Properties

Label 160.8.n.b.63.2
Level $160$
Weight $8$
Character 160.63
Analytic conductor $49.982$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,8,Mod(63,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.63");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 160.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.9816040775\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 13755 x^{18} - 18266 x^{17} + 77176511 x^{16} + 352443750 x^{15} + \cdots + 51\!\cdots\!88 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{69}\cdot 5^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.2
Root \(47.4084 + 1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 160.63
Dual form 160.8.n.b.127.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-44.4084 + 44.4084i) q^{3} +(-259.462 - 103.945i) q^{5} +(-261.567 - 261.567i) q^{7} -1757.21i q^{9} -4843.71i q^{11} +(1479.02 + 1479.02i) q^{13} +(16138.3 - 6906.24i) q^{15} +(907.816 - 907.816i) q^{17} +13306.0 q^{19} +23231.6 q^{21} +(31405.7 - 31405.7i) q^{23} +(56515.8 + 53939.6i) q^{25} +(-19086.2 - 19086.2i) q^{27} +31344.6i q^{29} -216018. i q^{31} +(215101. + 215101. i) q^{33} +(40678.0 + 95055.4i) q^{35} +(-231635. + 231635. i) q^{37} -131362. q^{39} +565257. q^{41} +(-393861. + 393861. i) q^{43} +(-182654. + 455929. i) q^{45} +(-315328. - 315328. i) q^{47} -686708. i q^{49} +80629.3i q^{51} +(-292177. - 292177. i) q^{53} +(-503481. + 1.25676e6i) q^{55} +(-590897. + 590897. i) q^{57} -1.72159e6 q^{59} -3.08385e6 q^{61} +(-459629. + 459629. i) q^{63} +(-230011. - 537485. i) q^{65} +(-45437.5 - 45437.5i) q^{67} +2.78935e6i q^{69} +1.19240e6i q^{71} +(4.18729e6 + 4.18729e6i) q^{73} +(-4.90515e6 + 114401. i) q^{75} +(-1.26696e6 + 1.26696e6i) q^{77} -5.76074e6 q^{79} +5.53820e6 q^{81} +(-1.79184e6 + 1.79184e6i) q^{83} +(-329907. + 141180. i) q^{85} +(-1.39196e6 - 1.39196e6i) q^{87} +7.42470e6i q^{89} -773724. i q^{91} +(9.59302e6 + 9.59302e6i) q^{93} +(-3.45239e6 - 1.38309e6i) q^{95} +(-1.02064e7 + 1.02064e7i) q^{97} -8.51143e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 58 q^{3} - 54 q^{5} + 2466 q^{7} - 1172 q^{13} - 11138 q^{15} - 25136 q^{17} + 64784 q^{19} - 71268 q^{21} - 39922 q^{23} + 118056 q^{25} + 31792 q^{27} + 59756 q^{33} - 378426 q^{35} - 647408 q^{37}+ \cdots - 7823900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −44.4084 + 44.4084i −0.949600 + 0.949600i −0.998789 0.0491894i \(-0.984336\pi\)
0.0491894 + 0.998789i \(0.484336\pi\)
\(4\) 0 0
\(5\) −259.462 103.945i −0.928278 0.371886i
\(6\) 0 0
\(7\) −261.567 261.567i −0.288231 0.288231i 0.548150 0.836380i \(-0.315332\pi\)
−0.836380 + 0.548150i \(0.815332\pi\)
\(8\) 0 0
\(9\) 1757.21i 0.803481i
\(10\) 0 0
\(11\) 4843.71i 1.09725i −0.836070 0.548623i \(-0.815152\pi\)
0.836070 0.548623i \(-0.184848\pi\)
\(12\) 0 0
\(13\) 1479.02 + 1479.02i 0.186712 + 0.186712i 0.794273 0.607561i \(-0.207852\pi\)
−0.607561 + 0.794273i \(0.707852\pi\)
\(14\) 0 0
\(15\) 16138.3 6906.24i 1.23464 0.528350i
\(16\) 0 0
\(17\) 907.816 907.816i 0.0448153 0.0448153i −0.684344 0.729159i \(-0.739911\pi\)
0.729159 + 0.684344i \(0.239911\pi\)
\(18\) 0 0
\(19\) 13306.0 0.445050 0.222525 0.974927i \(-0.428570\pi\)
0.222525 + 0.974927i \(0.428570\pi\)
\(20\) 0 0
\(21\) 23231.6 0.547408
\(22\) 0 0
\(23\) 31405.7 31405.7i 0.538221 0.538221i −0.384785 0.923006i \(-0.625724\pi\)
0.923006 + 0.384785i \(0.125724\pi\)
\(24\) 0 0
\(25\) 56515.8 + 53939.6i 0.723402 + 0.690427i
\(26\) 0 0
\(27\) −19086.2 19086.2i −0.186615 0.186615i
\(28\) 0 0
\(29\) 31344.6i 0.238655i 0.992855 + 0.119327i \(0.0380738\pi\)
−0.992855 + 0.119327i \(0.961926\pi\)
\(30\) 0 0
\(31\) 216018.i 1.30234i −0.758932 0.651170i \(-0.774279\pi\)
0.758932 0.651170i \(-0.225721\pi\)
\(32\) 0 0
\(33\) 215101. + 215101.i 1.04194 + 1.04194i
\(34\) 0 0
\(35\) 40678.0 + 95055.4i 0.160369 + 0.374747i
\(36\) 0 0
\(37\) −231635. + 231635.i −0.751792 + 0.751792i −0.974813 0.223022i \(-0.928408\pi\)
0.223022 + 0.974813i \(0.428408\pi\)
\(38\) 0 0
\(39\) −131362. −0.354603
\(40\) 0 0
\(41\) 565257. 1.28086 0.640431 0.768016i \(-0.278756\pi\)
0.640431 + 0.768016i \(0.278756\pi\)
\(42\) 0 0
\(43\) −393861. + 393861.i −0.755446 + 0.755446i −0.975490 0.220044i \(-0.929380\pi\)
0.220044 + 0.975490i \(0.429380\pi\)
\(44\) 0 0
\(45\) −182654. + 455929.i −0.298803 + 0.745854i
\(46\) 0 0
\(47\) −315328. 315328.i −0.443016 0.443016i 0.450008 0.893024i \(-0.351421\pi\)
−0.893024 + 0.450008i \(0.851421\pi\)
\(48\) 0 0
\(49\) 686708.i 0.833846i
\(50\) 0 0
\(51\) 80629.3i 0.0851133i
\(52\) 0 0
\(53\) −292177. 292177.i −0.269576 0.269576i 0.559354 0.828929i \(-0.311049\pi\)
−0.828929 + 0.559354i \(0.811049\pi\)
\(54\) 0 0
\(55\) −503481. + 1.25676e6i −0.408050 + 1.01855i
\(56\) 0 0
\(57\) −590897. + 590897.i −0.422619 + 0.422619i
\(58\) 0 0
\(59\) −1.72159e6 −1.09131 −0.545655 0.838010i \(-0.683719\pi\)
−0.545655 + 0.838010i \(0.683719\pi\)
\(60\) 0 0
\(61\) −3.08385e6 −1.73955 −0.869777 0.493444i \(-0.835738\pi\)
−0.869777 + 0.493444i \(0.835738\pi\)
\(62\) 0 0
\(63\) −459629. + 459629.i −0.231588 + 0.231588i
\(64\) 0 0
\(65\) −230011. 537485.i −0.103885 0.242756i
\(66\) 0 0
\(67\) −45437.5 45437.5i −0.0184566 0.0184566i 0.697818 0.716275i \(-0.254154\pi\)
−0.716275 + 0.697818i \(0.754154\pi\)
\(68\) 0 0
