Properties

Label 1600.2.s.a
Level 16001600
Weight 22
Character orbit 1600.s
Analytic conductor 12.77612.776
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(207,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.207");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1600=2652 1600 = 2^{6} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1600.s (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.776064323412.7760643234
Analytic rank: 11
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2q3+(3i3)q7+q9+(i+1)q112iq13+(i1)q17+(3i+3)q19+(6i+6)q21+(i1)q23+4q27+(7i7)q29+2iq31+(2i2)q33++(i+1)q99+O(q100) q - 2 q^{3} + ( - 3 i - 3) q^{7} + q^{9} + ( - i + 1) q^{11} - 2 i q^{13} + ( - i - 1) q^{17} + ( - 3 i + 3) q^{19} + (6 i + 6) q^{21} + (i - 1) q^{23} + 4 q^{27} + ( - 7 i - 7) q^{29} + 2 i q^{31} + (2 i - 2) q^{33} + \cdots + ( - i + 1) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q36q7+2q9+2q112q17+6q19+12q212q23+8q2714q294q3314q47+4q51+16q5312q576q592q616q63++2q99+O(q100) 2 q - 4 q^{3} - 6 q^{7} + 2 q^{9} + 2 q^{11} - 2 q^{17} + 6 q^{19} + 12 q^{21} - 2 q^{23} + 8 q^{27} - 14 q^{29} - 4 q^{33} - 14 q^{47} + 4 q^{51} + 16 q^{53} - 12 q^{57} - 6 q^{59} - 2 q^{61} - 6 q^{63}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1600Z)×\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times.

nn 577577 901901 11511151
χ(n)\chi(n) ii ii 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
207.1
1.00000i
1.00000i
0 −2.00000 0 0 0 −3.00000 3.00000i 0 1.00000 0
943.1 0 −2.00000 0 0 0 −3.00000 + 3.00000i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
80.s even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.2.s.a 2
4.b odd 2 1 400.2.s.a 2
5.b even 2 1 320.2.s.a 2
5.c odd 4 1 320.2.j.a 2
5.c odd 4 1 1600.2.j.a 2
16.e even 4 1 400.2.j.a 2
16.f odd 4 1 1600.2.j.a 2
20.d odd 2 1 80.2.s.a yes 2
20.e even 4 1 80.2.j.a 2
20.e even 4 1 400.2.j.a 2
40.e odd 2 1 640.2.s.b 2
40.f even 2 1 640.2.s.a 2
40.i odd 4 1 640.2.j.b 2
40.k even 4 1 640.2.j.a 2
60.h even 2 1 720.2.z.d 2
60.l odd 4 1 720.2.bd.a 2
80.i odd 4 1 400.2.s.a 2
80.i odd 4 1 640.2.s.b 2
80.j even 4 1 320.2.s.a 2
80.k odd 4 1 320.2.j.a 2
80.k odd 4 1 640.2.j.b 2
80.q even 4 1 80.2.j.a 2
80.q even 4 1 640.2.j.a 2
80.s even 4 1 640.2.s.a 2
80.s even 4 1 inner 1600.2.s.a 2
80.t odd 4 1 80.2.s.a yes 2
240.bf even 4 1 720.2.z.d 2
240.bm odd 4 1 720.2.bd.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
80.2.j.a 2 20.e even 4 1
80.2.j.a 2 80.q even 4 1
80.2.s.a yes 2 20.d odd 2 1
80.2.s.a yes 2 80.t odd 4 1
320.2.j.a 2 5.c odd 4 1
320.2.j.a 2 80.k odd 4 1
320.2.s.a 2 5.b even 2 1
320.2.s.a 2 80.j even 4 1
400.2.j.a 2 16.e even 4 1
400.2.j.a 2 20.e even 4 1
400.2.s.a 2 4.b odd 2 1
400.2.s.a 2 80.i odd 4 1
640.2.j.a 2 40.k even 4 1
640.2.j.a 2 80.q even 4 1
640.2.j.b 2 40.i odd 4 1
640.2.j.b 2 80.k odd 4 1
640.2.s.a 2 40.f even 2 1
640.2.s.a 2 80.s even 4 1
640.2.s.b 2 40.e odd 2 1
640.2.s.b 2 80.i odd 4 1
720.2.z.d 2 60.h even 2 1
720.2.z.d 2 240.bf even 4 1
720.2.bd.a 2 60.l odd 4 1
720.2.bd.a 2 240.bm odd 4 1
1600.2.j.a 2 5.c odd 4 1
1600.2.j.a 2 16.f odd 4 1
1600.2.s.a 2 1.a even 1 1 trivial
1600.2.s.a 2 80.s even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+2 T_{3} + 2 acting on S2new(1600,[χ])S_{2}^{\mathrm{new}}(1600, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
1111 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1313 T2+4 T^{2} + 4 Copy content Toggle raw display
1717 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
1919 T26T+18 T^{2} - 6T + 18 Copy content Toggle raw display
2323 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
2929 T2+14T+98 T^{2} + 14T + 98 Copy content Toggle raw display
3131 T2+4 T^{2} + 4 Copy content Toggle raw display
3737 T2+36 T^{2} + 36 Copy content Toggle raw display
4141 T2+16 T^{2} + 16 Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 T2+14T+98 T^{2} + 14T + 98 Copy content Toggle raw display
5353 (T8)2 (T - 8)^{2} Copy content Toggle raw display
5959 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
6161 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
6767 T2+16 T^{2} + 16 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
7979 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
8383 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
8989 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
9797 T222T+242 T^{2} - 22T + 242 Copy content Toggle raw display
show more
show less