Properties

Label 160.8.n.b.127.2
Level $160$
Weight $8$
Character 160.127
Analytic conductor $49.982$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,8,Mod(63,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.63");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 160.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.9816040775\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 13755 x^{18} - 18266 x^{17} + 77176511 x^{16} + 352443750 x^{15} + \cdots + 51\!\cdots\!88 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{69}\cdot 5^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.2
Root \(47.4084 - 1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 160.127
Dual form 160.8.n.b.63.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-44.4084 - 44.4084i) q^{3} +(-259.462 + 103.945i) q^{5} +(-261.567 + 261.567i) q^{7} +1757.21i q^{9} +4843.71i q^{11} +(1479.02 - 1479.02i) q^{13} +(16138.3 + 6906.24i) q^{15} +(907.816 + 907.816i) q^{17} +13306.0 q^{19} +23231.6 q^{21} +(31405.7 + 31405.7i) q^{23} +(56515.8 - 53939.6i) q^{25} +(-19086.2 + 19086.2i) q^{27} -31344.6i q^{29} +216018. i q^{31} +(215101. - 215101. i) q^{33} +(40678.0 - 95055.4i) q^{35} +(-231635. - 231635. i) q^{37} -131362. q^{39} +565257. q^{41} +(-393861. - 393861. i) q^{43} +(-182654. - 455929. i) q^{45} +(-315328. + 315328. i) q^{47} +686708. i q^{49} -80629.3i q^{51} +(-292177. + 292177. i) q^{53} +(-503481. - 1.25676e6i) q^{55} +(-590897. - 590897. i) q^{57} -1.72159e6 q^{59} -3.08385e6 q^{61} +(-459629. - 459629. i) q^{63} +(-230011. + 537485. i) q^{65} +(-45437.5 + 45437.5i) q^{67} -2.78935e6i q^{69} -1.19240e6i q^{71} +(4.18729e6 - 4.18729e6i) q^{73} +(-4.90515e6 - 114401. i) q^{75} +(-1.26696e6 - 1.26696e6i) q^{77} -5.76074e6 q^{79} +5.53820e6 q^{81} +(-1.79184e6 - 1.79184e6i) q^{83} +(-329907. - 141180. i) q^{85} +(-1.39196e6 + 1.39196e6i) q^{87} -7.42470e6i q^{89} +773724. i q^{91} +(9.59302e6 - 9.59302e6i) q^{93} +(-3.45239e6 + 1.38309e6i) q^{95} +(-1.02064e7 - 1.02064e7i) q^{97} -8.51143e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 58 q^{3} - 54 q^{5} + 2466 q^{7} - 1172 q^{13} - 11138 q^{15} - 25136 q^{17} + 64784 q^{19} - 71268 q^{21} - 39922 q^{23} + 118056 q^{25} + 31792 q^{27} + 59756 q^{33} - 378426 q^{35} - 647408 q^{37}+ \cdots - 7823900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −44.4084 44.4084i −0.949600 0.949600i 0.0491894 0.998789i \(-0.484336\pi\)
−0.998789 + 0.0491894i \(0.984336\pi\)
\(4\) 0 0
\(5\) −259.462 + 103.945i −0.928278 + 0.371886i
\(6\) 0 0
\(7\) −261.567 + 261.567i −0.288231 + 0.288231i −0.836380 0.548150i \(-0.815332\pi\)
0.548150 + 0.836380i \(0.315332\pi\)
\(8\) 0 0
\(9\) 1757.21i 0.803481i
\(10\) 0 0
\(11\) 4843.71i 1.09725i 0.836070 + 0.548623i \(0.184848\pi\)
−0.836070 + 0.548623i \(0.815152\pi\)
\(12\) 0 0
\(13\) 1479.02 1479.02i 0.186712 0.186712i −0.607561 0.794273i \(-0.707852\pi\)
0.794273 + 0.607561i \(0.207852\pi\)
\(14\) 0 0
\(15\) 16138.3 + 6906.24i 1.23464 + 0.528350i
\(16\) 0 0
\(17\) 907.816 + 907.816i 0.0448153 + 0.0448153i 0.729159 0.684344i \(-0.239911\pi\)
−0.684344 + 0.729159i \(0.739911\pi\)
\(18\) 0 0
\(19\) 13306.0 0.445050 0.222525 0.974927i \(-0.428570\pi\)
0.222525 + 0.974927i \(0.428570\pi\)
\(20\) 0 0
\(21\) 23231.6 0.547408
\(22\) 0 0
\(23\) 31405.7 + 31405.7i 0.538221 + 0.538221i 0.923006 0.384785i \(-0.125724\pi\)
−0.384785 + 0.923006i \(0.625724\pi\)
\(24\) 0 0
\(25\) 56515.8 53939.6i 0.723402 0.690427i
\(26\) 0 0
\(27\) −19086.2 + 19086.2i −0.186615 + 0.186615i
\(28\) 0 0
\(29\) 31344.6i 0.238655i −0.992855 0.119327i \(-0.961926\pi\)
0.992855 0.119327i \(-0.0380738\pi\)
\(30\) 0 0
\(31\) 216018.i 1.30234i 0.758932 + 0.651170i \(0.225721\pi\)
−0.758932 + 0.651170i \(0.774279\pi\)
\(32\) 0 0
\(33\) 215101. 215101.i 1.04194 1.04194i
\(34\) 0 0
\(35\) 40678.0 95055.4i 0.160369 0.374747i
\(36\) 0 0
\(37\) −231635. 231635.i −0.751792 0.751792i 0.223022 0.974813i \(-0.428408\pi\)
−0.974813 + 0.223022i \(0.928408\pi\)
\(38\) 0 0
\(39\) −131362. −0.354603
\(40\) 0 0
\(41\) 565257. 1.28086 0.640431 0.768016i \(-0.278756\pi\)
0.640431 + 0.768016i \(0.278756\pi\)
\(42\) 0 0
\(43\) −393861. 393861.i −0.755446 0.755446i 0.220044 0.975490i \(-0.429380\pi\)
−0.975490 + 0.220044i \(0.929380\pi\)
\(44\) 0 0
\(45\) −182654. 455929.i −0.298803 0.745854i
\(46\) 0 0
\(47\) −315328. + 315328.i −0.443016 + 0.443016i −0.893024 0.450008i \(-0.851421\pi\)
0.450008 + 0.893024i \(0.351421\pi\)
\(48\) 0 0
\(49\) 686708.i 0.833846i
\(50\) 0 0
\(51\) 80629.3i 0.0851133i
\(52\) 0 0
\(53\) −292177. + 292177.i −0.269576 + 0.269576i −0.828929 0.559354i \(-0.811049\pi\)
0.559354 + 0.828929i \(0.311049\pi\)
\(54\) 0 0
\(55\) −503481. 1.25676e6i −0.408050 1.01855i
\(56\) 0 0
\(57\) −590897. 590897.i −0.422619 0.422619i
\(58\) 0 0
\(59\) −1.72159e6 −1.09131 −0.545655 0.838010i \(-0.683719\pi\)
−0.545655 + 0.838010i \(0.683719\pi\)
\(60\) 0 0
\(61\) −3.08385e6 −1.73955 −0.869777 0.493444i \(-0.835738\pi\)
−0.869777 + 0.493444i \(0.835738\pi\)
\(62\) 0 0
\(63\) −459629. 459629.i −0.231588 0.231588i
\(64\) 0 0
\(65\) −230011. + 537485.i −0.103885 + 0.242756i
\(66\) 0 0
\(67\) −45437.5 + 45437.5i −0.0184566 + 0.0184566i −0.716275 0.697818i \(-0.754154\pi\)
0.697818 + 0.716275i \(0.254154\pi\)
