Properties

Label 16.18.a.e
Level $16$
Weight $18$
Character orbit 16.a
Self dual yes
Analytic conductor $29.316$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,18,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.3155339751\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{9361}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2340 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: no (minimal twist has level 4)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 192\sqrt{9361}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 2940) q^{3} + ( - 36 \beta + 302022) q^{5} + ( - 594 \beta - 12675080) q^{7} + ( - 5880 \beta + 224587341) q^{9} + ( - 38115 \beta - 629824140) q^{11} + ( - 162756 \beta - 660026290) q^{13}+ \cdots + ( - 4856780559015 \beta - 64\!\cdots\!40) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5880 q^{3} + 604044 q^{5} - 25350160 q^{7} + 449174682 q^{9} - 1259648280 q^{11} - 1320052580 q^{13} + 26621930448 q^{15} - 27498226140 q^{17} - 101133633832 q^{19} + 335430207552 q^{21} - 134767491120 q^{23}+ \cdots - 12\!\cdots\!80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
48.8761
−47.8761
0 −15636.4 0 −366730. 0 −2.37095e7 0 1.15358e8 0
1.2 0 21516.4 0 970774. 0 −1.64068e6 0 3.33817e8 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 16.18.a.e 2
4.b odd 2 1 4.18.a.a 2
8.b even 2 1 64.18.a.g 2
8.d odd 2 1 64.18.a.l 2
12.b even 2 1 36.18.a.d 2
20.d odd 2 1 100.18.a.b 2
20.e even 4 2 100.18.c.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.18.a.a 2 4.b odd 2 1
16.18.a.e 2 1.a even 1 1 trivial
36.18.a.d 2 12.b even 2 1
64.18.a.g 2 8.b even 2 1
64.18.a.l 2 8.d odd 2 1
100.18.a.b 2 20.d odd 2 1
100.18.c.a 4 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 5880T_{3} - 336440304 \) acting on \(S_{18}^{\mathrm{new}}(\Gamma_0(16))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 5880 T - 336440304 \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 356011451100 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 38899628654656 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 87\!\cdots\!44 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 17\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 26\!\cdots\!44 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 64\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 50\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 57\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 25\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 12\!\cdots\!44 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 42\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 85\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 19\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 45\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 39\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 37\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 40\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 11\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 46\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 65\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 28\!\cdots\!64 \) Copy content Toggle raw display
show more
show less