Properties

Label 320.4.n.d
Level 320320
Weight 44
Character orbit 320.n
Analytic conductor 18.88118.881
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [320,4,Mod(63,320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(320, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("320.63");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 320=265 320 = 2^{6} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 320.n (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 18.880611201818.8806112018
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2i+2)q3+(5i10)q5+(18i18)q719iq916iq11+(33i+33)q13+(30i10)q15+(67i+67)q17+116q1972q21+(110i+110)q23+304q99+O(q100) q + (2 i + 2) q^{3} + ( - 5 i - 10) q^{5} + (18 i - 18) q^{7} - 19 i q^{9} - 16 i q^{11} + ( - 33 i + 33) q^{13} + ( - 30 i - 10) q^{15} + (67 i + 67) q^{17} + 116 q^{19} - 72 q^{21} + (110 i + 110) q^{23} + \cdots - 304 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q320q536q7+66q1320q15+134q17+232q19144q21+220q23+150q25+184q27+64q33+540q35130q37+264q39608q41+608q99+O(q100) 2 q + 4 q^{3} - 20 q^{5} - 36 q^{7} + 66 q^{13} - 20 q^{15} + 134 q^{17} + 232 q^{19} - 144 q^{21} + 220 q^{23} + 150 q^{25} + 184 q^{27} + 64 q^{33} + 540 q^{35} - 130 q^{37} + 264 q^{39} - 608 q^{41}+ \cdots - 608 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/320Z)×\left(\mathbb{Z}/320\mathbb{Z}\right)^\times.

nn 191191 257257 261261
χ(n)\chi(n) 1-1 ii 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
63.1
1.00000i
1.00000i
0 2.00000 2.00000i 0 −10.0000 + 5.00000i 0 −18.0000 18.0000i 0 19.0000i 0
127.1 0 2.00000 + 2.00000i 0 −10.0000 5.00000i 0 −18.0000 + 18.0000i 0 19.0000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.4.n.d 2
4.b odd 2 1 320.4.n.a 2
5.c odd 4 1 320.4.n.a 2
8.b even 2 1 160.4.n.a 2
8.d odd 2 1 160.4.n.b yes 2
20.e even 4 1 inner 320.4.n.d 2
40.i odd 4 1 160.4.n.b yes 2
40.k even 4 1 160.4.n.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.4.n.a 2 8.b even 2 1
160.4.n.a 2 40.k even 4 1
160.4.n.b yes 2 8.d odd 2 1
160.4.n.b yes 2 40.i odd 4 1
320.4.n.a 2 4.b odd 2 1
320.4.n.a 2 5.c odd 4 1
320.4.n.d 2 1.a even 1 1 trivial
320.4.n.d 2 20.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(320,[χ])S_{4}^{\mathrm{new}}(320, [\chi]):

T324T3+8 T_{3}^{2} - 4T_{3} + 8 Copy content Toggle raw display
T13266T13+2178 T_{13}^{2} - 66T_{13} + 2178 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T24T+8 T^{2} - 4T + 8 Copy content Toggle raw display
55 T2+20T+125 T^{2} + 20T + 125 Copy content Toggle raw display
77 T2+36T+648 T^{2} + 36T + 648 Copy content Toggle raw display
1111 T2+256 T^{2} + 256 Copy content Toggle raw display
1313 T266T+2178 T^{2} - 66T + 2178 Copy content Toggle raw display
1717 T2134T+8978 T^{2} - 134T + 8978 Copy content Toggle raw display
1919 (T116)2 (T - 116)^{2} Copy content Toggle raw display
2323 T2220T+24200 T^{2} - 220T + 24200 Copy content Toggle raw display
2929 T2+17424 T^{2} + 17424 Copy content Toggle raw display
3131 T2+4624 T^{2} + 4624 Copy content Toggle raw display
3737 T2+130T+8450 T^{2} + 130T + 8450 Copy content Toggle raw display
4141 (T+304)2 (T + 304)^{2} Copy content Toggle raw display
4343 T2308T+47432 T^{2} - 308T + 47432 Copy content Toggle raw display
4747 T2612T+187272 T^{2} - 612T + 187272 Copy content Toggle raw display
5353 T2+434T+94178 T^{2} + 434T + 94178 Copy content Toggle raw display
5959 (T+204)2 (T + 204)^{2} Copy content Toggle raw display
6161 (T748)2 (T - 748)^{2} Copy content Toggle raw display
6767 T2332T+55112 T^{2} - 332T + 55112 Copy content Toggle raw display
7171 T2+274576 T^{2} + 274576 Copy content Toggle raw display
7373 T2554T+153458 T^{2} - 554T + 153458 Copy content Toggle raw display
7979 (T1232)2 (T - 1232)^{2} Copy content Toggle raw display
8383 T2+580T+168200 T^{2} + 580T + 168200 Copy content Toggle raw display
8989 T2+640000 T^{2} + 640000 Copy content Toggle raw display
9797 T2+1302T+847602 T^{2} + 1302 T + 847602 Copy content Toggle raw display
show more
show less