\(68\) 0 0
\(69\) 2.78935e6i 1.02219i
\(70\) 0 0
\(71\) 1.19240e6i 0.395383i −0.980264 0.197692i \(-0.936656\pi\)
0.980264 0.197692i \(-0.0633445\pi\)
\(72\) 0 0
\(73\) 4.18729e6 4.18729e6i 1.25981 1.25981i 0.308620 0.951185i \(-0.400133\pi\)
0.951185 0.308620i \(-0.0998671\pi\)
\(74\) 0 0
\(75\) −4.90515e6 114401.i −1.34257 0.0313123i
\(76\) 0 0
\(77\) −1.26696e6 1.26696e6i −0.316260 0.316260i
\(78\) 0 0
\(79\) −5.76074e6 −1.31457 −0.657285 0.753642i \(-0.728295\pi\)
−0.657285 + 0.753642i \(0.728295\pi\)
\(80\) 0 0
\(81\) 5.53820e6 1.15790
\(82\) 0 0
\(83\) −1.79184e6 1.79184e6i −0.343974 0.343974i 0.513885 0.857859i \(-0.328206\pi\)
−0.857859 + 0.513885i \(0.828206\pi\)
\(84\) 0 0
\(85\) −329907. 141180.i −0.0582673 0.0249349i
\(86\) 0 0
\(87\) −1.39196e6 + 1.39196e6i −0.226626 + 0.226626i
\(88\) 0 0
\(89\) 7.42470e6i 1.11638i −0.829712 0.558192i \(-0.811495\pi\)
0.829712 0.558192i \(-0.188505\pi\)
\(90\) 0 0
\(91\) 773724.i 0.107632i
\(92\) 0 0
\(93\) 9.59302e6 9.59302e6i 1.23670 1.23670i
\(94\) 0 0
\(95\) −3.45239e6 + 1.38309e6i −0.413130 + 0.165508i
\(96\) 0 0
\(97\) −1.02064e7 1.02064e7i −1.13546 1.13546i −0.989255 0.146202i \(-0.953295\pi\)
−0.146202 0.989255i \(-0.546705\pi\)
\(98\) 0 0
\(99\) −8.51143e6 −0.881615
\(100\) 0 0
\(101\) 1.44853e7 1.39895 0.699475 0.714657i \(-0.253417\pi\)
0.699475 + 0.714657i \(0.253417\pi\)
\(102\) 0 0
\(103\) 1.42361e7 + 1.42361e7i 1.28370 + 1.28370i 0.938549 + 0.345147i \(0.112171\pi\)
0.345147 + 0.938549i \(0.387829\pi\)
\(104\) 0 0
\(105\) −6.02770e6 + 2.41481e6i −0.508147 + 0.203573i
\(106\) 0 0
\(107\) 9.64958e6 9.64958e6i 0.761491 0.761491i −0.215100 0.976592i \(-0.569008\pi\)
0.976592 + 0.215100i \(0.0690079\pi\)
\(108\) 0 0
\(109\) 1.17722e7i 0.870695i −0.900262 0.435348i \(-0.856625\pi\)
0.900262 0.435348i \(-0.143375\pi\)
\(110\) 0 0
\(111\) 2.05730e7i 1.42780i
\(112\) 0 0
\(113\) −870440. + 870440.i −0.0567498 + 0.0567498i −0.734912 0.678162i \(-0.762777\pi\)
0.678162 + 0.734912i \(0.262777\pi\)
\(114\) 0 0
\(115\) −1.14131e7 4.88410e6i −0.699776 0.299462i
\(116\) 0 0
\(117\) 2.59895e6 + 2.59895e6i 0.150019 + 0.150019i
\(118\) 0 0
\(119\) −474910. −0.0258343
\(120\) 0 0
\(121\) −3.97436e6 −0.203947
\(122\) 0 0
\(123\) −2.51021e7 2.51021e7i −1.21631 1.21631i
\(124\) 0 0
\(125\) −9.05690e6 + 1.98698e7i −0.414758 + 0.909932i
\(126\) 0 0
\(127\) 1.13675e7 1.13675e7i 0.492439 0.492439i −0.416635 0.909074i \(-0.636791\pi\)
0.909074 + 0.416635i \(0.136791\pi\)
\(128\) 0 0
\(129\) 3.49815e7i 1.43474i
\(130\) 0 0
\(131\) 5.02306e6i 0.195218i −0.995225 0.0976088i \(-0.968881\pi\)
0.995225 0.0976088i \(-0.0311194\pi\)
\(132\) 0 0
\(133\) −3.48040e6 + 3.48040e6i −0.128277 + 0.128277i
\(134\) 0 0
\(135\) 2.96822e6 6.93606e6i 0.103831 0.242630i
\(136\) 0 0
\(137\) −3.61428e7 3.61428e7i −1.20088 1.20088i −0.973899 0.226981i \(-0.927115\pi\)
−0.226981 0.973899i \(-0.572885\pi\)
\(138\) 0 0
\(139\) −3.63256e7 −1.14726 −0.573629 0.819115i \(-0.694465\pi\)
−0.573629 + 0.819115i \(0.694465\pi\)
\(140\) 0 0
\(141\) 2.80064e7 0.841377
\(142\) 0 0
\(143\) 7.16393e6 + 7.16393e6i 0.204868 + 0.204868i
\(144\) 0 0
\(145\) 3.25812e6 + 8.13272e6i 0.0887523 + 0.221538i
\(146\) 0 0
\(147\) 3.04956e7 3.04956e7i 0.791820 0.791820i
\(148\) 0 0
\(149\) 3.03216e7i 0.750931i 0.926836 + 0.375466i \(0.122517\pi\)
−0.926836 + 0.375466i \(0.877483\pi\)
\(150\) 0 0
\(151\) 6.16736e7i 1.45774i 0.684652 + 0.728870i \(0.259954\pi\)
−0.684652 + 0.728870i \(0.740046\pi\)
\(152\) 0 0
\(153\) −1.59523e6 + 1.59523e6i −0.0360083 + 0.0360083i
\(154\) 0 0
\(155\) −2.24541e7 5.60484e7i −0.484322 1.20893i
\(156\) 0 0
\(157\) −2.91931e7 2.91931e7i −0.602049 0.602049i 0.338807 0.940856i \(-0.389977\pi\)
−0.940856 + 0.338807i \(0.889977\pi\)
\(158\) 0 0
\(159\) 2.59502e7 0.511978
\(160\) 0 0
\(161\) −1.64294e7 −0.310264
\(162\) 0 0
\(163\) 2.72546e7 + 2.72546e7i 0.492928 + 0.492928i 0.909227 0.416300i \(-0.136673\pi\)
−0.416300 + 0.909227i \(0.636673\pi\)
\(164\) 0 0
\(165\) −3.34518e7 + 7.81694e7i −0.579730 + 1.35470i
\(166\) 0 0
\(167\) 5.82194e7 5.82194e7i 0.967298 0.967298i −0.0321843 0.999482i \(-0.510246\pi\)
0.999482 + 0.0321843i \(0.0102463\pi\)
\(168\) 0 0
\(169\) 5.83735e7i 0.930278i
\(170\) 0 0
\(171\) 2.33814e7i 0.357589i
\(172\) 0 0
\(173\) 1.51226e7 1.51226e7i 0.222057 0.222057i −0.587307 0.809364i \(-0.699812\pi\)
0.809364 + 0.587307i \(0.199812\pi\)
\(174\) 0 0
\(175\) −673825. + 2.88915e7i −0.00950417 + 0.407509i
\(176\) 0 0
\(177\) 7.64532e7 + 7.64532e7i 1.03631 + 1.03631i
\(178\) 0 0
\(179\) 8.05122e7 1.04924 0.524621 0.851336i \(-0.324207\pi\)
0.524621 + 0.851336i \(0.324207\pi\)
\(180\) 0 0
\(181\) −3.14755e7 −0.394546 −0.197273 0.980349i \(-0.563209\pi\)
−0.197273 + 0.980349i \(0.563209\pi\)
\(182\) 0 0
\(183\) 1.36949e8 + 1.36949e8i 1.65188 + 1.65188i
\(184\) 0 0
\(185\) 8.41776e7 + 3.60230e7i 0.977453 + 0.418291i
\(186\) 0 0
\(187\) −4.39720e6 + 4.39720e6i −0.0491734 + 0.0491734i
\(188\) 0 0
\(189\) 9.98465e6i 0.107576i
\(190\) 0 0
\(191\) 8.36266e7i 0.868416i 0.900813 + 0.434208i \(0.142972\pi\)
−0.900813 + 0.434208i \(0.857028\pi\)
\(192\) 0 0
\(193\) 7.01579e7 7.01579e7i 0.702467 0.702467i −0.262472 0.964939i \(-0.584538\pi\)
0.964939 + 0.262472i \(0.0845379\pi\)
\(194\) 0 0
\(195\) 3.40833e7 1.36544e7i 0.329170 0.131872i
