.276119
\(796\) 92.2837 3.27091
\(797\) 14.2664 0.505340 0.252670 0.967553i \(-0.418691\pi\)
0.252670 + 0.967553i \(0.418691\pi\)
\(798\) 6.99386 0.247580
\(799\) 0.658644 0.0233011
\(800\) −85.6740 −3.02903
\(801\) −3.36927 −0.119047
\(802\) −58.3136 −2.05912
\(803\) −4.17592 −0.147365
\(804\) −37.4416 −1.32046
\(805\) 0 0
\(806\) −28.5113 −1.00427
\(807\) 25.4329 0.895281
\(808\) −86.1276 −3.02996
\(809\) −48.6369 −1.70998 −0.854991 0.518644i \(-0.826437\pi\)
−0.854991 + 0.518644i \(0.826437\pi\)
\(810\) −2.06590 −0.0725883
\(811\) −40.1256 −1.40900 −0.704499 0.709705i \(-0.748828\pi\)
−0.704499 + 0.709705i \(0.748828\pi\)
\(812\) −3.20735 −0.112556
\(813\) −31.6430 −1.10977
\(814\) −31.5174 −1.10469
\(815\) 11.1297 0.389857
\(816\) −49.6884 −1.73944
\(817\) −13.7854 −0.482290
\(818\) 68.5523 2.39688
\(819\) 2.22782 0.0778463
\(820\) 27.2026 0.949956
\(821\) −46.7091 −1.63016 −0.815079 0.579349i \(-0.803307\pi\)
−0.815079 + 0.579349i \(0.803307\pi\)
\(822\) −10.3295 −0.360282
\(823\) 23.2762 0.811356 0.405678 0.914016i \(-0.367035\pi\)
0.405678 + 0.914016i \(0.367035\pi\)
\(824\) 140.236 4.88534
\(825\) −27.1208 −0.944224
\(826\) −9.99296 −0.347700
\(827\) −8.58744 −0.298614 −0.149307 0.988791i \(-0.547704\pi\)
−0.149307 + 0.988791i \(0.547704\pi\)
\(828\) 0 0
\(829\) 21.2208 0.737027 0.368514 0.929622i \(-0.379867\pi\)
0.368514 + 0.929622i \(0.379867\pi\)
\(830\) −25.8187 −0.896179
\(831\) 13.0472 0.452602
\(832\) −84.9770 −2.94605
\(833\) 23.6116 0.818095
\(834\) 16.6803 0.577593
\(835\) −11.3137 −0.391527
\(836\) −129.838 −4.49055
\(837\) 3.07838 0.106404
\(838\) −68.9669 −2.38242
\(839\) 18.9767 0.655148 0.327574 0.944825i \(-0.393769\pi\)
0.327574 + 0.944825i \(0.393769\pi\)
\(840\) 4.49693 0.155159
\(841\) −28.1506 −0.970711
\(842\) −74.5828 −2.57029
\(843\) 3.93217 0.135431
\(844\) 72.6369 2.50026
\(845\) 1.00159 0.0344557
\(846\) −0.496928 −0.0170848
\(847\) −17.3832 −0.597293
\(848\) 141.276 4.85145
\(849\) 20.9318 0.718376
\(850\) 42.9876 1.47446
\(851\) 0 0
\(852\) −21.3607 −0.731805
\(853\) −17.8843 −0.612346 −0.306173 0.951976i \(-0.599049\pi\)
−0.306173 + 0.951976i \(0.599049\pi\)
\(854\) 5.18956 0.177583
\(855\) 3.02052 0.103300
\(856\) −115.443 −3.94577
\(857\) −3.72753 −0.127330 −0.0636649 0.997971i \(-0.520279\pi\)
−0.0636649 + 0.997971i \(0.520279\pi\)
\(858\) −56.8483 −1.94077
\(859\) −20.9939 −0.716301 −0.358151 0.933664i \(-0.616593\pi\)
−0.358151 + 0.933664i \(0.616593\pi\)
\(860\) −14.1711 −0.483232
\(861\) 4.35348 0.148366
\(862\) −76.6850 −2.61190
\(863\) −21.1773 −0.720883 −0.360441 0.932782i \(-0.617374\pi\)
