Properties

Label 6400.2.a.bi
Level $6400$
Weight $2$
Character orbit 6400.a
Self dual yes
Analytic conductor $51.104$
Analytic rank $1$
Dimension $2$
CM discriminant -40
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6400,2,Mod(1,6400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6400 = 2^{8} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.1042572936\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 320)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{7} - 3 q^{9} - 2 q^{11} - \beta q^{13} + 6 q^{19} - \beta q^{23} - \beta q^{37} - 2 q^{41} + 3 \beta q^{47} + 13 q^{49} - 3 \beta q^{53} - 14 q^{59} - 3 \beta q^{63} - 2 \beta q^{77} + 9 q^{81} + \cdots + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{9} - 4 q^{11} + 12 q^{19} - 4 q^{41} + 26 q^{49} - 28 q^{59} + 18 q^{81} - 28 q^{89} - 40 q^{91} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
0 0 0 0 0 −4.47214 0 −3.00000 0
1.2 0 0 0 0 0 4.47214 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by \(\Q(\sqrt{-10}) \)
5.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6400.2.a.bi 2
4.b odd 2 1 6400.2.a.bj 2
5.b even 2 1 inner 6400.2.a.bi 2
5.c odd 4 2 1280.2.c.b 2
8.b even 2 1 6400.2.a.bj 2
8.d odd 2 1 inner 6400.2.a.bi 2
16.e even 4 2 1600.2.d.g 4
16.f odd 4 2 1600.2.d.g 4
20.d odd 2 1 6400.2.a.bj 2
20.e even 4 2 1280.2.c.c 2
40.e odd 2 1 CM 6400.2.a.bi 2
40.f even 2 1 6400.2.a.bj 2
40.i odd 4 2 1280.2.c.c 2
40.k even 4 2 1280.2.c.b 2
80.i odd 4 2 320.2.f.a 4
80.j even 4 2 320.2.f.a 4
80.k odd 4 2 1600.2.d.g 4
80.q even 4 2 1600.2.d.g 4
80.s even 4 2 320.2.f.a 4
80.t odd 4 2 320.2.f.a 4
240.z odd 4 2 2880.2.d.e 4
240.bb even 4 2 2880.2.d.e 4
240.bd odd 4 2 2880.2.d.e 4
240.bf even 4 2 2880.2.d.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
320.2.f.a 4 80.i odd 4 2
320.2.f.a 4 80.j even 4 2
320.2.f.a 4 80.s even 4 2
320.2.f.a 4 80.t odd 4 2
1280.2.c.b 2 5.c odd 4 2
1280.2.c.b 2 40.k even 4 2
1280.2.c.c 2 20.e even 4 2
1280.2.c.c 2 40.i odd 4 2
1600.2.d.g 4 16.e even 4 2
1600.2.d.g 4 16.f odd 4 2
1600.2.d.g 4 80.k odd 4 2
1600.2.d.g 4 80.q even 4 2
2880.2.d.e 4 240.z odd 4 2
2880.2.d.e 4 240.bb even 4 2
2880.2.d.e 4 240.bd odd 4 2
2880.2.d.e 4 240.bf even 4 2
6400.2.a.bi 2 1.a even 1 1 trivial
6400.2.a.bi 2 5.b even 2 1 inner
6400.2.a.bi 2 8.d odd 2 1 inner
6400.2.a.bi 2 40.e odd 2 1 CM
6400.2.a.bj 2 4.b odd 2 1
6400.2.a.bj 2 8.b even 2 1
6400.2.a.bj 2 20.d odd 2 1
6400.2.a.bj 2 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6400))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7}^{2} - 20 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display
\( T_{13}^{2} - 20 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{29} \) Copy content Toggle raw display
\( T_{31} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 20 \) Copy content Toggle raw display
$11$ \( (T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 20 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T - 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 20 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 20 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 180 \) Copy content Toggle raw display
$53$ \( T^{2} - 180 \) Copy content Toggle raw display
$59$ \( (T + 14)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 14)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less