\(196\) 0 0
\(197\) 1.92214e7 + 1.92214e7i 0.179124 + 0.179124i 0.790974 0.611850i \(-0.209574\pi\)
−0.611850 + 0.790974i \(0.709574\pi\)
\(198\) 0 0
\(199\) 1.93689e8 1.74229 0.871143 0.491029i \(-0.163379\pi\)
0.871143 + 0.491029i \(0.163379\pi\)
\(200\) 0 0
\(201\) 4.03561e6 0.0350528
\(202\) 0 0
\(203\) 8.19872e6 + 8.19872e6i 0.0687876 + 0.0687876i
\(204\) 0 0
\(205\) −1.46662e8 + 5.87558e7i −1.18900 + 0.476334i
\(206\) 0 0
\(207\) −5.51865e7 + 5.51865e7i −0.432451 + 0.432451i
\(208\) 0 0
\(209\) 6.44502e7i 0.488329i
\(210\) 0 0
\(211\) 8.05752e7i 0.590490i −0.955422 0.295245i \(-0.904599\pi\)
0.955422 0.295245i \(-0.0954013\pi\)
\(212\) 0 0
\(213\) −5.29526e7 + 5.29526e7i −0.375456 + 0.375456i
\(214\) 0 0
\(215\) 1.43132e8 + 6.12518e7i 0.982204 + 0.420324i
\(216\) 0 0
\(217\) −5.65032e7 5.65032e7i −0.375374 0.375374i
\(218\) 0 0
\(219\) −3.71902e8 −2.39262
\(220\) 0 0
\(221\) 2.68535e6 0.0167351
\(222\) 0 0
\(223\) −1.31377e8 1.31377e8i −0.793326 0.793326i 0.188708 0.982033i \(-0.439570\pi\)
−0.982033 + 0.188708i \(0.939570\pi\)
\(224\) 0 0
\(225\) 9.47834e7 + 9.93102e7i 0.554745 + 0.581239i
\(226\) 0 0
\(227\) 1.53191e8 1.53191e8i 0.869247 0.869247i −0.123142 0.992389i \(-0.539297\pi\)
0.992389 + 0.123142i \(0.0392971\pi\)
\(228\) 0 0
\(229\) 2.99759e8i 1.64949i −0.565508 0.824743i \(-0.691320\pi\)
0.565508 0.824743i \(-0.308680\pi\)
\(230\) 0 0
\(231\) 1.12527e8i 0.600641i
\(232\) 0 0
\(233\) 7.06102e7 7.06102e7i 0.365697 0.365697i −0.500208 0.865905i \(-0.666743\pi\)
0.865905 + 0.500208i \(0.166743\pi\)
\(234\) 0 0
\(235\) 4.90387e7 1.14592e8i 0.246491 0.575994i
\(236\) 0 0
\(237\) 2.55825e8 + 2.55825e8i 1.24832 + 1.24832i
\(238\) 0 0
\(239\) −2.24938e8 −1.06579 −0.532894 0.846182i \(-0.678896\pi\)
−0.532894 + 0.846182i \(0.678896\pi\)
\(240\) 0 0
\(241\) −3.36645e8 −1.54922 −0.774610 0.632440i \(-0.782054\pi\)
−0.774610 + 0.632440i \(0.782054\pi\)
\(242\) 0 0
\(243\) −2.04201e8 2.04201e8i −0.912927 0.912927i
\(244\) 0 0
\(245\) −7.13801e7 1.78174e8i −0.310096 0.774041i
\(246\) 0 0
\(247\) 1.96797e7 1.96797e7i 0.0830960 0.0830960i
\(248\) 0 0
\(249\) 1.59146e8i 0.653276i
\(250\) 0 0
\(251\) 1.64376e8i 0.656115i −0.944658 0.328057i \(-0.893606\pi\)
0.944658 0.328057i \(-0.106394\pi\)
\(252\) 0 0
\(253\) −1.52120e8 + 1.52120e8i −0.590561 + 0.590561i
\(254\) 0 0
\(255\) 8.38104e6 + 2.09202e7i 0.0316524 + 0.0790089i
\(256\) 0 0
\(257\) −2.11466e8 2.11466e8i −0.777095 0.777095i 0.202241 0.979336i \(-0.435178\pi\)
−0.979336 + 0.202241i \(0.935178\pi\)
\(258\) 0 0
\(259\) 1.21176e8 0.433379
\(260\) 0 0
\(261\) 5.50791e7 0.191754
\(262\) 0 0
\(263\) −1.40979e8 1.40979e8i −0.477870 0.477870i 0.426580 0.904450i \(-0.359718\pi\)
−0.904450 + 0.426580i \(0.859718\pi\)
\(264\) 0 0
\(265\) 4.54383e7 1.06179e8i 0.149990 0.350493i
\(266\) 0 0
\(267\) −3.29719e8 + 3.29719e8i −1.06012 + 1.06012i
\(268\) 0 0
\(269\) 3.21309e8i 1.00644i −0.864157 0.503222i \(-0.832148\pi\)
0.864157 0.503222i \(-0.167852\pi\)
\(270\) 0 0
\(271\) 8.11990e7i 0.247832i −0.992293 0.123916i \(-0.960455\pi\)
0.992293 0.123916i \(-0.0395454\pi\)
\(272\) 0 0
\(273\) 3.43599e7 3.43599e7i 0.102207 0.102207i
\(274\) 0 0
\(275\) 2.61268e8 + 2.73746e8i 0.757568 + 0.793749i
\(276\) 0 0
\(277\) 3.17066e8 + 3.17066e8i 0.896334 + 0.896334i 0.995110 0.0987754i \(-0.0314926\pi\)
−0.0987754 + 0.995110i \(0.531493\pi\)
\(278\) 0 0
\(279\) −3.79589e8 −1.04640
\(280\) 0 0
\(281\) −5.04472e8 −1.35633 −0.678164 0.734910i \(-0.737224\pi\)
−0.678164 + 0.734910i \(0.737224\pi\)
\(282\) 0 0
\(283\) −2.19661e8 2.19661e8i −0.576104 0.576104i 0.357724 0.933828i \(-0.383553\pi\)
−0.933828 + 0.357724i \(0.883553\pi\)
\(284\) 0 0
\(285\) 2.14736e8 + 9.18941e7i 0.549475 + 0.235142i
\(286\) 0 0
\(287\) −1.47853e8 + 1.47853e8i −0.369183 + 0.369183i
\(288\) 0 0
\(289\) 4.08690e8i 0.995983i
\(290\) 0 0
\(291\) 9.06498e8i 2.15646i
\(292\) 0 0
\(293\) 1.84660e8 1.84660e8i 0.428881 0.428881i −0.459366 0.888247i \(-0.651923\pi\)
0.888247 + 0.459366i \(0.151923\pi\)
\(294\) 0 0
\(295\) 4.46688e8 1.78952e8i 1.01304 0.405843i
\(296\) 0 0
\(297\) −9.24480e7 9.24480e7i −0.204762 0.204762i
\(298\) 0 0
\(299\) 9.28991e7 0.200984
\(300\) 0 0
\(301\) 2.06042e8 0.435485
\(302\) 0 0
\(303\) −6.43268e8 6.43268e8i −1.32844 1.32844i
\(304\) 0 0
\(305\) 8.00140e8 3.20551e8i 1.61479 0.646916i
\(306\) 0 0
\(307\) −7.33835e7 + 7.33835e7i −0.144749 + 0.144749i −0.775767 0.631019i \(-0.782637\pi\)
0.631019 + 0.775767i \(0.282637\pi\)
\(308\) 0 0
\(309\) 1.26441e9i 2.43800i
\(310\) 0 0
\(311\) 5.13493e8i 0.967995i −0.875069 0.483997i \(-0.839184\pi\)
0.875069 0.483997i \(-0.160816\pi\)
\(312\) 0 0
\(313\) 5.27608e8 5.27608e8i 0.972537 0.972537i −0.0270954 0.999633i \(-0.508626\pi\)
0.999633 + 0.0270954i \(0.00862580\pi\)
\(314\) 0 0
\(315\) 1.67032e8 + 7.14799e7i 0.301102 + 0.128854i
\(316\) 0 0
\(317\) 2.79666e8 + 2.79666e8i 0.493097 + 0.493097i 0.909281 0.416184i \(-0.136633\pi\)
−0.416184 + 0.909281i \(0.636633\pi\)
\(318\) 0 0
\(319\) 1.51824e8 0.261863
\(320\) 0 0
\(321\) −8.57045e8 −1.44622
\(322\) 0 0
\(323\) 1.20794e7 + 1.20794e7i 0.0199451 + 0.0199451i
\(324\) 0 0
\(325\) 3.81011e6 1.63365e8i 0.00615666 0.263978i
\(326\) 0 0
\(327\) −5.22786e8 + 5.22786e8i −0.826812 + 0.826812i
\(328\) 0 0
\(329\) 1.64959e8i 0.255382i