\(69\) 2.78935e6i 1.02219i
\(70\) 0 0
\(71\) 1.19240e6i 0.395383i 0.980264 + 0.197692i \(0.0633445\pi\)
−0.980264 + 0.197692i \(0.936656\pi\)
\(72\) 0 0
\(73\) 4.18729e6 + 4.18729e6i 1.25981 + 1.25981i 0.951185 + 0.308620i \(0.0998671\pi\)
0.308620 + 0.951185i \(0.400133\pi\)
\(74\) 0 0
\(75\) −4.90515e6 + 114401.i −1.34257 + 0.0313123i
\(76\) 0 0
\(77\) −1.26696e6 + 1.26696e6i −0.316260 + 0.316260i
\(78\) 0 0
\(79\) −5.76074e6 −1.31457 −0.657285 0.753642i \(-0.728295\pi\)
−0.657285 + 0.753642i \(0.728295\pi\)
\(80\) 0 0
\(81\) 5.53820e6 1.15790
\(82\) 0 0
\(83\) −1.79184e6 + 1.79184e6i −0.343974 + 0.343974i −0.857859 0.513885i \(-0.828206\pi\)
0.513885 + 0.857859i \(0.328206\pi\)
\(84\) 0 0
\(85\) −329907. + 141180.i −0.0582673 + 0.0249349i
\(86\) 0 0
\(87\) −1.39196e6 1.39196e6i −0.226626 0.226626i
\(88\) 0 0
\(89\) 7.42470e6i 1.11638i 0.829712 + 0.558192i \(0.188505\pi\)
−0.829712 + 0.558192i \(0.811495\pi\)
\(90\) 0 0
\(91\) 773724.i 0.107632i
\(92\) 0 0
\(93\) 9.59302e6 + 9.59302e6i 1.23670 + 1.23670i
\(94\) 0 0
\(95\) −3.45239e6 1.38309e6i −0.413130 0.165508i
\(96\) 0 0
\(97\) −1.02064e7 + 1.02064e7i −1.13546 + 1.13546i −0.146202 + 0.989255i \(0.546705\pi\)
−0.989255 + 0.146202i \(0.953295\pi\)
\(98\) 0 0
\(99\) −8.51143e6 −0.881615
\(100\) 0 0
\(101\) 1.44853e7 1.39895 0.699475 0.714657i \(-0.253417\pi\)
0.699475 + 0.714657i \(0.253417\pi\)
\(102\) 0 0
\(103\) 1.42361e7 1.42361e7i 1.28370 1.28370i 0.345147 0.938549i \(-0.387829\pi\)
0.938549 0.345147i \(-0.112171\pi\)
\(104\) 0 0
\(105\) −6.02770e6 2.41481e6i −0.508147 0.203573i
\(106\) 0 0
\(107\) 9.64958e6 + 9.64958e6i 0.761491 + 0.761491i 0.976592 0.215100i \(-0.0690079\pi\)
−0.215100 + 0.976592i \(0.569008\pi\)
\(108\) 0 0
\(109\) 1.17722e7i 0.870695i 0.900262 + 0.435348i \(0.143375\pi\)
−0.900262 + 0.435348i \(0.856625\pi\)
\(110\) 0 0
\(111\) 2.05730e7i 1.42780i
\(112\) 0 0
\(113\) −870440. 870440.i −0.0567498 0.0567498i 0.678162 0.734912i \(-0.262777\pi\)
−0.734912 + 0.678162i \(0.762777\pi\)
\(114\) 0 0
\(115\) −1.14131e7 + 4.88410e6i −0.699776 + 0.299462i
\(116\) 0 0
\(117\) 2.59895e6 2.59895e6i 0.150019 0.150019i
\(118\) 0 0
\(119\) −474910. −0.0258343
\(120\) 0 0
\(121\) −3.97436e6 −0.203947
\(122\) 0 0
\(123\) −2.51021e7 + 2.51021e7i −1.21631 + 1.21631i
\(124\) 0 0
\(125\) −9.05690e6 1.98698e7i −0.414758 0.909932i
\(126\) 0 0
\(127\) 1.13675e7 + 1.13675e7i 0.492439 + 0.492439i 0.909074 0.416635i \(-0.136791\pi\)
−0.416635 + 0.909074i \(0.636791\pi\)
\(128\) 0 0
\(129\) 3.49815e7i 1.43474i
\(130\) 0 0
\(131\) 5.02306e6i 0.195218i 0.995225 + 0.0976088i \(0.0311194\pi\)
−0.995225 + 0.0976088i \(0.968881\pi\)
\(132\) 0 0
\(133\) −3.48040e6 3.48040e6i −0.128277 0.128277i
\(134\) 0 0
\(135\) 2.96822e6 + 6.93606e6i 0.103831 + 0.242630i
\(136\) 0 0
\(137\) −3.61428e7 + 3.61428e7i −1.20088 + 1.20088i −0.226981 + 0.973899i \(0.572885\pi\)
−0.973899 + 0.226981i \(0.927115\pi\)
\(138\) 0 0
\(139\) −3.63256e7 −1.14726 −0.573629 0.819115i \(-0.694465\pi\)
−0.573629 + 0.819115i \(0.694465\pi\)
\(140\) 0 0
\(141\) 2.80064e7 0.841377
\(142\) 0 0
\(143\) 7.16393e6 7.16393e6i 0.204868 0.204868i
\(144\) 0 0
\(145\) 3.25812e6 8.13272e6i 0.0887523 0.221538i
\(146\) 0 0
\(147\) 3.04956e7 + 3.04956e7i 0.791820 + 0.791820i
\(148\) 0 0
\(149\) 3.03216e7i 0.750931i −0.926836 0.375466i \(-0.877483\pi\)
0.926836 0.375466i \(-0.122517\pi\)
\(150\) 0 0
\(151\) 6.16736e7i 1.45774i −0.684652 0.728870i \(-0.740046\pi\)
0.684652 0.728870i \(-0.259954\pi\)
\(152\) 0 0
\(153\) −1.59523e6 1.59523e6i −0.0360083 0.0360083i
\(154\) 0 0
\(155\) −2.24541e7 + 5.60484e7i −0.484322 + 1.20893i
\(156\) 0 0
\(157\) −2.91931e7 + 2.91931e7i −0.602049 + 0.602049i −0.940856 0.338807i \(-0.889977\pi\)
0.338807 + 0.940856i \(0.389977\pi\)
\(158\) 0 0
\(159\) 2.59502e7 0.511978
\(160\) 0 0
\(161\) −1.64294e7 −0.310264
\(162\) 0 0
\(163\) 2.72546e7 2.72546e7i 0.492928 0.492928i −0.416300 0.909227i \(-0.636673\pi\)
0.909227 + 0.416300i \(0.136673\pi\)
\(164\) 0 0
\(165\) −3.34518e7 7.81694e7i −0.579730 1.35470i
\(166\) 0 0
\(167\) 5.82194e7 + 5.82194e7i 0.967298 + 0.967298i 0.999482 0.0321843i \(-0.0102463\pi\)
−0.0321843 + 0.999482i \(0.510246\pi\)
\(168\) 0 0
\(169\) 5.83735e7i 0.930278i
\(170\) 0 0
\(171\) 2.33814e7i 0.357589i
\(172\) 0 0
\(173\) 1.51226e7 + 1.51226e7i 0.222057 + 0.222057i 0.809364 0.587307i \(-0.199812\pi\)
−0.587307 + 0.809364i \(0.699812\pi\)
\(174\) 0 0
\(175\) −673825. 2.88915e7i −0.00950417 0.407509i
\(176\) 0 0
\(177\) 7.64532e7 7.64532e7i 1.03631 1.03631i
\(178\) 0 0
\(179\) 8.05122e7 1.04924 0.524621 0.851336i \(-0.324207\pi\)
0.524621 + 0.851336i \(0.324207\pi\)
\(180\) 0 0
\(181\) −3.14755e7 −0.394546 −0.197273 0.980349i \(-0.563209\pi\)
−0.197273 + 0.980349i \(0.563209\pi\)
\(182\) 0 0
\(183\) 1.36949e8 1.36949e8i 1.65188 1.65188i
\(184\) 0 0
\(185\) 8.41776e7 3.60230e7i 0.977453 0.418291i
\(186\) 0 0
\(187\) −4.39720e6 4.39720e6i −0.0491734 0.0491734i
\(188\) 0 0
\(189\) 9.98465e6i 0.107576i
\(190\) 0 0
\(191\) 8.36266e7i 0.868416i −0.900813 0.434208i \(-0.857028\pi\)
0.900813 0.434208i \(-0.142972\pi\)
\(192\) 0 0
\(193\) 7.01579e7 + 7.01579e7i 0.702467 + 0.702467i 0.964939 0.262472i \(-0.0845379\pi\)
−0.262472 + 0.964939i \(0.584538\pi\)
\(194\) 0 0
\(195\) 3.40833e7 + 1.36544e7i 0.329170 + 0.131872i
