Properties

Label 160.4.n.a
Level $160$
Weight $4$
Character orbit 160.n
Analytic conductor $9.440$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(63,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.63");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44030560092\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 i - 2) q^{3} + (5 i + 10) q^{5} + (18 i - 18) q^{7} - 19 i q^{9} + 16 i q^{11} + (33 i - 33) q^{13} + ( - 30 i - 10) q^{15} + (67 i + 67) q^{17} - 116 q^{19} + 72 q^{21} + (110 i + 110) q^{23} + \cdots + 304 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 20 q^{5} - 36 q^{7} - 66 q^{13} - 20 q^{15} + 134 q^{17} - 232 q^{19} + 144 q^{21} + 220 q^{23} + 150 q^{25} - 184 q^{27} + 64 q^{33} - 540 q^{35} + 130 q^{37} + 264 q^{39} - 608 q^{41}+ \cdots + 608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(-1\) \(i\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
63.1
1.00000i
1.00000i
0 −2.00000 + 2.00000i 0 10.0000 5.00000i 0 −18.0000 18.0000i 0 19.0000i 0
127.1 0 −2.00000 2.00000i 0 10.0000 + 5.00000i 0 −18.0000 + 18.0000i 0 19.0000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.4.n.a 2
4.b odd 2 1 160.4.n.b yes 2
5.c odd 4 1 160.4.n.b yes 2
8.b even 2 1 320.4.n.d 2
8.d odd 2 1 320.4.n.a 2
20.e even 4 1 inner 160.4.n.a 2
40.i odd 4 1 320.4.n.a 2
40.k even 4 1 320.4.n.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.4.n.a 2 1.a even 1 1 trivial
160.4.n.a 2 20.e even 4 1 inner
160.4.n.b yes 2 4.b odd 2 1
160.4.n.b yes 2 5.c odd 4 1
320.4.n.a 2 8.d odd 2 1
320.4.n.a 2 40.i odd 4 1
320.4.n.d 2 8.b even 2 1
320.4.n.d 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 4T_{3} + 8 \) acting on \(S_{4}^{\mathrm{new}}(160, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4T + 8 \) Copy content Toggle raw display
$5$ \( T^{2} - 20T + 125 \) Copy content Toggle raw display
$7$ \( T^{2} + 36T + 648 \) Copy content Toggle raw display
$11$ \( T^{2} + 256 \) Copy content Toggle raw display
$13$ \( T^{2} + 66T + 2178 \) Copy content Toggle raw display
$17$ \( T^{2} - 134T + 8978 \) Copy content Toggle raw display
$19$ \( (T + 116)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 220T + 24200 \) Copy content Toggle raw display
$29$ \( T^{2} + 17424 \) Copy content Toggle raw display
$31$ \( T^{2} + 4624 \) Copy content Toggle raw display
$37$ \( T^{2} - 130T + 8450 \) Copy content Toggle raw display
$41$ \( (T + 304)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 308T + 47432 \) Copy content Toggle raw display
$47$ \( T^{2} - 612T + 187272 \) Copy content Toggle raw display
$53$ \( T^{2} - 434T + 94178 \) Copy content Toggle raw display
$59$ \( (T - 204)^{2} \) Copy content Toggle raw display
$61$ \( (T + 748)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 332T + 55112 \) Copy content Toggle raw display
$71$ \( T^{2} + 274576 \) Copy content Toggle raw display
$73$ \( T^{2} - 554T + 153458 \) Copy content Toggle raw display
$79$ \( (T - 1232)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 580T + 168200 \) Copy content Toggle raw display
$89$ \( T^{2} + 640000 \) Copy content Toggle raw display
$97$ \( T^{2} + 1302 T + 847602 \) Copy content Toggle raw display
show more
show less