\(330\) 0 0
\(331\) 5.02158e8i 0.761101i 0.924760 + 0.380550i \(0.124265\pi\)
−0.924760 + 0.380550i \(0.875735\pi\)
\(332\) 0 0
\(333\) 4.07031e8 4.07031e8i 0.604050 0.604050i
\(334\) 0 0
\(335\) 7.06627e6 1.65123e7i 0.0102691 0.0239966i
\(336\) 0 0
\(337\) 5.37281e8 + 5.37281e8i 0.764711 + 0.764711i 0.977170 0.212459i \(-0.0681473\pi\)
−0.212459 + 0.977170i \(0.568147\pi\)
\(338\) 0 0
\(339\) 7.73097e7 0.107779
\(340\) 0 0
\(341\) −1.04633e9 −1.42899
\(342\) 0 0
\(343\) −3.95032e8 3.95032e8i −0.528571 0.528571i
\(344\) 0 0
\(345\) 2.89940e8 + 7.23730e8i 0.380138 + 0.948877i
\(346\) 0 0
\(347\) 3.25029e8 3.25029e8i 0.417609 0.417609i −0.466770 0.884379i \(-0.654582\pi\)
0.884379 + 0.466770i \(0.154582\pi\)
\(348\) 0 0
\(349\) 1.22607e8i 0.154392i −0.997016 0.0771962i \(-0.975403\pi\)
0.997016 0.0771962i \(-0.0245968\pi\)
\(350\) 0 0
\(351\) 5.64576e7i 0.0696863i
\(352\) 0 0
\(353\) 1.43557e8 1.43557e8i 0.173705 0.173705i −0.614900 0.788605i \(-0.710804\pi\)
0.788605 + 0.614900i \(0.210804\pi\)
\(354\) 0 0
\(355\) 1.23944e8 + 3.09382e8i 0.147037 + 0.367026i
\(356\) 0 0
\(357\) 2.10900e7 + 2.10900e7i 0.0245323 + 0.0245323i
\(358\) 0 0
\(359\) −1.16713e9 −1.33134 −0.665672 0.746245i \(-0.731855\pi\)
−0.665672 + 0.746245i \(0.731855\pi\)
\(360\) 0 0
\(361\) −7.16823e8 −0.801931
\(362\) 0 0
\(363\) 1.76495e8 + 1.76495e8i 0.193668 + 0.193668i
\(364\) 0 0
\(365\) −6.51193e8 + 1.52169e9i −0.700946 + 1.63795i
\(366\) 0 0
\(367\) 1.34907e8 1.34907e8i 0.142464 0.142464i −0.632278 0.774742i \(-0.717880\pi\)
0.774742 + 0.632278i \(0.217880\pi\)
\(368\) 0 0
\(369\) 9.93276e8i 1.02915i
\(370\) 0 0
\(371\) 1.52848e8i 0.155400i
\(372\) 0 0
\(373\) −9.25897e8 + 9.25897e8i −0.923808 + 0.923808i −0.997296 0.0734878i \(-0.976587\pi\)
0.0734878 + 0.997296i \(0.476587\pi\)
\(374\) 0 0
\(375\) 1.28459e9 4.80184e8i 1.25793 0.470217i
\(376\) 0 0
\(377\) −4.63592e7 4.63592e7i −0.0445596 0.0445596i
\(378\) 0 0
\(379\) 3.19599e8 0.301556 0.150778 0.988568i \(-0.451822\pi\)
0.150778 + 0.988568i \(0.451822\pi\)
\(380\) 0 0
\(381\) −1.00963e9 −0.935240
\(382\) 0 0
\(383\) −5.78279e8 5.78279e8i −0.525946 0.525946i 0.393415 0.919361i \(-0.371294\pi\)
−0.919361 + 0.393415i \(0.871294\pi\)
\(384\) 0 0
\(385\) 4.60421e8 + 1.97032e8i 0.411190 + 0.175965i
\(386\) 0 0
\(387\) 6.92097e8 6.92097e8i 0.606986 0.606986i
\(388\) 0 0
\(389\) 3.77486e8i 0.325145i 0.986697 + 0.162573i \(0.0519792\pi\)
−0.986697 + 0.162573i \(0.948021\pi\)
\(390\) 0 0
\(391\) 5.70212e7i 0.0482412i
\(392\) 0 0
\(393\) −2.23066e8 + 2.23066e8i −0.185379 + 0.185379i
\(394\) 0 0
\(395\) 1.49469e9 5.98802e8i 1.22029 0.488870i
\(396\) 0 0
\(397\) 3.07795e8 + 3.07795e8i 0.246885 + 0.246885i 0.819691 0.572806i \(-0.194145\pi\)
−0.572806 + 0.819691i \(0.694145\pi\)
\(398\) 0 0
\(399\) 3.09118e8 0.243624
\(400\) 0 0
\(401\) 7.45129e8 0.577067 0.288533 0.957470i \(-0.406832\pi\)
0.288533 + 0.957470i \(0.406832\pi\)
\(402\) 0 0
\(403\) 3.19494e8 + 3.19494e8i 0.243162 + 0.243162i
\(404\) 0 0
\(405\) −1.43695e9 + 5.75670e8i −1.07485 + 0.430607i
\(406\) 0 0
\(407\) 1.12197e9 1.12197e9i 0.824900 0.824900i
\(408\) 0 0
\(409\) 4.05732e8i 0.293230i −0.989194 0.146615i \(-0.953162\pi\)
0.989194 0.146615i \(-0.0468378\pi\)
\(410\) 0 0
\(411\) 3.21009e9i 2.28071i
\(412\) 0 0
\(413\) 4.50312e8 4.50312e8i 0.314549 0.314549i
\(414\) 0 0
\(415\) 6.51167e8 + 2.78661e8i 0.447223 + 0.191385i
\(416\) 0 0
\(417\) 1.61316e9 + 1.61316e9i 1.08944 + 1.08944i
\(418\) 0 0
\(419\) −1.51364e9 −1.00525 −0.502623 0.864506i \(-0.667632\pi\)
−0.502623 + 0.864506i \(0.667632\pi\)
\(420\) 0 0
\(421\) −4.79908e8 −0.313452 −0.156726 0.987642i \(-0.550094\pi\)
−0.156726 + 0.987642i \(0.550094\pi\)
\(422\) 0 0
\(423\) −5.54098e8 5.54098e8i −0.355955 0.355955i
\(424\) 0 0
\(425\) 1.00273e8 + 2.33863e6i 0.0633612 + 0.00147775i
\(426\) 0 0
\(427\) 8.06633e8 8.06633e8i 0.501393 0.501393i
\(428\) 0 0
\(429\) 6.36277e8i 0.389086i
\(430\) 0 0
\(431\) 8.83724e8i 0.531675i 0.964018 + 0.265837i \(0.0856484\pi\)
−0.964018 + 0.265837i \(0.914352\pi\)
\(432\) 0 0
\(433\) −3.12796e7 + 3.12796e7i −0.0185163 + 0.0185163i −0.716304 0.697788i \(-0.754168\pi\)
0.697788 + 0.716304i \(0.254168\pi\)
\(434\) 0 0
\(435\) 2.16473e8 5.05849e8i 0.126093 0.294652i
\(436\) 0 0
\(437\) 4.17883e8 + 4.17883e8i 0.239535 + 0.239535i
\(438\) 0 0
\(439\) −1.14996e9 −0.648720 −0.324360 0.945934i \(-0.605149\pi\)
−0.324360 + 0.945934i \(0.605149\pi\)
\(440\) 0 0
\(441\) −1.20669e9 −0.669979
\(442\) 0 0
\(443\) 1.77500e9 + 1.77500e9i 0.970028 + 0.970028i 0.999564 0.0295356i \(-0.00940284\pi\)
−0.0295356 + 0.999564i \(0.509403\pi\)
\(444\) 0 0
\(445\) 7.71763e8 + 1.92643e9i 0.415168 + 1.03632i
\(446\) 0 0
\(447\) 1.34653e9 1.34653e9i 0.713085 0.713085i
\(448\) 0 0
\(449\) 7.01757e8i 0.365868i 0.983125 + 0.182934i \(0.0585595\pi\)
−0.983125 + 0.182934i \(0.941441\pi\)
\(450\) 0 0
\(451\) 2.73794e9i 1.40542i
\(452\) 0 0
\(453\) 2.73883e9 2.73883e9i 1.38427 1.38427i
\(454\) 0 0
\(455\) −8.04250e7 2.00752e8i −0.0400268 0.0999125i
\(456\) 0 0
\(457\) −2.00280e9 2.00280e9i −0.981592 0.981592i 0.0182412 0.999834i \(-0.494193\pi\)
−0.999834 + 0.0182412i \(0.994193\pi\)
\(458\) 0 0
\(459\) −3.46535e7 −0.0167264
\(460\) 0 0
\(461\) 2.77556e9 1.31946 0.659731 0.751502i \(-0.270670\pi\)