\(196\) 0 0
\(197\) 1.92214e7 1.92214e7i 0.179124 0.179124i −0.611850 0.790974i \(-0.709574\pi\)
0.790974 + 0.611850i \(0.209574\pi\)
\(198\) 0 0
\(199\) 1.93689e8 1.74229 0.871143 0.491029i \(-0.163379\pi\)
0.871143 + 0.491029i \(0.163379\pi\)
\(200\) 0 0
\(201\) 4.03561e6 0.0350528
\(202\) 0 0
\(203\) 8.19872e6 8.19872e6i 0.0687876 0.0687876i
\(204\) 0 0
\(205\) −1.46662e8 5.87558e7i −1.18900 0.476334i
\(206\) 0 0
\(207\) −5.51865e7 5.51865e7i −0.432451 0.432451i
\(208\) 0 0
\(209\) 6.44502e7i 0.488329i
\(210\) 0 0
\(211\) 8.05752e7i 0.590490i 0.955422 + 0.295245i \(0.0954013\pi\)
−0.955422 + 0.295245i \(0.904599\pi\)
\(212\) 0 0
\(213\) −5.29526e7 5.29526e7i −0.375456 0.375456i
\(214\) 0 0
\(215\) 1.43132e8 6.12518e7i 0.982204 0.420324i
\(216\) 0 0
\(217\) −5.65032e7 + 5.65032e7i −0.375374 + 0.375374i
\(218\) 0 0
\(219\) −3.71902e8 −2.39262
\(220\) 0 0
\(221\) 2.68535e6 0.0167351
\(222\) 0 0
\(223\) −1.31377e8 + 1.31377e8i −0.793326 + 0.793326i −0.982033 0.188708i \(-0.939570\pi\)
0.188708 + 0.982033i \(0.439570\pi\)
\(224\) 0 0
\(225\) 9.47834e7 9.93102e7i 0.554745 0.581239i
\(226\) 0 0
\(227\) 1.53191e8 + 1.53191e8i 0.869247 + 0.869247i 0.992389 0.123142i \(-0.0392971\pi\)
−0.123142 + 0.992389i \(0.539297\pi\)
\(228\) 0 0
\(229\) 2.99759e8i 1.64949i 0.565508 + 0.824743i \(0.308680\pi\)
−0.565508 + 0.824743i \(0.691320\pi\)
\(230\) 0 0
\(231\) 1.12527e8i 0.600641i
\(232\) 0 0
\(233\) 7.06102e7 + 7.06102e7i 0.365697 + 0.365697i 0.865905 0.500208i \(-0.166743\pi\)
−0.500208 + 0.865905i \(0.666743\pi\)
\(234\) 0 0
\(235\) 4.90387e7 + 1.14592e8i 0.246491 + 0.575994i
\(236\) 0 0
\(237\) 2.55825e8 2.55825e8i 1.24832 1.24832i
\(238\) 0 0
\(239\) −2.24938e8 −1.06579 −0.532894 0.846182i \(-0.678896\pi\)
−0.532894 + 0.846182i \(0.678896\pi\)
\(240\) 0 0
\(241\) −3.36645e8 −1.54922 −0.774610 0.632440i \(-0.782054\pi\)
−0.774610 + 0.632440i \(0.782054\pi\)
\(242\) 0 0
\(243\) −2.04201e8 + 2.04201e8i −0.912927 + 0.912927i
\(244\) 0 0
\(245\) −7.13801e7 + 1.78174e8i −0.310096 + 0.774041i
\(246\) 0 0
\(247\) 1.96797e7 + 1.96797e7i 0.0830960 + 0.0830960i
\(248\) 0 0
\(249\) 1.59146e8i 0.653276i
\(250\) 0 0
\(251\) 1.64376e8i 0.656115i 0.944658 + 0.328057i \(0.106394\pi\)
−0.944658 + 0.328057i \(0.893606\pi\)
\(252\) 0 0
\(253\) −1.52120e8 1.52120e8i −0.590561 0.590561i
\(254\) 0 0
\(255\) 8.38104e6 2.09202e7i 0.0316524 0.0790089i
\(256\) 0 0
\(257\) −2.11466e8 + 2.11466e8i −0.777095 + 0.777095i −0.979336 0.202241i \(-0.935178\pi\)
0.202241 + 0.979336i \(0.435178\pi\)
\(258\) 0 0
\(259\) 1.21176e8 0.433379
\(260\) 0 0
\(261\) 5.50791e7 0.191754
\(262\) 0 0
\(263\) −1.40979e8 + 1.40979e8i −0.477870 + 0.477870i −0.904450 0.426580i \(-0.859718\pi\)
0.426580 + 0.904450i \(0.359718\pi\)
\(264\) 0 0
\(265\) 4.54383e7 + 1.06179e8i 0.149990 + 0.350493i
\(266\) 0 0
\(267\) −3.29719e8 3.29719e8i −1.06012 1.06012i
\(268\) 0 0
\(269\) 3.21309e8i 1.00644i 0.864157 + 0.503222i \(0.167852\pi\)
−0.864157 + 0.503222i \(0.832148\pi\)
\(270\) 0 0
\(271\) 8.11990e7i 0.247832i 0.992293 + 0.123916i \(0.0395454\pi\)
−0.992293 + 0.123916i \(0.960455\pi\)
\(272\) 0 0
\(273\) 3.43599e7 + 3.43599e7i 0.102207 + 0.102207i
\(274\) 0 0
\(275\) 2.61268e8 2.73746e8i 0.757568 0.793749i
\(276\) 0 0
\(277\) 3.17066e8 3.17066e8i 0.896334 0.896334i −0.0987754 0.995110i \(-0.531493\pi\)
0.995110 + 0.0987754i \(0.0314926\pi\)
\(278\) 0 0
\(279\) −3.79589e8 −1.04640
\(280\) 0 0
\(281\) −5.04472e8 −1.35633 −0.678164 0.734910i \(-0.737224\pi\)
−0.678164 + 0.734910i \(0.737224\pi\)
\(282\) 0 0
\(283\) −2.19661e8 + 2.19661e8i −0.576104 + 0.576104i −0.933828 0.357724i \(-0.883553\pi\)
0.357724 + 0.933828i \(0.383553\pi\)
\(284\) 0 0
\(285\) 2.14736e8 9.18941e7i 0.549475 0.235142i
\(286\) 0 0
\(287\) −1.47853e8 1.47853e8i −0.369183 0.369183i
\(288\) 0 0
\(289\) 4.08690e8i 0.995983i
\(290\) 0 0
\(291\) 9.06498e8i 2.15646i
\(292\) 0 0
\(293\) 1.84660e8 + 1.84660e8i 0.428881 + 0.428881i 0.888247 0.459366i \(-0.151923\pi\)
−0.459366 + 0.888247i \(0.651923\pi\)
\(294\) 0 0
\(295\) 4.46688e8 + 1.78952e8i 1.01304 + 0.405843i
\(296\) 0 0
\(297\) −9.24480e7 + 9.24480e7i −0.204762 + 0.204762i
\(298\) 0 0
\(299\) 9.28991e7 0.200984
\(300\) 0 0
\(301\) 2.06042e8 0.435485
\(302\) 0 0
\(303\) −6.43268e8 + 6.43268e8i −1.32844 + 1.32844i
\(304\) 0 0
\(305\) 8.00140e8 + 3.20551e8i 1.61479 + 0.646916i
\(306\) 0 0
\(307\) −7.33835e7 7.33835e7i −0.144749 0.144749i 0.631019 0.775767i \(-0.282637\pi\)
−0.775767 + 0.631019i \(0.782637\pi\)
\(308\) 0 0
\(309\) 1.26441e9i 2.43800i
\(310\) 0 0
\(311\) 5.13493e8i 0.967995i 0.875069 + 0.483997i \(0.160816\pi\)
−0.875069 + 0.483997i \(0.839184\pi\)
\(312\) 0 0
\(313\) 5.27608e8 + 5.27608e8i 0.972537 + 0.972537i 0.999633 0.0270954i \(-0.00862580\pi\)
−0.0270954 + 0.999633i \(0.508626\pi\)
\(314\) 0 0
\(315\) 1.67032e8 7.14799e7i 0.301102 0.128854i
\(316\) 0 0
\(317\) 2.79666e8 2.79666e8i 0.493097 0.493097i −0.416184 0.909281i \(-0.636633\pi\)
0.909281 + 0.416184i \(0.136633\pi\)
\(318\) 0 0
\(319\) 1.51824e8 0.261863
\(320\) 0 0
\(321\) −8.57045e8 −1.44622
\(322\) 0 0
\(323\) 1.20794e7 1.20794e7i 0.0199451 0.0199451i
\(324\) 0 0
\(325\) 3.81011e6 + 1.63365e8i 0.00615666 + 0.263978i
\(326\) 0 0
\(327\) −5.22786e8 5.22786e8i −0.826812 0.826812i
\(328\) 0 0