−0.360441 + 0.932782i \(0.617374\pi\)
\(864\) 19.3896 0.659648
\(865\) 7.04205 0.239437
\(866\) −78.6125 −2.67136
\(867\) −4.10504 −0.139414
\(868\) −10.7131 −0.363626
\(869\) 68.3956 2.32016
\(870\) −1.90398 −0.0645509
\(871\) 23.9685 0.812141
\(872\) −151.489 −5.13008
\(873\) −5.54601 −0.187704
\(874\) 0 0
\(875\) −4.68035 −0.158225
\(876\) −3.63317 −0.122753
\(877\) 38.3545 1.29514 0.647571 0.762006i \(-0.275785\pi\)
0.647571 + 0.762006i \(0.275785\pi\)
\(878\) 93.0759 3.14116
\(879\) 15.8668 0.535174
\(880\) −64.7624 −2.18314
\(881\) −29.0468 −0.978612 −0.489306 0.872112i \(-0.662750\pi\)
−0.489306 + 0.872112i \(0.662750\pi\)
\(882\) −17.8143 −0.599839
\(883\) −19.6430 −0.661040 −0.330520 0.943799i \(-0.607224\pi\)
−0.330520 + 0.943799i \(0.607224\pi\)
\(884\) 65.5552 2.20486
\(885\) −4.31578 −0.145073
\(886\) −61.8720 −2.07863
\(887\) −22.9672 −0.771163 −0.385581 0.922674i \(-0.625999\pi\)
−0.385581 + 0.922674i \(0.625999\pi\)
\(888\) −17.1513 −0.575561
\(889\) −4.85194 −0.162729
\(890\) 6.96057 0.233319
\(891\) 6.13793 0.205628
\(892\) 81.1917 2.71850
\(893\) 0.726551 0.0243131
\(894\) −21.5237 −0.719859
\(895\) −1.54539 −0.0516566
\(896\) −18.6166 −0.621938
\(897\) 0 0
\(898\) −44.6225 −1.48907
\(899\) 2.83710 0.0946226
\(900\) −23.5958 −0.786528
\(901\) −36.6635 −1.22144
\(902\) −111.090 −3.69889
\(903\) −2.26794 −0.0754723
\(904\) −66.7988 −2.22170
\(905\) 17.5364 0.582928
\(906\) 28.5113 0.947225
\(907\) −23.9819 −0.796305 −0.398152 0.917319i \(-0.630348\pi\)
−0.398152 + 0.917319i \(0.630348\pi\)
\(908\) 39.7378 1.31875
\(909\) −9.51745 −0.315674
\(910\) −4.60245 −0.152570
\(911\) 8.96636 0.297069 0.148534 0.988907i \(-0.452544\pi\)
0.148534 + 0.988907i \(0.452544\pi\)
\(912\) −54.8114 −1.81499
\(913\) 76.7091 2.53870
\(914\) −40.8431 −1.35097
\(915\) 2.24128 0.0740943
\(916\) 119.604 3.95183
\(917\) 12.2759 0.405385
\(918\) −9.72889 −0.321101
\(919\) 16.6601 0.549566 0.274783 0.961506i \(-0.411394\pi\)
0.274783 + 0.961506i \(0.411394\pi\)
\(920\) 0 0
\(921\) 32.7526 1.07923
\(922\) −42.8392 −1.41083
\(923\) 13.6742 0.450092
\(924\) −21.3607 −0.702715
\(925\) 8.37444 0.275350
\(926\) −21.6742 −0.712259
\(927\) 15.4966 0.508975
\(928\) 17.8699 0.586608
\(929\) 17.8843 0.586764 0.293382 0.955995i \(-0.405219\pi\)
0.293382 + 0.955995i \(0.405219\pi\)
\(930\) −6.35962 −0.208540
\(931\) 26.0460 0.853624
\(932\) 89.9130 2.94520
\(933\) −14.0267 −0.459212
\(934\) 78.9128 2.58211
\(935\) 16.8069 0.549645
\(936\) −30.9360 −1.01117
\(937\) 44.6391 1.45830 0.729148 0.684356i \(-0.239916\pi\)
0.729148 + 0.684356i \(0.239916\pi\)