0.659731 + 0.751502i \(0.270670\pi\)
\(462\) 0 0
\(463\) 5.66758e8 + 5.66758e8i 0.265377 + 0.265377i 0.827234 0.561857i \(-0.189913\pi\)
−0.561857 + 0.827234i \(0.689913\pi\)
\(464\) 0 0
\(465\) −1.49187e9 + 3.48617e9i −0.688091 + 1.60792i
\(466\) 0 0
\(467\) 1.67690e9 1.67690e9i 0.761902 0.761902i −0.214764 0.976666i \(-0.568898\pi\)
0.976666 + 0.214764i \(0.0688983\pi\)
\(468\) 0 0
\(469\) 2.37699e7i 0.0106395i
\(470\) 0 0
\(471\) 2.59284e9i 1.14341i
\(472\) 0 0
\(473\) 1.90775e9 1.90775e9i 0.828909 0.828909i
\(474\) 0 0
\(475\) 7.51997e8 7.17719e8i 0.321950 0.307275i
\(476\) 0 0
\(477\) −5.13417e8 5.13417e8i −0.216599 0.216599i
\(478\) 0 0
\(479\) 2.74743e9 1.14223 0.571114 0.820871i \(-0.306511\pi\)
0.571114 + 0.820871i \(0.306511\pi\)
\(480\) 0 0
\(481\) −6.85183e8 −0.280736
\(482\) 0 0
\(483\) 7.29604e8 + 7.29604e8i 0.294627 + 0.294627i
\(484\) 0 0
\(485\) 3.70907e9 + 1.58726e9i 1.47628 + 0.631760i
\(486\) 0 0
\(487\) −1.32008e9 + 1.32008e9i −0.517902 + 0.517902i −0.916936 0.399034i \(-0.869346\pi\)
0.399034 + 0.916936i \(0.369346\pi\)
\(488\) 0 0
\(489\) 2.42067e9i 0.936168i
\(490\) 0 0
\(491\) 7.59558e8i 0.289585i 0.989462 + 0.144792i \(0.0462514\pi\)
−0.989462 + 0.144792i \(0.953749\pi\)
\(492\) 0 0
\(493\) 2.84551e7 2.84551e7i 0.0106954 0.0106954i
\(494\) 0 0
\(495\) 2.20839e9 8.84723e8i 0.818385 0.327860i
\(496\) 0 0
\(497\) 3.11893e8 + 3.11893e8i 0.113962 + 0.113962i
\(498\) 0 0
\(499\) −3.16728e9 −1.14113 −0.570565 0.821253i \(-0.693276\pi\)
−0.570565 + 0.821253i \(0.693276\pi\)
\(500\) 0 0
\(501\) −5.17086e9 −1.83709
\(502\) 0 0
\(503\) −2.45155e9 2.45155e9i −0.858920 0.858920i 0.132291 0.991211i \(-0.457767\pi\)
−0.991211 + 0.132291i \(0.957767\pi\)
\(504\) 0 0
\(505\) −3.75838e9 + 1.50568e9i −1.29862 + 0.520250i
\(506\) 0 0
\(507\) 2.59228e9 2.59228e9i 0.883392 0.883392i
\(508\) 0 0
\(509\) 4.49129e9i 1.50959i 0.655961 + 0.754794i \(0.272263\pi\)
−0.655961 + 0.754794i \(0.727737\pi\)
\(510\) 0 0
\(511\) 2.19052e9i 0.726229i
\(512\) 0 0
\(513\) −2.53960e8 + 2.53960e8i −0.0830529 + 0.0830529i
\(514\) 0 0
\(515\) −5.17351e9 2.21395e9i −1.66902 0.714239i
\(516\) 0 0
\(517\) −1.52736e9 1.52736e9i −0.486098 0.486098i
\(518\) 0 0
\(519\) −1.34314e9 −0.421731
\(520\) 0 0
\(521\) 6.44243e8 0.199580 0.0997902 0.995009i \(-0.468183\pi\)
0.0997902 + 0.995009i \(0.468183\pi\)
\(522\) 0 0
\(523\) −2.95865e9 2.95865e9i −0.904353 0.904353i 0.0914562 0.995809i \(-0.470848\pi\)
−0.995809 + 0.0914562i \(0.970848\pi\)
\(524\) 0 0
\(525\) 1.31295e9 1.25310e9i 0.395996 0.377945i
\(526\) 0 0
\(527\) −1.96105e8 + 1.96105e8i −0.0583648 + 0.0583648i
\(528\) 0 0
\(529\) 1.43219e9i 0.420635i
\(530\) 0 0
\(531\) 3.02520e9i 0.876847i
\(532\) 0 0
\(533\) 8.36024e8 8.36024e8i 0.239152 0.239152i
\(534\) 0 0
\(535\) −1.50067e9 + 3.50672e9i −0.423688 + 0.990064i
\(536\) 0 0
\(537\) −3.57542e9 3.57542e9i −0.996361 0.996361i
\(538\) 0 0
\(539\) −3.32622e9 −0.914934
\(540\) 0 0
\(541\) −2.47049e9 −0.670800 −0.335400 0.942076i \(-0.608871\pi\)
−0.335400 + 0.942076i \(0.608871\pi\)
\(542\) 0 0
\(543\) 1.39778e9 + 1.39778e9i 0.374661 + 0.374661i
\(544\) 0 0
\(545\) 1.22367e9 + 3.05444e9i 0.323799 + 0.808248i
\(546\) 0 0
\(547\) −1.45879e9 + 1.45879e9i −0.381100 + 0.381100i −0.871498 0.490399i \(-0.836851\pi\)
0.490399 + 0.871498i \(0.336851\pi\)
\(548\) 0 0
\(549\) 5.41897e9i 1.39770i
\(550\) 0 0
\(551\) 4.17070e8i 0.106213i
\(552\) 0 0
\(553\) 1.50682e9 1.50682e9i 0.378899 0.378899i
\(554\) 0 0
\(555\) −2.13847e9 5.33792e9i −0.530980 1.32540i
\(556\) 0 0
\(557\) 1.88379e9 + 1.88379e9i 0.461890 + 0.461890i 0.899274 0.437385i \(-0.144095\pi\)
−0.437385 + 0.899274i \(0.644095\pi\)
\(558\) 0 0
\(559\) −1.16505e9 −0.282101
\(560\) 0 0
\(561\) 3.90545e8 0.0933902
\(562\) 0 0
\(563\) −5.79162e9 5.79162e9i −1.36779 1.36779i −0.863576 0.504219i \(-0.831780\pi\)
−0.504219 0.863576i \(-0.668220\pi\)
\(564\) 0 0
\(565\) 1.35368e8 3.16324e8i 0.0315751 0.0737840i
\(566\) 0 0
\(567\) −1.44861e9 + 1.44861e9i −0.333742 + 0.333742i
\(568\) 0 0
\(569\) 7.90563e9i 1.79905i −0.436867 0.899526i \(-0.643912\pi\)
0.436867 0.899526i \(-0.356088\pi\)
\(570\) 0 0
\(571\) 4.35415e9i 0.978762i 0.872070 + 0.489381i \(0.162777\pi\)
−0.872070 + 0.489381i \(0.837223\pi\)
\(572\) 0 0
\(573\) 3.71372e9 3.71372e9i 0.824648 0.824648i
\(574\) 0 0
\(575\) 3.46893e9 + 8.09045e7i 0.760953 + 0.0177474i
\(576\) 0 0
\(577\) 3.90259e9 + 3.90259e9i 0.845741 + 0.845741i 0.989598 0.143857i \(-0.0459507\pi\)
−0.143857 + 0.989598i \(0.545951\pi\)
\(578\) 0 0
\(579\) −6.23120e9 −1.33413
\(580\) 0 0
\(581\) 9.37373e8 0.198288
\(582\) 0 0
\(583\) −1.41522e9 1.41522e9i −0.295791 0.295791i
\(584\) 0 0
\(585\) −9.44475e8 4.04179e8i −0.195050 0.0834695i
\(586\) 0 0
\(587\) 3.86538e9 3.86538e9i 0.788786 0.788786i −0.192509 0.981295i \(-0.561663\pi\)
0.981295 + 0.192509i \(0.0616625\pi\)
\(588\) 0 0
\(589\) 2.87433e9i 0.579606i
\(590\) 0 0
\(591\) 1.70719e9i 0.340193i
\(592\) 0 0
\(593\) 2.19980e9 2.19980e9i 0.433203 0.433203i −0.456513 0.889717i \(-0.650902\pi\)
0.889717 + 0.456513i \(0.150902\pi\)
\(594\) 0 0
\(595\) 1.23221e8 4.93647e7i 0.0239814 0.00960742i
\(596\) 0 0
\(597\) −8.60142e9 8.60142e9i −1.65448 1.65448i
\(598\) 0 0
\(599\) −2.97273e7 −0.00565148 −0.00282574 0.999996i \(-0.500899\pi\)
