Properties

Label 1600.2.d.g
Level 16001600
Weight 22
Character orbit 1600.d
Analytic conductor 12.77612.776
Analytic rank 00
Dimension 44
CM discriminant -40
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(801,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.801");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1600=2652 1600 = 2^{6} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1600.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.776064323412.7760643234
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 25 2^{5}
Twist minimal: no (minimal twist has level 320)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q7+3q9β1q11+β2q133β1q19+β3q23β2q37+2q41+3β3q47+13q493β2q537β1q59+3β1q99+O(q100) q - \beta_{3} q^{7} + 3 q^{9} - \beta_1 q^{11} + \beta_{2} q^{13} - 3 \beta_1 q^{19} + \beta_{3} q^{23} - \beta_{2} q^{37} + 2 q^{41} + 3 \beta_{3} q^{47} + 13 q^{49} - 3 \beta_{2} q^{53} - 7 \beta_1 q^{59}+ \cdots - 3 \beta_1 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+12q9+8q41+52q49+36q81+56q89+O(q100) 4 q + 12 q^{9} + 8 q^{41} + 52 q^{49} + 36 q^{81} + 56 q^{89}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+3x2+1 x^{4} + 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== 2ν3+4ν 2\nu^{3} + 4\nu Copy content Toggle raw display
β2\beta_{2}== 2ν3+8ν 2\nu^{3} + 8\nu Copy content Toggle raw display
β3\beta_{3}== 4ν2+6 4\nu^{2} + 6 Copy content Toggle raw display
ν\nu== (β2β1)/4 ( \beta_{2} - \beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β36)/4 ( \beta_{3} - 6 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (β2+2β1)/2 ( -\beta_{2} + 2\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1600Z)×\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times.

nn 577577 901901 11511151
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
801.1
0.618034i
0.618034i
1.61803i
1.61803i
0 0 0 0 0 −4.47214 0 3.00000 0
801.2 0 0 0 0 0 −4.47214 0 3.00000 0
801.3 0 0 0 0 0 4.47214 0 3.00000 0
801.4 0 0 0 0 0 4.47214 0 3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by Q(10)\Q(\sqrt{-10})
4.b odd 2 1 inner
5.b even 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
20.d odd 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.2.d.g 4
4.b odd 2 1 inner 1600.2.d.g 4
5.b even 2 1 inner 1600.2.d.g 4
5.c odd 4 2 320.2.f.a 4
8.b even 2 1 inner 1600.2.d.g 4
8.d odd 2 1 inner 1600.2.d.g 4
15.e even 4 2 2880.2.d.e 4
16.e even 4 1 6400.2.a.bi 2
16.e even 4 1 6400.2.a.bj 2
16.f odd 4 1 6400.2.a.bi 2
16.f odd 4 1 6400.2.a.bj 2
20.d odd 2 1 inner 1600.2.d.g 4
20.e even 4 2 320.2.f.a 4
40.e odd 2 1 CM 1600.2.d.g 4
40.f even 2 1 inner 1600.2.d.g 4
40.i odd 4 2 320.2.f.a 4
40.k even 4 2 320.2.f.a 4
60.l odd 4 2 2880.2.d.e 4
80.i odd 4 1 1280.2.c.b 2
80.i odd 4 1 1280.2.c.c 2
80.j even 4 1 1280.2.c.b 2
80.j even 4 1 1280.2.c.c 2
80.k odd 4 1 6400.2.a.bi 2
80.k odd 4 1 6400.2.a.bj 2
80.q even 4 1 6400.2.a.bi 2
80.q even 4 1 6400.2.a.bj 2
80.s even 4 1 1280.2.c.b 2
80.s even 4 1 1280.2.c.c 2
80.t odd 4 1 1280.2.c.b 2
80.t odd 4 1 1280.2.c.c 2
120.q odd 4 2 2880.2.d.e 4
120.w even 4 2 2880.2.d.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
320.2.f.a 4 5.c odd 4 2
320.2.f.a 4 20.e even 4 2
320.2.f.a 4 40.i odd 4 2
320.2.f.a 4 40.k even 4 2
1280.2.c.b 2 80.i odd 4 1
1280.2.c.b 2 80.j even 4 1
1280.2.c.b 2 80.s even 4 1
1280.2.c.b 2 80.t odd 4 1
1280.2.c.c 2 80.i odd 4 1
1280.2.c.c 2 80.j even 4 1
1280.2.c.c 2 80.s even 4 1
1280.2.c.c 2 80.t odd 4 1
1600.2.d.g 4 1.a even 1 1 trivial
1600.2.d.g 4 4.b odd 2 1 inner
1600.2.d.g 4 5.b even 2 1 inner
1600.2.d.g 4 8.b even 2 1 inner
1600.2.d.g 4 8.d odd 2 1 inner
1600.2.d.g 4 20.d odd 2 1 inner
1600.2.d.g 4 40.e odd 2 1 CM
1600.2.d.g 4 40.f even 2 1 inner
2880.2.d.e 4 15.e even 4 2
2880.2.d.e 4 60.l odd 4 2
2880.2.d.e 4 120.q odd 4 2
2880.2.d.e 4 120.w even 4 2
6400.2.a.bi 2 16.e even 4 1
6400.2.a.bi 2 16.f odd 4 1
6400.2.a.bi 2 80.k odd 4 1
6400.2.a.bi 2 80.q even 4 1
6400.2.a.bj 2 16.e even 4 1
6400.2.a.bj 2 16.f odd 4 1
6400.2.a.bj 2 80.k odd 4 1
6400.2.a.bj 2 80.q even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1600,[χ])S_{2}^{\mathrm{new}}(1600, [\chi]):

T3 T_{3} Copy content Toggle raw display
T7220 T_{7}^{2} - 20 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T220)2 (T^{2} - 20)^{2} Copy content Toggle raw display
1111 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1313 (T2+20)2 (T^{2} + 20)^{2} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
2323 (T220)2 (T^{2} - 20)^{2} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 (T2+20)2 (T^{2} + 20)^{2} Copy content Toggle raw display
4141 (T2)4 (T - 2)^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 (T2180)2 (T^{2} - 180)^{2} Copy content Toggle raw display
5353 (T2+180)2 (T^{2} + 180)^{2} Copy content Toggle raw display
5959 (T2+196)2 (T^{2} + 196)^{2} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 (T14)4 (T - 14)^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less