\(329\) 1.64959e8i 0.255382i
\(330\) 0 0
\(331\) 5.02158e8i 0.761101i −0.924760 0.380550i \(-0.875735\pi\)
0.924760 0.380550i \(-0.124265\pi\)
\(332\) 0 0
\(333\) 4.07031e8 + 4.07031e8i 0.604050 + 0.604050i
\(334\) 0 0
\(335\) 7.06627e6 + 1.65123e7i 0.0102691 + 0.0239966i
\(336\) 0 0
\(337\) 5.37281e8 5.37281e8i 0.764711 0.764711i −0.212459 0.977170i \(-0.568147\pi\)
0.977170 + 0.212459i \(0.0681473\pi\)
\(338\) 0 0
\(339\) 7.73097e7 0.107779
\(340\) 0 0
\(341\) −1.04633e9 −1.42899
\(342\) 0 0
\(343\) −3.95032e8 + 3.95032e8i −0.528571 + 0.528571i
\(344\) 0 0
\(345\) 2.89940e8 7.23730e8i 0.380138 0.948877i
\(346\) 0 0
\(347\) 3.25029e8 + 3.25029e8i 0.417609 + 0.417609i 0.884379 0.466770i \(-0.154582\pi\)
−0.466770 + 0.884379i \(0.654582\pi\)
\(348\) 0 0
\(349\) 1.22607e8i 0.154392i 0.997016 + 0.0771962i \(0.0245968\pi\)
−0.997016 + 0.0771962i \(0.975403\pi\)
\(350\) 0 0
\(351\) 5.64576e7i 0.0696863i
\(352\) 0 0
\(353\) 1.43557e8 + 1.43557e8i 0.173705 + 0.173705i 0.788605 0.614900i \(-0.210804\pi\)
−0.614900 + 0.788605i \(0.710804\pi\)
\(354\) 0 0
\(355\) 1.23944e8 3.09382e8i 0.147037 0.367026i
\(356\) 0 0
\(357\) 2.10900e7 2.10900e7i 0.0245323 0.0245323i
\(358\) 0 0
\(359\) −1.16713e9 −1.33134 −0.665672 0.746245i \(-0.731855\pi\)
−0.665672 + 0.746245i \(0.731855\pi\)
\(360\) 0 0
\(361\) −7.16823e8 −0.801931
\(362\) 0 0
\(363\) 1.76495e8 1.76495e8i 0.193668 0.193668i
\(364\) 0 0
\(365\) −6.51193e8 1.52169e9i −0.700946 1.63795i
\(366\) 0 0
\(367\) 1.34907e8 + 1.34907e8i 0.142464 + 0.142464i 0.774742 0.632278i \(-0.217880\pi\)
−0.632278 + 0.774742i \(0.717880\pi\)
\(368\) 0 0
\(369\) 9.93276e8i 1.02915i
\(370\) 0 0
\(371\) 1.52848e8i 0.155400i
\(372\) 0 0
\(373\) −9.25897e8 9.25897e8i −0.923808 0.923808i 0.0734878 0.997296i \(-0.476587\pi\)
−0.997296 + 0.0734878i \(0.976587\pi\)
\(374\) 0 0
\(375\) 1.28459e9 + 4.80184e8i 1.25793 + 0.470217i
\(376\) 0 0
\(377\) −4.63592e7 + 4.63592e7i −0.0445596 + 0.0445596i
\(378\) 0 0
\(379\) 3.19599e8 0.301556 0.150778 0.988568i \(-0.451822\pi\)
0.150778 + 0.988568i \(0.451822\pi\)
\(380\) 0 0
\(381\) −1.00963e9 −0.935240
\(382\) 0 0
\(383\) −5.78279e8 + 5.78279e8i −0.525946 + 0.525946i −0.919361 0.393415i \(-0.871294\pi\)
0.393415 + 0.919361i \(0.371294\pi\)
\(384\) 0 0
\(385\) 4.60421e8 1.97032e8i 0.411190 0.175965i
\(386\) 0 0
\(387\) 6.92097e8 + 6.92097e8i 0.606986 + 0.606986i
\(388\) 0 0
\(389\) 3.77486e8i 0.325145i −0.986697 0.162573i \(-0.948021\pi\)
0.986697 0.162573i \(-0.0519792\pi\)
\(390\) 0 0
\(391\) 5.70212e7i 0.0482412i
\(392\) 0 0
\(393\) −2.23066e8 2.23066e8i −0.185379 0.185379i
\(394\) 0 0
\(395\) 1.49469e9 + 5.98802e8i 1.22029 + 0.488870i
\(396\) 0 0
\(397\) 3.07795e8 3.07795e8i 0.246885 0.246885i −0.572806 0.819691i \(-0.694145\pi\)
0.819691 + 0.572806i \(0.194145\pi\)
\(398\) 0 0
\(399\) 3.09118e8 0.243624
\(400\) 0 0
\(401\) 7.45129e8 0.577067 0.288533 0.957470i \(-0.406832\pi\)
0.288533 + 0.957470i \(0.406832\pi\)
\(402\) 0 0
\(403\) 3.19494e8 3.19494e8i 0.243162 0.243162i
\(404\) 0 0
\(405\) −1.43695e9 5.75670e8i −1.07485 0.430607i
\(406\) 0 0
\(407\) 1.12197e9 + 1.12197e9i 0.824900 + 0.824900i
\(408\) 0 0
\(409\) 4.05732e8i 0.293230i 0.989194 + 0.146615i \(0.0468378\pi\)
−0.989194 + 0.146615i \(0.953162\pi\)
\(410\) 0 0
\(411\) 3.21009e9i 2.28071i
\(412\) 0 0
\(413\) 4.50312e8 + 4.50312e8i 0.314549 + 0.314549i
\(414\) 0 0
\(415\) 6.51167e8 2.78661e8i 0.447223 0.191385i
\(416\) 0 0
\(417\) 1.61316e9 1.61316e9i 1.08944 1.08944i
\(418\) 0 0
\(419\) −1.51364e9 −1.00525 −0.502623 0.864506i \(-0.667632\pi\)
−0.502623 + 0.864506i \(0.667632\pi\)
\(420\) 0 0
\(421\) −4.79908e8 −0.313452 −0.156726 0.987642i \(-0.550094\pi\)
−0.156726 + 0.987642i \(0.550094\pi\)
\(422\) 0 0
\(423\) −5.54098e8 + 5.54098e8i −0.355955 + 0.355955i
\(424\) 0 0
\(425\) 1.00273e8 2.33863e6i 0.0633612 0.00147775i
\(426\) 0 0
\(427\) 8.06633e8 + 8.06633e8i 0.501393 + 0.501393i
\(428\) 0 0
\(429\) 6.36277e8i 0.389086i
\(430\) 0 0
\(431\) 8.83724e8i 0.531675i −0.964018 0.265837i \(-0.914352\pi\)
0.964018 0.265837i \(-0.0856484\pi\)
\(432\) 0 0
\(433\) −3.12796e7 3.12796e7i −0.0185163 0.0185163i 0.697788 0.716304i \(-0.254168\pi\)
−0.716304 + 0.697788i \(0.754168\pi\)
\(434\) 0 0
\(435\) 2.16473e8 + 5.05849e8i 0.126093 + 0.294652i
\(436\) 0 0
\(437\) 4.17883e8 4.17883e8i 0.239535 0.239535i
\(438\) 0 0
\(439\) −1.14996e9 −0.648720 −0.324360 0.945934i \(-0.605149\pi\)
−0.324360 + 0.945934i \(0.605149\pi\)
\(440\) 0 0
\(441\) −1.20669e9 −0.669979
\(442\) 0 0
\(443\) 1.77500e9 1.77500e9i 0.970028 0.970028i −0.0295356 0.999564i \(-0.509403\pi\)
0.999564 + 0.0295356i \(0.00940284\pi\)
\(444\) 0 0
\(445\) 7.71763e8 1.92643e9i 0.415168 1.03632i
\(446\) 0 0
\(447\) 1.34653e9 + 1.34653e9i 0.713085 + 0.713085i
\(448\) 0 0
\(449\) 7.01757e8i 0.365868i −0.983125 0.182934i \(-0.941441\pi\)
0.983125 0.182934i \(-0.0585595\pi\)
\(450\) 0 0
\(451\) 2.73794e9i 1.40542i
\(452\) 0 0
\(453\) 2.73883e9 + 2.73883e9i 1.38427 + 1.38427i
\(454\) 0 0
\(455\) −8.04250e7 + 2.00752e8i −0.0400268 + 0.0999125i
\(456\) 0 0
\(457\) −2.00280e9 + 2.00280e9i −0.981592 + 0.981592i −0.999834 0.0182412i \(-0.994193\pi\)
0.0182412 + 0.999834i \(0.494193\pi\)
\(458\) 0 0
\(459\) −3.46535e7 −0.0167264
\(460\) 0 0
\(461\) 2.77556e9 1.31946 0.659731 0.751502i \(-0.270670\pi\)