−0.00282574 + 0.999996i \(0.500899\pi\)
\(600\) 0 0
\(601\) 8.86874e8 0.166648 0.0833242 0.996522i \(-0.473446\pi\)
0.0833242 + 0.996522i \(0.473446\pi\)
\(602\) 0 0
\(603\) −7.98433e7 7.98433e7i −0.0148295 0.0148295i
\(604\) 0 0
\(605\) 1.03119e9 4.13116e8i 0.189320 0.0758452i
\(606\) 0 0
\(607\) −7.56606e9 + 7.56606e9i −1.37312 + 1.37312i −0.517348 + 0.855775i \(0.673081\pi\)
−0.855775 + 0.517348i \(0.826919\pi\)
\(608\) 0 0
\(609\) 7.28184e8i 0.130641i
\(610\) 0 0
\(611\) 9.32750e8i 0.165433i
\(612\) 0 0
\(613\) −1.67645e9 + 1.67645e9i −0.293954 + 0.293954i −0.838640 0.544686i \(-0.816649\pi\)
0.544686 + 0.838640i \(0.316649\pi\)
\(614\) 0 0
\(615\) 9.12229e9 + 3.90379e9i 1.58140 + 0.676743i
\(616\) 0 0
\(617\) 6.41892e9 + 6.41892e9i 1.10018 + 1.10018i 0.994388 + 0.105793i \(0.0337380\pi\)
0.105793 + 0.994388i \(0.466262\pi\)
\(618\) 0 0
\(619\) −5.97506e8 −0.101257 −0.0506285 0.998718i \(-0.516122\pi\)
−0.0506285 + 0.998718i \(0.516122\pi\)
\(620\) 0 0
\(621\) −1.19883e9 −0.200880
\(622\) 0 0
\(623\) 1.94206e9 + 1.94206e9i 0.321776 + 0.321776i
\(624\) 0 0
\(625\) 2.84545e8 6.09688e9i 0.0466198 0.998913i
\(626\) 0 0
\(627\) 2.86213e9 2.86213e9i 0.463717 0.463717i
\(628\) 0 0
\(629\) 4.20563e8i 0.0673836i
\(630\) 0 0
\(631\) 5.29242e9i 0.838593i 0.907849 + 0.419297i \(0.137723\pi\)
−0.907849 + 0.419297i \(0.862277\pi\)
\(632\) 0 0
\(633\) −3.57822e9 + 3.57822e9i −0.560730 + 0.560730i
\(634\) 0 0
\(635\) −1.76783e9 + 4.13103e9i −0.273989 + 0.640252i
\(636\) 0 0
\(637\) 1.01565e9 + 1.01565e9i 0.155689 + 0.155689i
\(638\) 0 0
\(639\) 2.09530e9 0.317683
\(640\) 0 0
\(641\) 1.28072e10 1.92066 0.960329 0.278869i \(-0.0899596\pi\)
0.960329 + 0.278869i \(0.0899596\pi\)
\(642\) 0 0
\(643\) 7.57296e9 + 7.57296e9i 1.12338 + 1.12338i 0.991229 + 0.132153i \(0.0421889\pi\)
0.132153 + 0.991229i \(0.457811\pi\)
\(644\) 0 0
\(645\) −3.63616e9 9.07635e9i −0.533561 1.33184i
\(646\) 0 0
\(647\) 3.43154e9 3.43154e9i 0.498108 0.498108i −0.412740 0.910849i \(-0.635428\pi\)
0.910849 + 0.412740i \(0.135428\pi\)
\(648\) 0 0
\(649\) 8.33890e9i 1.19744i
\(650\) 0 0
\(651\) 5.01844e9i 0.712911i
\(652\) 0 0
\(653\) −1.60565e9 + 1.60565e9i −0.225660 + 0.225660i −0.810877 0.585217i \(-0.801009\pi\)
0.585217 + 0.810877i \(0.301009\pi\)
\(654\) 0 0
\(655\) 5.22123e8 + 1.30329e9i 0.0725987 + 0.181216i
\(656\) 0 0
\(657\) 7.35796e9 + 7.35796e9i 1.01223 + 1.01223i
\(658\) 0 0
\(659\) 4.43687e9 0.603917 0.301959 0.953321i \(-0.402360\pi\)
0.301959 + 0.953321i \(0.402360\pi\)
\(660\) 0 0
\(661\) −8.67113e9 −1.16781 −0.583903 0.811823i \(-0.698475\pi\)
−0.583903 + 0.811823i \(0.698475\pi\)
\(662\) 0 0
\(663\) −1.19252e8 1.19252e8i −0.0158916 0.0158916i
\(664\) 0 0
\(665\) 5.41260e8 1.26480e9i 0.0713724 0.166781i
\(666\) 0 0
\(667\) 9.84399e8 9.84399e8i 0.128449 0.128449i
\(668\) 0 0
\(669\) 1.16685e10i 1.50668i
\(670\) 0 0
\(671\) 1.49373e10i 1.90872i
\(672\) 0 0
\(673\) −3.38498e9 + 3.38498e9i −0.428059 + 0.428059i −0.887967 0.459908i \(-0.847882\pi\)
0.459908 + 0.887967i \(0.347882\pi\)
\(674\) 0 0
\(675\) −4.91681e7 + 2.10817e9i −0.00615347 + 0.263842i
\(676\) 0 0
\(677\) 6.44910e8 + 6.44910e8i 0.0798802 + 0.0798802i 0.745918 0.666038i \(-0.232011\pi\)
−0.666038 + 0.745918i \(0.732011\pi\)
\(678\) 0 0
\(679\) 5.33931e9 0.654547
\(680\) 0 0
\(681\) −1.36059e10 −1.65087
\(682\) 0 0
\(683\) −9.58841e9 9.58841e9i −1.15153 1.15153i −0.986247 0.165280i \(-0.947147\pi\)
−0.165280 0.986247i \(-0.552853\pi\)
\(684\) 0 0
\(685\) 1.31345e10 + 5.62080e9i 1.56134 + 0.668161i
\(686\) 0 0
\(687\) −1.33118e10 + 1.33118e10i −1.56635 + 1.56635i
\(688\) 0 0
\(689\) 8.64270e8i 0.100666i
\(690\) 0 0
\(691\) 1.41809e10i 1.63504i −0.575897 0.817522i \(-0.695347\pi\)
0.575897 0.817522i \(-0.304653\pi\)
\(692\) 0 0
\(693\) 2.22631e9 2.22631e9i 0.254109 0.254109i
\(694\) 0 0
\(695\) 9.42510e9 3.77587e9i 1.06497 0.426649i
\(696\) 0 0
\(697\) 5.13149e8 + 5.13149e8i 0.0574022 + 0.0574022i
\(698\) 0 0
\(699\) −6.27137e9 −0.694532
\(700\) 0 0
\(701\) 4.28213e9 0.469512 0.234756 0.972054i \(-0.424571\pi\)
0.234756 + 0.972054i \(0.424571\pi\)
\(702\) 0 0
\(703\) −3.08212e9 3.08212e9i −0.334585 0.334585i
\(704\) 0 0
\(705\) −7.26659e9 + 2.91113e9i −0.781032 + 0.312896i
\(706\) 0 0
\(707\) −3.78888e9 + 3.78888e9i −0.403220 + 0.403220i
\(708\) 0 0
\(709\) 3.43170e8i 0.0361615i 0.999837 + 0.0180808i \(0.00575560\pi\)
−0.999837 + 0.0180808i \(0.994244\pi\)
\(710\) 0 0
\(711\) 1.01228e10i 1.05623i
\(712\) 0 0
\(713\) −6.78420e9 + 6.78420e9i −0.700947 + 0.700947i
\(714\) 0 0
\(715\) −2.60342e9 1.11411e9i −0.266363 0.113987i
\(716\) 0 0
\(717\) 9.98915e9 + 9.98915e9i 1.01207 + 1.01207i
\(718\) 0 0
\(719\) 1.29027e10 1.29458 0.647289 0.762245i \(-0.275903\pi\)
0.647289 + 0.762245i \(0.275903\pi\)
\(720\) 0 0
\(721\) −7.44742e9 −0.740001
\(722\) 0 0
\(723\) 1.49499e10 + 1.49499e10i 1.47114 + 1.47114i
\(724\) 0 0
\(725\) −1.69072e9 1.77146e9i −0.164774 0.172643i
\(726\) 0 0
\(727\) −3.85294e9 + 3.85294e9i −0.371896 + 0.371896i −0.868168 0.496271i \(-0.834702\pi\)
0.496271 + 0.868168i \(0.334702\pi\)
\(728\) 0 0
\(729\) 6.02444e9i 0.575931i
\(730\) 0 0
\(731\) 7.15107e8i 0.0677111i
\(732\) 0 0
\(733\) −1.24419e10 + 1.24419e10i −1.16687 + 1.16687i −0.183933 + 0.982939i \(0.558883\pi\)
−0.982939 + 0.183933i \(0.941117\pi\)