\(938\) 12.3791 0.404193
\(939\) 15.4745 0.504992
\(940\) 0.746882 0.0243606
\(941\) −8.58275 −0.279790 −0.139895 0.990166i \(-0.544676\pi\)
−0.139895 + 0.990166i \(0.544676\pi\)
\(942\) −54.3201 −1.76985
\(943\) 0 0
\(944\) 78.3156 2.54896
\(945\) 0.496928 0.0161651
\(946\) 57.8720 1.88158
\(947\) 2.65368 0.0862331 0.0431166 0.999070i \(-0.486271\pi\)
0.0431166 + 0.999070i \(0.486271\pi\)
\(948\) 59.5061 1.93267
\(949\) 2.32580 0.0754986
\(950\) 47.4197 1.53850
\(951\) 19.4452 0.630554
\(952\) 21.1773 0.686359
\(953\) −29.3880 −0.951971 −0.475986 0.879453i \(-0.657909\pi\)
−0.475986 + 0.879453i \(0.657909\pi\)
\(954\) 27.6616 0.895577
\(955\) 8.56463 0.277145
\(956\) −52.5646 −1.70006
\(957\) 5.65685 0.182860
\(958\) 28.1003 0.907879
\(959\) 2.48464 0.0802333
\(960\) −18.9546 −0.611758
\(961\) −21.5236 −0.694309
\(962\) 17.5538 0.565957
\(963\) −12.7569 −0.411087
\(964\) 71.7222 2.31002
\(965\) −10.7508 −0.346081
\(966\) 0 0
\(967\) −17.9155 −0.576123 −0.288061 0.957612i \(-0.593011\pi\)
−0.288061 + 0.957612i \(0.593011\pi\)
\(968\) 241.387 7.75847
\(969\) 14.2245 0.456955
\(970\) 11.4575 0.367878
\(971\) 21.1227 0.677859 0.338930 0.940812i \(-0.389935\pi\)
0.338930 + 0.940812i \(0.389935\pi\)
\(972\) 5.34017 0.171286
\(973\) −4.01227 −0.128627
\(974\) 46.4990 1.48992
\(975\) 15.1050 0.483748
\(976\) −40.6710 −1.30185
\(977\) −42.5645 −1.36176 −0.680880 0.732395i \(-0.738403\pi\)
−0.680880 + 0.732395i \(0.738403\pi\)
\(978\) −39.5441 −1.26448
\(979\) −20.6803 −0.660947
\(980\) 26.7749 0.855292
\(981\) −16.7402 −0.534473
\(982\) −9.49079 −0.302863
\(983\) 18.1921 0.580238 0.290119 0.956991i \(-0.406305\pi\)
0.290119 + 0.956991i \(0.406305\pi\)
\(984\) −60.4534 −1.92719
\(985\) −1.82857 −0.0582630
\(986\) −8.96636 −0.285547
\(987\) 0.119530 0.00380470
\(988\) 72.3141 2.30062
\(989\) 0 0
\(990\) −12.6803 −0.403008
\(991\) 29.9155 0.950297 0.475148 0.879906i \(-0.342394\pi\)
0.475148 + 0.879906i \(0.342394\pi\)
\(992\) 59.6886 1.89511
\(993\) 17.1194 0.543268
\(994\) 7.06238 0.224005
\(995\) −13.1773 −0.417748
\(996\) 66.7391 2.11471
\(997\) −2.52813 −0.0800665 −0.0400333 0.999198i \(-0.512746\pi\)
−0.0400333 + 0.999198i \(0.512746\pi\)
\(998\) −24.1711 −0.765124
\(999\) −1.89529 −0.0599643
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.2.a.s.1.5 6
3.2 odd 2 4761.2.a.bs.1.2 6
23.22 odd 2 inner 1587.2.a.s.1.6 yes 6
69.68 even 2 4761.2.a.bs.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1587.2.a.s.1.5 6 1.1 even 1 trivial
1587.2.a.s.1.6 yes 6 23.22 odd 2 inner
4761.2.a.bs.1.1 6 69.68 even 2
4761.2.a.bs.1.2 6 3.2 odd 2