0.659731 + 0.751502i \(0.270670\pi\)
\(462\) 0 0
\(463\) 5.66758e8 5.66758e8i 0.265377 0.265377i −0.561857 0.827234i \(-0.689913\pi\)
0.827234 + 0.561857i \(0.189913\pi\)
\(464\) 0 0
\(465\) −1.49187e9 3.48617e9i −0.688091 1.60792i
\(466\) 0 0
\(467\) 1.67690e9 + 1.67690e9i 0.761902 + 0.761902i 0.976666 0.214764i \(-0.0688983\pi\)
−0.214764 + 0.976666i \(0.568898\pi\)
\(468\) 0 0
\(469\) 2.37699e7i 0.0106395i
\(470\) 0 0
\(471\) 2.59284e9i 1.14341i
\(472\) 0 0
\(473\) 1.90775e9 + 1.90775e9i 0.828909 + 0.828909i
\(474\) 0 0
\(475\) 7.51997e8 + 7.17719e8i 0.321950 + 0.307275i
\(476\) 0 0
\(477\) −5.13417e8 + 5.13417e8i −0.216599 + 0.216599i
\(478\) 0 0
\(479\) 2.74743e9 1.14223 0.571114 0.820871i \(-0.306511\pi\)
0.571114 + 0.820871i \(0.306511\pi\)
\(480\) 0 0
\(481\) −6.85183e8 −0.280736
\(482\) 0 0
\(483\) 7.29604e8 7.29604e8i 0.294627 0.294627i
\(484\) 0 0
\(485\) 3.70907e9 1.58726e9i 1.47628 0.631760i
\(486\) 0 0
\(487\) −1.32008e9 1.32008e9i −0.517902 0.517902i 0.399034 0.916936i \(-0.369346\pi\)
−0.916936 + 0.399034i \(0.869346\pi\)
\(488\) 0 0
\(489\) 2.42067e9i 0.936168i
\(490\) 0 0
\(491\) 7.59558e8i 0.289585i −0.989462 0.144792i \(-0.953749\pi\)
0.989462 0.144792i \(-0.0462514\pi\)
\(492\) 0 0
\(493\) 2.84551e7 + 2.84551e7i 0.0106954 + 0.0106954i
\(494\) 0 0
\(495\) 2.20839e9 + 8.84723e8i 0.818385 + 0.327860i
\(496\) 0 0
\(497\) 3.11893e8 3.11893e8i 0.113962 0.113962i
\(498\) 0 0
\(499\) −3.16728e9 −1.14113 −0.570565 0.821253i \(-0.693276\pi\)
−0.570565 + 0.821253i \(0.693276\pi\)
\(500\) 0 0
\(501\) −5.17086e9 −1.83709
\(502\) 0 0
\(503\) −2.45155e9 + 2.45155e9i −0.858920 + 0.858920i −0.991211 0.132291i \(-0.957767\pi\)
0.132291 + 0.991211i \(0.457767\pi\)
\(504\) 0 0
\(505\) −3.75838e9 1.50568e9i −1.29862 0.520250i
\(506\) 0 0
\(507\) 2.59228e9 + 2.59228e9i 0.883392 + 0.883392i
\(508\) 0 0
\(509\) 4.49129e9i 1.50959i −0.655961 0.754794i \(-0.727737\pi\)
0.655961 0.754794i \(-0.272263\pi\)
\(510\) 0 0
\(511\) 2.19052e9i 0.726229i
\(512\) 0 0
\(513\) −2.53960e8 2.53960e8i −0.0830529 0.0830529i
\(514\) 0 0
\(515\) −5.17351e9 + 2.21395e9i −1.66902 + 0.714239i
\(516\) 0 0
\(517\) −1.52736e9 + 1.52736e9i −0.486098 + 0.486098i
\(518\) 0 0
\(519\) −1.34314e9 −0.421731
\(520\) 0 0
\(521\) 6.44243e8 0.199580 0.0997902 0.995009i \(-0.468183\pi\)
0.0997902 + 0.995009i \(0.468183\pi\)
\(522\) 0 0
\(523\) −2.95865e9 + 2.95865e9i −0.904353 + 0.904353i −0.995809 0.0914562i \(-0.970848\pi\)
0.0914562 + 0.995809i \(0.470848\pi\)
\(524\) 0 0
\(525\) 1.31295e9 + 1.25310e9i 0.395996 + 0.377945i
\(526\) 0 0
\(527\) −1.96105e8 1.96105e8i −0.0583648 0.0583648i
\(528\) 0 0
\(529\) 1.43219e9i 0.420635i
\(530\) 0 0
\(531\) 3.02520e9i 0.876847i
\(532\) 0 0
\(533\) 8.36024e8 + 8.36024e8i 0.239152 + 0.239152i
\(534\) 0 0
\(535\) −1.50067e9 3.50672e9i −0.423688 0.990064i
\(536\) 0 0
\(537\) −3.57542e9 + 3.57542e9i −0.996361 + 0.996361i
\(538\) 0 0
\(539\) −3.32622e9 −0.914934
\(540\) 0 0
\(541\) −2.47049e9 −0.670800 −0.335400 0.942076i \(-0.608871\pi\)
−0.335400 + 0.942076i \(0.608871\pi\)
\(542\) 0 0
\(543\) 1.39778e9 1.39778e9i 0.374661 0.374661i
\(544\) 0 0
\(545\) 1.22367e9 3.05444e9i 0.323799 0.808248i
\(546\) 0 0
\(547\) −1.45879e9 1.45879e9i −0.381100 0.381100i 0.490399 0.871498i \(-0.336851\pi\)
−0.871498 + 0.490399i \(0.836851\pi\)
\(548\) 0 0
\(549\) 5.41897e9i 1.39770i
\(550\) 0 0
\(551\) 4.17070e8i 0.106213i
\(552\) 0 0
\(553\) 1.50682e9 + 1.50682e9i 0.378899 + 0.378899i
\(554\) 0 0
\(555\) −2.13847e9 + 5.33792e9i −0.530980 + 1.32540i
\(556\) 0 0
\(557\) 1.88379e9 1.88379e9i 0.461890 0.461890i −0.437385 0.899274i \(-0.644095\pi\)
0.899274 + 0.437385i \(0.144095\pi\)
\(558\) 0 0
\(559\) −1.16505e9 −0.282101
\(560\) 0 0
\(561\) 3.90545e8 0.0933902
\(562\) 0 0
\(563\) −5.79162e9 + 5.79162e9i −1.36779 + 1.36779i −0.504219 + 0.863576i \(0.668220\pi\)
−0.863576 + 0.504219i \(0.831780\pi\)
\(564\) 0 0
\(565\) 1.35368e8 + 3.16324e8i 0.0315751 + 0.0737840i
\(566\) 0 0
\(567\) −1.44861e9 1.44861e9i −0.333742 0.333742i
\(568\) 0 0
\(569\) 7.90563e9i 1.79905i 0.436867 + 0.899526i \(0.356088\pi\)
−0.436867 + 0.899526i \(0.643912\pi\)
\(570\) 0 0
\(571\) 4.35415e9i 0.978762i −0.872070 0.489381i \(-0.837223\pi\)
0.872070 0.489381i \(-0.162777\pi\)
\(572\) 0 0
\(573\) 3.71372e9 + 3.71372e9i 0.824648 + 0.824648i
\(574\) 0 0
\(575\) 3.46893e9 8.09045e7i 0.760953 0.0177474i
\(576\) 0 0
\(577\) 3.90259e9 3.90259e9i 0.845741 0.845741i −0.143857 0.989598i \(-0.545951\pi\)
0.989598 + 0.143857i \(0.0459507\pi\)
\(578\) 0 0
\(579\) −6.23120e9 −1.33413
\(580\) 0 0
\(581\) 9.37373e8 0.198288
\(582\) 0 0
\(583\) −1.41522e9 + 1.41522e9i −0.295791 + 0.295791i
\(584\) 0 0
\(585\) −9.44475e8 + 4.04179e8i −0.195050 + 0.0834695i
\(586\) 0 0
\(587\) 3.86538e9 + 3.86538e9i 0.788786 + 0.788786i 0.981295 0.192509i \(-0.0616625\pi\)
−0.192509 + 0.981295i \(0.561663\pi\)
\(588\) 0 0
\(589\) 2.87433e9i 0.579606i
\(590\) 0 0
\(591\) 1.70719e9i 0.340193i
\(592\) 0 0
\(593\) 2.19980e9 + 2.19980e9i 0.433203 + 0.433203i 0.889717 0.456513i \(-0.150902\pi\)
−0.456513 + 0.889717i \(0.650902\pi\)
\(594\) 0 0
\(595\) 1.23221e8 + 4.93647e7i 0.0239814 + 0.00960742i
\(596\) 0 0
\(597\) −8.60142e9 + 8.60142e9i −1.65448 + 1.65448i
\(598\) 0 0
\(599\) −2.97273e7 −0.00565148 −0.00282574 0.999996i \(-0.500899\pi\)