\(734\) 0 0
\(735\) −4.74257e9 + 1.10823e10i −0.440563 + 1.02950i
\(736\) 0 0
\(737\) −2.20086e8 2.20086e8i −0.0202514 0.0202514i
\(738\) 0 0
\(739\) 1.74752e10 1.59282 0.796409 0.604759i \(-0.206730\pi\)
0.796409 + 0.604759i \(0.206730\pi\)
\(740\) 0 0
\(741\) −1.74789e9 −0.157816
\(742\) 0 0
\(743\) −7.57887e9 7.57887e9i −0.677866 0.677866i 0.281651 0.959517i \(-0.409118\pi\)
−0.959517 + 0.281651i \(0.909118\pi\)
\(744\) 0 0
\(745\) −3.15179e9 7.86730e9i −0.279261 0.697073i
\(746\) 0 0
\(747\) 3.14864e9 3.14864e9i 0.276377 0.276377i
\(748\) 0 0
\(749\) 5.04803e9i 0.438970i
\(750\) 0 0
\(751\) 1.44627e10i 1.24597i −0.782232 0.622987i \(-0.785919\pi\)
0.782232 0.622987i \(-0.214081\pi\)
\(752\) 0 0
\(753\) −7.29966e9 + 7.29966e9i −0.623046 + 0.623046i
\(754\) 0 0
\(755\) −6.41068e9 1.60019e10i −0.542113 1.35319i
\(756\) 0 0
\(757\) −7.62134e9 7.62134e9i −0.638551 0.638551i 0.311647 0.950198i \(-0.399119\pi\)
−0.950198 + 0.311647i \(0.899119\pi\)
\(758\) 0 0
\(759\) 1.35108e10 1.12159
\(760\) 0 0
\(761\) −2.68630e9 −0.220957 −0.110479 0.993879i \(-0.535238\pi\)
−0.110479 + 0.993879i \(0.535238\pi\)
\(762\) 0 0
\(763\) 3.07923e9 + 3.07923e9i 0.250961 + 0.250961i
\(764\) 0 0
\(765\) 2.48084e8 5.79716e8i 0.0200347 0.0468167i
\(766\) 0 0
\(767\) −2.54626e9 + 2.54626e9i −0.203760 + 0.203760i
\(768\) 0 0
\(769\) 1.53439e10i 1.21673i 0.793658 + 0.608364i \(0.208174\pi\)
−0.793658 + 0.608364i \(0.791826\pi\)
\(770\) 0 0
\(771\) 1.87817e10i 1.47586i
\(772\) 0 0
\(773\) 4.80566e9 4.80566e9i 0.374218 0.374218i −0.494793 0.869011i \(-0.664756\pi\)
0.869011 + 0.494793i \(0.164756\pi\)
\(774\) 0 0
\(775\) 1.16519e10 + 1.22084e10i 0.899171 + 0.942114i
\(776\) 0 0
\(777\) −5.38123e9 5.38123e9i −0.411537 0.411537i
\(778\) 0 0
\(779\) 7.52128e9 0.570047
\(780\) 0 0
\(781\) 5.77565e9 0.433832
\(782\) 0 0
\(783\) 5.98249e8 + 5.98249e8i 0.0445365 + 0.0445365i
\(784\) 0 0
\(785\) 1.06090e10 + 4.54001e9i 0.782763 + 0.334976i
\(786\) 0 0
\(787\) 1.65336e10 1.65336e10i 1.20908 1.20908i 0.237757 0.971325i \(-0.423588\pi\)
0.971325 0.237757i \(-0.0764121\pi\)
\(788\) 0 0
\(789\) 1.25213e10i 0.907571i
\(790\) 0 0
\(791\) 4.55357e8i 0.0327141i
\(792\) 0 0
\(793\) −4.56106e9 + 4.56106e9i −0.324795 + 0.324795i
\(794\) 0 0
\(795\) −6.73309e9 + 2.69741e9i −0.475258 + 0.190397i
\(796\) 0 0
\(797\) 1.61801e10 + 1.61801e10i 1.13208 + 1.13208i 0.989831 + 0.142247i \(0.0454327\pi\)
0.142247 + 0.989831i \(0.454567\pi\)
\(798\) 0 0
\(799\) −5.72520e8 −0.0397079
\(800\) 0 0
\(801\) 1.30468e10 0.896993
\(802\) 0 0
\(803\) 2.02820e10 + 2.02820e10i 1.38232 + 1.38232i
\(804\) 0 0
\(805\) 4.26280e9 1.70776e9i 0.288011 0.115383i
\(806\) 0 0
\(807\) −1.42688e10 + 1.42688e10i −0.955720 + 0.955720i
\(808\) 0 0
\(809\) 3.48033e9i 0.231100i −0.993302 0.115550i \(-0.963137\pi\)
0.993302 0.115550i \(-0.0368631\pi\)
\(810\) 0 0
\(811\) 1.34188e10i 0.883367i 0.897171 + 0.441683i \(0.145618\pi\)
−0.897171 + 0.441683i \(0.854382\pi\)
\(812\) 0 0
\(813\) −3.60592e9 + 3.60592e9i −0.235342 + 0.235342i
\(814\) 0 0
\(815\) −9.90451e9 4.23854e9i −0.640887 0.274261i
\(816\) 0 0
\(817\) −5.24070e9 5.24070e9i −0.336211 0.336211i
\(818\) 0 0
\(819\) −1.35960e9 −0.0864802
\(820\) 0 0
\(821\) 1.77890e10 1.12189 0.560947 0.827852i \(-0.310437\pi\)
0.560947 + 0.827852i \(0.310437\pi\)
\(822\) 0 0
\(823\) −6.48743e9 6.48743e9i −0.405670 0.405670i 0.474555 0.880226i \(-0.342609\pi\)
−0.880226 + 0.474555i \(0.842609\pi\)
\(824\) 0 0
\(825\) 5.54124e8 2.37591e10i 0.0343573 1.47313i
\(826\) 0 0
\(827\) −8.87561e8 + 8.87561e8i −0.0545668 + 0.0545668i −0.733864 0.679297i \(-0.762285\pi\)
0.679297 + 0.733864i \(0.262285\pi\)
\(828\) 0 0
\(829\) 2.15941e10i 1.31642i −0.752834 0.658211i \(-0.771314\pi\)
0.752834 0.658211i \(-0.228686\pi\)
\(830\) 0 0
\(831\) 2.81608e10i 1.70232i
\(832\) 0 0
\(833\) −6.23405e8 + 6.23405e8i −0.0373691 + 0.0373691i
\(834\) 0 0
\(835\) −9.05407e9 + 2.11573e10i −0.538197 + 1.25765i
\(836\) 0 0
\(837\) −4.12296e9 4.12296e9i −0.243036 0.243036i
\(838\) 0 0
\(839\) 9.54702e9 0.558086 0.279043 0.960279i \(-0.409983\pi\)
0.279043 + 0.960279i \(0.409983\pi\)
\(840\) 0 0
\(841\) 1.62674e10 0.943044
\(842\) 0 0
\(843\) 2.24028e10 + 2.24028e10i 1.28797 + 1.28797i
\(844\) 0 0
\(845\) −6.06765e9 1.51457e10i −0.345957 0.863557i
\(846\) 0 0
\(847\) 1.03956e9 1.03956e9i 0.0587839 0.0587839i
\(848\) 0 0
\(849\) 1.95096e10i 1.09414i
\(850\) 0 0
\(851\) 1.45493e10i 0.809261i
\(852\) 0 0
\(853\) −4.50377e9 + 4.50377e9i −0.248459 + 0.248459i −0.820338 0.571879i \(-0.806215\pi\)
0.571879 + 0.820338i \(0.306215\pi\)
\(854\) 0 0
\(855\) −2.43039e9 6.06658e9i −0.132982 0.331942i
\(856\) 0 0
\(857\) −2.16952e10 2.16952e10i −1.17742 1.17742i −0.980400 0.197020i \(-0.936874\pi\)
−0.197020 0.980400i \(-0.563126\pi\)
\(858\) 0 0
\(859\) −1.35381e10 −0.728755 −0.364378 0.931251i \(-0.618718\pi\)
−0.364378 + 0.931251i \(0.618718\pi\)
\(860\) 0 0
\(861\) 1.31318e10 0.701153
\(862\) 0 0
\(863\) −2.07408e10 2.07408e10i −1.09847 1.09847i −0.994590 0.103877i \(-0.966875\pi\)
−0.103877 0.994590i \(-0.533125\pi\)
\(864\) 0 0
\(865\) −2.35181e9 + 5.49566e9i −0.123551 + 0.288711i
\(866\) 0 0
\(867\) −1.81493e10 + 1.81493e10i −0.945786 + 0.945786i
\(868\) 0 0
\(869\) 2.79034e10i 1.44241i
\(870\) 0 0
\(871\) 1.34406e8i 0.00689213i