−0.00282574 + 0.999996i \(0.500899\pi\)
\(600\) 0 0
\(601\) 8.86874e8 0.166648 0.0833242 0.996522i \(-0.473446\pi\)
0.0833242 + 0.996522i \(0.473446\pi\)
\(602\) 0 0
\(603\) −7.98433e7 + 7.98433e7i −0.0148295 + 0.0148295i
\(604\) 0 0
\(605\) 1.03119e9 + 4.13116e8i 0.189320 + 0.0758452i
\(606\) 0 0
\(607\) −7.56606e9 7.56606e9i −1.37312 1.37312i −0.855775 0.517348i \(-0.826919\pi\)
−0.517348 0.855775i \(-0.673081\pi\)
\(608\) 0 0
\(609\) 7.28184e8i 0.130641i
\(610\) 0 0
\(611\) 9.32750e8i 0.165433i
\(612\) 0 0
\(613\) −1.67645e9 1.67645e9i −0.293954 0.293954i 0.544686 0.838640i \(-0.316649\pi\)
−0.838640 + 0.544686i \(0.816649\pi\)
\(614\) 0 0
\(615\) 9.12229e9 3.90379e9i 1.58140 0.676743i
\(616\) 0 0
\(617\) 6.41892e9 6.41892e9i 1.10018 1.10018i 0.105793 0.994388i \(-0.466262\pi\)
0.994388 0.105793i \(-0.0337380\pi\)
\(618\) 0 0
\(619\) −5.97506e8 −0.101257 −0.0506285 0.998718i \(-0.516122\pi\)
−0.0506285 + 0.998718i \(0.516122\pi\)
\(620\) 0 0
\(621\) −1.19883e9 −0.200880
\(622\) 0 0
\(623\) 1.94206e9 1.94206e9i 0.321776 0.321776i
\(624\) 0 0
\(625\) 2.84545e8 + 6.09688e9i 0.0466198 + 0.998913i
\(626\) 0 0
\(627\) 2.86213e9 + 2.86213e9i 0.463717 + 0.463717i
\(628\) 0 0
\(629\) 4.20563e8i 0.0673836i
\(630\) 0 0
\(631\) 5.29242e9i 0.838593i −0.907849 0.419297i \(-0.862277\pi\)
0.907849 0.419297i \(-0.137723\pi\)
\(632\) 0 0
\(633\) −3.57822e9 3.57822e9i −0.560730 0.560730i
\(634\) 0 0
\(635\) −1.76783e9 4.13103e9i −0.273989 0.640252i
\(636\) 0 0
\(637\) 1.01565e9 1.01565e9i 0.155689 0.155689i
\(638\) 0 0
\(639\) 2.09530e9 0.317683
\(640\) 0 0
\(641\) 1.28072e10 1.92066 0.960329 0.278869i \(-0.0899596\pi\)
0.960329 + 0.278869i \(0.0899596\pi\)
\(642\) 0 0
\(643\) 7.57296e9 7.57296e9i 1.12338 1.12338i 0.132153 0.991229i \(-0.457811\pi\)
0.991229 0.132153i \(-0.0421889\pi\)
\(644\) 0 0
\(645\) −3.63616e9 + 9.07635e9i −0.533561 + 1.33184i
\(646\) 0 0
\(647\) 3.43154e9 + 3.43154e9i 0.498108 + 0.498108i 0.910849 0.412740i \(-0.135428\pi\)
−0.412740 + 0.910849i \(0.635428\pi\)
\(648\) 0 0
\(649\) 8.33890e9i 1.19744i
\(650\) 0 0
\(651\) 5.01844e9i 0.712911i
\(652\) 0 0
\(653\) −1.60565e9 1.60565e9i −0.225660 0.225660i 0.585217 0.810877i \(-0.301009\pi\)
−0.810877 + 0.585217i \(0.801009\pi\)
\(654\) 0 0
\(655\) 5.22123e8 1.30329e9i 0.0725987 0.181216i
\(656\) 0 0
\(657\) 7.35796e9 7.35796e9i 1.01223 1.01223i
\(658\) 0 0
\(659\) 4.43687e9 0.603917 0.301959 0.953321i \(-0.402360\pi\)
0.301959 + 0.953321i \(0.402360\pi\)
\(660\) 0 0
\(661\) −8.67113e9 −1.16781 −0.583903 0.811823i \(-0.698475\pi\)
−0.583903 + 0.811823i \(0.698475\pi\)
\(662\) 0 0
\(663\) −1.19252e8 + 1.19252e8i −0.0158916 + 0.0158916i
\(664\) 0 0
\(665\) 5.41260e8 + 1.26480e9i 0.0713724 + 0.166781i
\(666\) 0 0
\(667\) 9.84399e8 + 9.84399e8i 0.128449 + 0.128449i
\(668\) 0 0
\(669\) 1.16685e10i 1.50668i
\(670\) 0 0
\(671\) 1.49373e10i 1.90872i
\(672\) 0 0
\(673\) −3.38498e9 3.38498e9i −0.428059 0.428059i 0.459908 0.887967i \(-0.347882\pi\)
−0.887967 + 0.459908i \(0.847882\pi\)
\(674\) 0 0
\(675\) −4.91681e7 2.10817e9i −0.00615347 0.263842i
\(676\) 0 0
\(677\) 6.44910e8 6.44910e8i 0.0798802 0.0798802i −0.666038 0.745918i \(-0.732011\pi\)
0.745918 + 0.666038i \(0.232011\pi\)
\(678\) 0 0
\(679\) 5.33931e9 0.654547
\(680\) 0 0
\(681\) −1.36059e10 −1.65087
\(682\) 0 0
\(683\) −9.58841e9 + 9.58841e9i −1.15153 + 1.15153i −0.165280 + 0.986247i \(0.552853\pi\)
−0.986247 + 0.165280i \(0.947147\pi\)
\(684\) 0 0
\(685\) 1.31345e10 5.62080e9i 1.56134 0.668161i
\(686\) 0 0
\(687\) −1.33118e10 1.33118e10i −1.56635 1.56635i
\(688\) 0 0
\(689\) 8.64270e8i 0.100666i
\(690\) 0 0
\(691\) 1.41809e10i 1.63504i 0.575897 + 0.817522i \(0.304653\pi\)
−0.575897 + 0.817522i \(0.695347\pi\)
\(692\) 0 0
\(693\) 2.22631e9 + 2.22631e9i 0.254109 + 0.254109i
\(694\) 0 0
\(695\) 9.42510e9 + 3.77587e9i 1.06497 + 0.426649i
\(696\) 0 0
\(697\) 5.13149e8 5.13149e8i 0.0574022 0.0574022i
\(698\) 0 0
\(699\) −6.27137e9 −0.694532
\(700\) 0 0
\(701\) 4.28213e9 0.469512 0.234756 0.972054i \(-0.424571\pi\)
0.234756 + 0.972054i \(0.424571\pi\)
\(702\) 0 0
\(703\) −3.08212e9 + 3.08212e9i −0.334585 + 0.334585i
\(704\) 0 0
\(705\) −7.26659e9 2.91113e9i −0.781032 0.312896i
\(706\) 0 0
\(707\) −3.78888e9 3.78888e9i −0.403220 0.403220i
\(708\) 0 0
\(709\) 3.43170e8i 0.0361615i −0.999837 0.0180808i \(-0.994244\pi\)
0.999837 0.0180808i \(-0.00575560\pi\)
\(710\) 0 0
\(711\) 1.01228e10i 1.05623i
\(712\) 0 0
\(713\) −6.78420e9 6.78420e9i −0.700947 0.700947i
\(714\) 0 0
\(715\) −2.60342e9 + 1.11411e9i −0.266363 + 0.113987i
\(716\) 0 0
\(717\) 9.98915e9 9.98915e9i 1.01207 1.01207i
\(718\) 0 0
\(719\) 1.29027e10 1.29458 0.647289 0.762245i \(-0.275903\pi\)
0.647289 + 0.762245i \(0.275903\pi\)
\(720\) 0 0
\(721\) −7.44742e9 −0.740001
\(722\) 0 0
\(723\) 1.49499e10 1.49499e10i 1.47114 1.47114i
\(724\) 0 0
\(725\) −1.69072e9 + 1.77146e9i −0.164774 + 0.172643i
\(726\) 0 0
\(727\) −3.85294e9 3.85294e9i −0.371896 0.371896i 0.496271 0.868168i \(-0.334702\pi\)
−0.868168 + 0.496271i \(0.834702\pi\)
\(728\) 0 0
\(729\) 6.02444e9i 0.575931i
\(730\) 0 0
\(731\) 7.15107e8i 0.0677111i
\(732\) 0 0
\(733\) −1.24419e10 1.24419e10i −1.16687 1.16687i −0.982939 0.183933i \(-0.941117\pi\)
−0.183933 0.982939i \(-0.558883\pi\)
\(734\) 0 0
\(735\) −4.74257e9 1.10823e10i −0.440563 1.02950i
\(736\) 0 0
\(737\) −2.20086e8 + 2.20086e8i −0.0202514 + 0.0202514i
\(738\) 0 0
\(739\) 1.74752e10 1.59282 0.796409 0.604759i \(-0.206730\pi\)
0.796409 + 0.604759i \(0.206730\pi\)
\(740\) 0 0
\(741\) −1.74789e9 −0.157816
\(742\) 0 0
\(743\) −7.57887e9 + 7.57887e9i −0.677866 + 0.677866i −0.959517 0.281651i \(-0.909118\pi\)
0.281651 + 0.959517i \(0.409118\pi\)
\(744\) 0 0
\(745\) −3.15179e9 + 7.86730e9i −0.279261 + 0.697073i
\(746\) 0 0
\(747\) 3.14864e9 + 3.14864e9i 0.276377 + 0.276377i
\(748\) 0 0
\(749\) 5.04803e9i 0.438970i
\(750\) 0 0
\(751\) 1.44627e10i 1.24597i 0.782232 + 0.622987i \(0.214081\pi\)
−0.782232 + 0.622987i \(0.785919\pi\)
\(752\) 0 0
\(753\) −7.29966e9 7.29966e9i −0.623046 0.623046i
\(754\) 0 0
\(755\) −6.41068e9 + 1.60019e10i −0.542113 + 1.35319i
\(756\) 0 0
\(757\) −7.62134e9 + 7.62134e9i −0.638551 + 0.638551i −0.950198 0.311647i \(-0.899119\pi\)
0.311647 + 0.950198i \(0.399119\pi\)
\(758\) 0 0
\(759\) 1.35108e10 1.12159
\(760\) 0 0
\(761\) −2.68630e9 −0.220957 −0.110479 0.993879i \(-0.535238\pi\)
−0.110479 + 0.993879i \(0.535238\pi\)
\(762\) 0 0
\(763\) 3.07923e9 3.07923e9i 0.250961 0.250961i
\(764\) 0 0
\(765\) 2.48084e8 + 5.79716e8i 0.0200347 + 0.0468167i
\(766\) 0 0
\(767\) −2.54626e9 2.54626e9i −0.203760 0.203760i
\(768\) 0 0
\(769\) 1.53439e10i 1.21673i −0.793658 0.608364i \(-0.791826\pi\)
0.793658 0.608364i \(-0.208174\pi\)
\(770\) 0 0
\(771\) 1.87817e10i 1.47586i
\(772\) 0 0
\(773\) 4.80566e9 + 4.80566e9i 0.374218 + 0.374218i 0.869011 0.494793i \(-0.164756\pi\)
−0.494793 + 0.869011i \(0.664756\pi\)
\(774\) 0 0
\(775\) 1.16519e10 1.22084e10i 0.899171 0.942114i
\(776\) 0 0
\(777\) −5.38123e9 + 5.38123e9i −0.411537 + 0.411537i
\(778\) 0 0
\(779\) 7.52128e9 0.570047
\(780\) 0 0
\(781\) 5.77565e9 0.433832
\(782\) 0 0
\(783\) 5.98249e8 5.98249e8i 0.0445365 0.0445365i
\(784\) 0 0
\(785\) 1.06090e10 4.54001e9i 0.782763 0.334976i
\(786\) 0 0
\(787\) 1.65336e10 + 1.65336e10i 1.20908 + 1.20908i 0.971325 + 0.237757i \(0.0764121\pi\)
0.237757 + 0.971325i \(0.423588\pi\)
\(788\) 0 0
\(789\) 1.25213e10i 0.907571i
\(790\) 0 0
\(791\) 4.55357e8i 0.0327141i
\(792\) 0 0
\(793\) −4.56106e9 4.56106e9i −0.324795 0.324795i
\(794\) 0 0
\(795\) −6.73309e9 2.69741e9i −0.475258 0.190397i
\(796\) 0 0
\(797\) 1.61801e10 1.61801e10i 1.13208 1.13208i 0.142247 0.989831i \(-0.454567\pi\)
0.989831 0.142247i \(-0.0454327\pi\)
\(798\) 0 0
\(799\) −5.72520e8 −0.0397079
\(800\) 0 0
\(801\) 1.30468e10 0.896993
\(802\) 0 0
\(803\) 2.02820e10 2.02820e10i 1.38232 1.38232i
\(804\) 0 0
\(805\) 4.26280e9 + 1.70776e9i 0.288011 + 0.115383i
\(806\) 0 0
\(807\) −1.42688e10 1.42688e10i −0.955720 0.955720i
\(808\) 0 0
\(809\) 3.48033e9i 0.231100i 0.993302 + 0.115550i \(0.0368631\pi\)
−0.993302 + 0.115550i \(0.963137\pi\)
\(810\) 0 0
\(811\) 1.34188e10i 0.883367i −0.897171 0.441683i \(-0.854382\pi\)
0.897171 0.441683i \(-0.145618\pi\)
\(812\) 0 0
\(813\) −3.60592e9 3.60592e9i −0.235342 0.235342i
\(814\) 0 0
\(815\) −9.90451e9 + 4.23854e9i −0.640887 + 0.274261i
\(816\) 0 0
\(817\) −5.24070e9 + 5.24070e9i −0.336211 + 0.336211i
\(818\) 0 0
\(819\) −1.35960e9 −0.0864802
\(820\) 0 0
\(821\) 1.77890e10 1.12189 0.560947 0.827852i \(-0.310437\pi\)
0.560947 + 0.827852i \(0.310437\pi\)
\(822\) 0 0
\(823\) −6.48743e9 + 6.48743e9i −0.405670 + 0.405670i −0.880226 0.474555i \(-0.842609\pi\)
0.474555 + 0.880226i \(0.342609\pi\)
\(824\) 0 0
\(825\) 5.54124e8 + 2.37591e10i 0.0343573 + 1.47313i
\(826\) 0 0
\(827\) −8.87561e8 8.87561e8i −0.0545668 0.0545668i 0.679297 0.733864i \(-0.262285\pi\)
−0.733864 + 0.679297i \(0.762285\pi\)
\(828\) 0 0
\(829\) 2.15941e10i 1.31642i 0.752834 + 0.658211i \(0.228686\pi\)
−0.752834 + 0.658211i \(0.771314\pi\)
\(830\) 0 0
\(831\) 2.81608e10i 1.70232i
\(832\) 0 0
\(833\) −6.23405e8 6.23405e8i −0.0373691 0.0373691i
\(834\) 0 0
\(835\) −9.05407e9 2.11573e10i −0.538197 1.25765i
\(836\) 0 0
\(837\) −4.12296e9 + 4.12296e9i −0.243036 + 0.243036i
\(838\) 0 0
\(839\) 9.54702e9 0.558086 0.279043 0.960279i \(-0.409983\pi\)
0.279043 + 0.960279i \(0.409983\pi\)
\(840\) 0 0
\(841\) 1.62674e10 0.943044
\(842\) 0 0
\(843\) 2.24028e10 2.24028e10i 1.28797 1.28797i
\(844\) 0 0
\(845\) −6.06765e9 + 1.51457e10i −0.345957 + 0.863557i
\(846\) 0 0
\(847\) 1.03956e9 + 1.03956e9i 0.0587839 + 0.0587839i
\(848\) 0 0
\(849\) 1.95096e10i 1.09414i
\(850\) 0 0
\(851\) 1.45493e10i 0.809261i
\(852\) 0 0
\(853\) −4.50377e9 4.50377e9i −0.248459 0.248459i 0.571879 0.820338i \(-0.306215\pi\)
−0.820338 + 0.571879i \(0.806215\pi\)
\(854\) 0 0
\(855\) −2.43039e9 + 6.06658e9i −0.132982 + 0.331942i
\(856\) 0 0
\(857\) −2.16952e10 + 2.16952e10i −1.17742 + 1.17742i −0.197020 + 0.980400i \(0.563126\pi\)
−0.980400 + 0.197020i \(0.936874\pi\)
\(858\) 0 0
\(859\) −1.35381e10 −0.728755 −0.364378 0.931251i \(-0.618718\pi\)
−0.364378 + 0.931251i \(0.618718\pi\)
\(860\) 0 0
\(861\) 1.31318e10 0.701153
\(862\) 0 0
\(863\) −2.07408e10 + 2.07408e10i −1.09847 + 1.09847i −0.103877 + 0.994590i \(0.533125\pi\)
−0.994590 + 0.103877i \(0.966875\pi\)
\(864\) 0 0
\(865\) −2.35181e9 5.49566e9i −0.123551 0.288711i
\(866\) 0 0
\(867\) −1.81493e10 1.81493e10i −0.945786 0.945786i
\(868\) 0 0
\(869\) 2.79034e10i 1.44241i
\(870\) 0 0
\(871\) 1.34406e8i 0.00689213i
\(872\) 0 0