\(872\) 0 0
\(873\) 1.79348e10 1.79348e10i 0.912318 0.912318i
\(874\) 0 0
\(875\) −2.82830e9 7.56628e9i −0.142724 0.381816i
\(876\) 0 0
\(877\) −1.69228e10 1.69228e10i −0.847178 0.847178i 0.142602 0.989780i \(-0.454453\pi\)
−0.989780 + 0.142602i \(0.954453\pi\)
\(878\) 0 0
\(879\) −1.64009e10 −0.814530
\(880\) 0 0
\(881\) 3.79762e10 1.87109 0.935547 0.353203i \(-0.114907\pi\)
0.935547 + 0.353203i \(0.114907\pi\)
\(882\) 0 0
\(883\) 5.98400e9 + 5.98400e9i 0.292502 + 0.292502i 0.838068 0.545566i \(-0.183685\pi\)
−0.545566 + 0.838068i \(0.683685\pi\)
\(884\) 0 0
\(885\) −2.77836e10 1.18897e10i −1.34737 0.576594i
\(886\) 0 0
\(887\) 1.83183e10 1.83183e10i 0.881360 0.881360i −0.112313 0.993673i \(-0.535826\pi\)
0.993673 + 0.112313i \(0.0358259\pi\)
\(888\) 0 0
\(889\) 5.94674e9i 0.283872i
\(890\) 0 0
\(891\) 2.68254e10i 1.27050i
\(892\) 0 0
\(893\) −4.19574e9 + 4.19574e9i −0.197164 + 0.197164i
\(894\) 0 0
\(895\) −2.08898e10 + 8.36886e9i −0.973990 + 0.390199i
\(896\) 0 0
\(897\) −4.12550e9 4.12550e9i −0.190855 0.190855i
\(898\) 0 0
\(899\) 6.77100e9 0.310809
\(900\) 0 0
\(901\) −5.30486e8 −0.0241623
\(902\) 0 0
\(903\) −9.15000e9 9.15000e9i −0.413537 0.413537i
\(904\) 0 0
\(905\) 8.16670e9 3.27173e9i 0.366249 0.146726i
\(906\) 0 0
\(907\) 2.05995e10 2.05995e10i 0.916708 0.916708i −0.0800808 0.996788i \(-0.525518\pi\)
0.996788 + 0.0800808i \(0.0255178\pi\)
\(908\) 0 0
\(909\) 2.54537e10i 1.12403i
\(910\) 0 0
\(911\) 3.91426e10i 1.71528i −0.514250 0.857640i \(-0.671930\pi\)
0.514250 0.857640i \(-0.328070\pi\)
\(912\) 0 0
\(913\) 8.67916e9 8.67916e9i 0.377424 0.377424i
\(914\) 0 0
\(915\) −4.97681e10 2.12978e10i −2.14772 0.919094i
\(916\) 0 0
\(917\) 1.31387e9 + 1.31387e9i 0.0562677 + 0.0562677i
\(918\) 0 0
\(919\) −3.08816e10 −1.31249 −0.656245 0.754548i \(-0.727856\pi\)
−0.656245 + 0.754548i \(0.727856\pi\)
\(920\) 0 0
\(921\) 6.51769e9 0.274906
\(922\) 0 0
\(923\) −1.76358e9 1.76358e9i −0.0738226 0.0738226i
\(924\) 0 0
\(925\) −2.55853e10 5.96716e8i −1.06290 0.0247897i
\(926\) 0 0
\(927\) −2.50159e10 + 2.50159e10i −1.03142 + 1.03142i
\(928\) 0 0
\(929\) 1.91058e10i 0.781825i 0.920428 + 0.390912i \(0.127840\pi\)
−0.920428 + 0.390912i \(0.872160\pi\)
\(930\) 0 0
\(931\) 9.13731e9i 0.371103i
\(932\) 0 0
\(933\) −2.28034e10 + 2.28034e10i −0.919208 + 0.919208i
\(934\) 0 0
\(935\) 6.83837e8 1.59797e9i 0.0273597 0.0639335i
\(936\) 0 0
\(937\) −1.81182e10 1.81182e10i −0.719493 0.719493i 0.249009 0.968501i \(-0.419895\pi\)
−0.968501 + 0.249009i \(0.919895\pi\)
\(938\) 0 0
\(939\) −4.68605e10 −1.84704
\(940\) 0 0
\(941\) 1.15031e10 0.450039 0.225020 0.974354i \(-0.427755\pi\)
0.225020 + 0.974354i \(0.427755\pi\)
\(942\) 0 0
\(943\) 1.77523e10 + 1.77523e10i 0.689387 + 0.689387i
\(944\) 0 0
\(945\) 1.03786e9 + 2.59063e9i 0.0400061 + 0.0998607i
\(946\) 0 0
\(947\) 3.38548e10 3.38548e10i 1.29537 1.29537i 0.363960 0.931415i \(-0.381424\pi\)
0.931415 0.363960i \(-0.118576\pi\)
\(948\) 0 0
\(949\) 1.23862e10i 0.470441i
\(950\) 0 0
\(951\) 2.48390e10i 0.936490i
\(952\) 0 0
\(953\) −3.05822e9 + 3.05822e9i −0.114457 + 0.114457i −0.762016 0.647559i \(-0.775790\pi\)
0.647559 + 0.762016i \(0.275790\pi\)
\(954\) 0 0
\(955\) −8.69259e9 2.16979e10i −0.322952 0.806132i
\(956\) 0 0
\(957\) −6.74227e9 6.74227e9i −0.248665 0.248665i
\(958\) 0 0
\(959\) 1.89075e10 0.692261
\(960\) 0 0
\(961\) −1.91512e10 −0.696087
\(962\) 0 0
\(963\) 1.69564e10 + 1.69564e10i 0.611844 + 0.611844i
\(964\) 0 0
\(965\) −1.09107e10 + 2.54959e10i −0.390847 + 0.913323i
\(966\) 0 0
\(967\) −3.23554e10 + 3.23554e10i −1.15068 + 1.15068i −0.164262 + 0.986417i \(0.552524\pi\)
−0.986417 + 0.164262i \(0.947476\pi\)
\(968\) 0 0
\(969\) 1.07285e9i 0.0378797i
\(970\) 0 0
\(971\) 4.12508e9i 0.144599i −0.997383 0.0722994i \(-0.976966\pi\)
0.997383 0.0722994i \(-0.0230337\pi\)
\(972\) 0 0
\(973\) 9.50159e9 9.50159e9i 0.330675 0.330675i
\(974\) 0 0
\(975\) −7.42399e9 + 7.08559e9i −0.256520 + 0.244827i
\(976\) 0 0
\(977\) −3.92345e8 3.92345e8i −0.0134598 0.0134598i 0.700345 0.713805i \(-0.253030\pi\)
−0.713805 + 0.700345i \(0.753030\pi\)
\(978\) 0 0
\(979\) 3.59631e10 1.22495
\(980\) 0 0
\(981\) 2.06863e10 0.699587
\(982\) 0 0
\(983\) 1.27089e9 + 1.27089e9i 0.0426747 + 0.0426747i 0.728122 0.685447i \(-0.240393\pi\)
−0.685447 + 0.728122i \(0.740393\pi\)
\(984\) 0 0
\(985\) −6.98520e9 2.98925e9i −0.232891 0.0996633i
\(986\) 0 0
\(987\) −7.32556e9 + 7.32556e9i −0.242511 + 0.242511i
\(988\) 0 0
\(989\) 2.47390e10i 0.813194i
\(990\) 0 0
\(991\) 4.10559e9i 0.134004i 0.997753 + 0.0670020i \(0.0213434\pi\)
−0.997753 + 0.0670020i \(0.978657\pi\)
\(992\) 0 0
\(993\) 2.23000e10 2.23000e10i 0.722741 0.722741i
\(994\) 0 0
\(995\) −5.02549e10 + 2.01331e10i −1.61733 + 0.647932i
\(996\) 0 0
\(997\) −2.89545e10 2.89545e10i −0.925300 0.925300i 0.0720978 0.997398i \(-0.477031\pi\)
−0.997398 + 0.0720978i \(0.977031\pi\)
\(998\) 0 0
\(999\) 8.84205e9 0.280591
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.8.n.b.127.2 yes 20
4.3 odd 2 160.8.n.a.127.9 yes 20
5.3 odd 4 160.8.n.a.63.9 20
20.3 even 4 inner 160.8.n.b.63.2 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.8.n.a.63.9 20 5.3 odd 4
160.8.n.a.127.9 yes 20 4.3 odd 2
160.8.n.b.63.2 yes 20 20.3 even 4 inner
160.8.n.b.127.2 yes 20 1.1 even 1 trivial