\(873\) 1.79348e10 + 1.79348e10i 0.912318 + 0.912318i
\(874\) 0 0
\(875\) −2.82830e9 + 7.56628e9i −0.142724 + 0.381816i
\(876\) 0 0
\(877\) −1.69228e10 + 1.69228e10i −0.847178 + 0.847178i −0.989780 0.142602i \(-0.954453\pi\)
0.142602 + 0.989780i \(0.454453\pi\)
\(878\) 0 0
\(879\) −1.64009e10 −0.814530
\(880\) 0 0
\(881\) 3.79762e10 1.87109 0.935547 0.353203i \(-0.114907\pi\)
0.935547 + 0.353203i \(0.114907\pi\)
\(882\) 0 0
\(883\) 5.98400e9 5.98400e9i 0.292502 0.292502i −0.545566 0.838068i \(-0.683685\pi\)
0.838068 + 0.545566i \(0.183685\pi\)
\(884\) 0 0
\(885\) −2.77836e10 + 1.18897e10i −1.34737 + 0.576594i
\(886\) 0 0
\(887\) 1.83183e10 + 1.83183e10i 0.881360 + 0.881360i 0.993673 0.112313i \(-0.0358259\pi\)
−0.112313 + 0.993673i \(0.535826\pi\)
\(888\) 0 0
\(889\) 5.94674e9i 0.283872i
\(890\) 0 0
\(891\) 2.68254e10i 1.27050i
\(892\) 0 0
\(893\) −4.19574e9 4.19574e9i −0.197164 0.197164i
\(894\) 0 0
\(895\) −2.08898e10 8.36886e9i −0.973990 0.390199i
\(896\) 0 0
\(897\) −4.12550e9 + 4.12550e9i −0.190855 + 0.190855i
\(898\) 0 0
\(899\) 6.77100e9 0.310809
\(900\) 0 0
\(901\) −5.30486e8 −0.0241623
\(902\) 0 0
\(903\) −9.15000e9 + 9.15000e9i −0.413537 + 0.413537i
\(904\) 0 0
\(905\) 8.16670e9 + 3.27173e9i 0.366249 + 0.146726i
\(906\) 0 0
\(907\) 2.05995e10 + 2.05995e10i 0.916708 + 0.916708i 0.996788 0.0800808i \(-0.0255178\pi\)
−0.0800808 + 0.996788i \(0.525518\pi\)
\(908\) 0 0
\(909\) 2.54537e10i 1.12403i
\(910\) 0 0
\(911\) 3.91426e10i 1.71528i 0.514250 + 0.857640i \(0.328070\pi\)
−0.514250 + 0.857640i \(0.671930\pi\)
\(912\) 0 0
\(913\) 8.67916e9 + 8.67916e9i 0.377424 + 0.377424i
\(914\) 0 0
\(915\) −4.97681e10 + 2.12978e10i −2.14772 + 0.919094i
\(916\) 0 0
\(917\) 1.31387e9 1.31387e9i 0.0562677 0.0562677i
\(918\) 0 0
\(919\) −3.08816e10 −1.31249 −0.656245 0.754548i \(-0.727856\pi\)
−0.656245 + 0.754548i \(0.727856\pi\)
\(920\) 0 0
\(921\) 6.51769e9 0.274906
\(922\) 0 0
\(923\) −1.76358e9 + 1.76358e9i −0.0738226 + 0.0738226i
\(924\) 0 0
\(925\) −2.55853e10 + 5.96716e8i −1.06290 + 0.0247897i
\(926\) 0 0
\(927\) −2.50159e10 2.50159e10i −1.03142 1.03142i
\(928\) 0 0
\(929\) 1.91058e10i 0.781825i −0.920428 0.390912i \(-0.872160\pi\)
0.920428 0.390912i \(-0.127840\pi\)
\(930\) 0 0
\(931\) 9.13731e9i 0.371103i
\(932\) 0 0
\(933\) −2.28034e10 2.28034e10i −0.919208 0.919208i
\(934\) 0 0
\(935\) 6.83837e8 + 1.59797e9i 0.0273597 + 0.0639335i
\(936\) 0 0
\(937\) −1.81182e10 + 1.81182e10i −0.719493 + 0.719493i −0.968501 0.249009i \(-0.919895\pi\)
0.249009 + 0.968501i \(0.419895\pi\)
\(938\) 0 0
\(939\) −4.68605e10 −1.84704
\(940\) 0 0
\(941\) 1.15031e10 0.450039 0.225020 0.974354i \(-0.427755\pi\)
0.225020 + 0.974354i \(0.427755\pi\)
\(942\) 0 0
\(943\) 1.77523e10 1.77523e10i 0.689387 0.689387i
\(944\) 0 0
\(945\) 1.03786e9 2.59063e9i 0.0400061 0.0998607i
\(946\) 0 0
\(947\) 3.38548e10 + 3.38548e10i 1.29537 + 1.29537i 0.931415 + 0.363960i \(0.118576\pi\)
0.363960 + 0.931415i \(0.381424\pi\)
\(948\) 0 0
\(949\) 1.23862e10i 0.470441i
\(950\) 0 0
\(951\) 2.48390e10i 0.936490i
\(952\) 0 0
\(953\) −3.05822e9 3.05822e9i −0.114457 0.114457i 0.647559 0.762016i \(-0.275790\pi\)
−0.762016 + 0.647559i \(0.775790\pi\)
\(954\) 0 0
\(955\) −8.69259e9 + 2.16979e10i −0.322952 + 0.806132i
\(956\) 0 0
\(957\) −6.74227e9 + 6.74227e9i −0.248665 + 0.248665i
\(958\) 0 0
\(959\) 1.89075e10 0.692261
\(960\) 0 0
\(961\) −1.91512e10 −0.696087
\(962\) 0 0
\(963\) 1.69564e10 1.69564e10i 0.611844 0.611844i
\(964\) 0 0
\(965\) −1.09107e10 2.54959e10i −0.390847 0.913323i
\(966\) 0 0
\(967\) −3.23554e10 3.23554e10i −1.15068 1.15068i −0.986417 0.164262i \(-0.947476\pi\)
−0.164262 0.986417i \(-0.552524\pi\)
\(968\) 0 0
\(969\) 1.07285e9i 0.0378797i
\(970\) 0 0
\(971\) 4.12508e9i 0.144599i 0.997383 + 0.0722994i \(0.0230337\pi\)
−0.997383 + 0.0722994i \(0.976966\pi\)
\(972\) 0 0
\(973\) 9.50159e9 + 9.50159e9i 0.330675 + 0.330675i
\(974\) 0 0
\(975\) −7.42399e9 7.08559e9i −0.256520 0.244827i
\(976\) 0 0
\(977\) −3.92345e8 + 3.92345e8i −0.0134598 + 0.0134598i −0.713805 0.700345i \(-0.753030\pi\)
0.700345 + 0.713805i \(0.253030\pi\)
\(978\) 0 0
\(979\) 3.59631e10 1.22495
\(980\) 0 0
\(981\) 2.06863e10 0.699587
\(982\) 0 0
\(983\) 1.27089e9 1.27089e9i 0.0426747 0.0426747i −0.685447 0.728122i \(-0.740393\pi\)
0.728122 + 0.685447i \(0.240393\pi\)
\(984\) 0 0
\(985\) −6.98520e9 + 2.98925e9i −0.232891 + 0.0996633i
\(986\) 0 0
\(987\) −7.32556e9 7.32556e9i −0.242511 0.242511i
\(988\) 0 0
\(989\) 2.47390e10i 0.813194i
\(990\) 0 0
\(991\) 4.10559e9i 0.134004i −0.997753 0.0670020i \(-0.978657\pi\)
0.997753 0.0670020i \(-0.0213434\pi\)
\(992\) 0 0
\(993\) 2.23000e10 + 2.23000e10i 0.722741 + 0.722741i
\(994\) 0 0
\(995\) −5.02549e10 2.01331e10i −1.61733 0.647932i
\(996\) 0 0
\(997\) −2.89545e10 + 2.89545e10i −0.925300 + 0.925300i −0.997398 0.0720978i \(-0.977031\pi\)
0.0720978 + 0.997398i \(0.477031\pi\)
\(998\) 0 0
\(999\) 8.84205e9 0.280591
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.8.n.b.63.2 yes 20
4.3 odd 2 160.8.n.a.63.9 20
5.2 odd 4 160.8.n.a.127.9 yes 20
20.7 even 4 inner 160.8.n.b.127.2 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.8.n.a.63.9 20 4.3 odd 2
160.8.n.a.127.9 yes 20 5.2 odd 4
160.8.n.b.63.2 yes 20 1.1 even 1 trivial
160.8.n.b.127.2 yes 20 20.7 even 4 inner