Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [720,2,Mod(163,720)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(720, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("720.163");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 720.z (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 80) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
163.1 |
|
1.00000 | + | 1.00000i | 0 | 2.00000i | 2.00000 | + | 1.00000i | 0 | −3.00000 | + | 3.00000i | −2.00000 | + | 2.00000i | 0 | 1.00000 | + | 3.00000i | ||||||||||||||
667.1 | 1.00000 | − | 1.00000i | 0 | − | 2.00000i | 2.00000 | − | 1.00000i | 0 | −3.00000 | − | 3.00000i | −2.00000 | − | 2.00000i | 0 | 1.00000 | − | 3.00000i | ||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
80.s | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 720.2.z.d | 2 | |
3.b | odd | 2 | 1 | 80.2.s.a | yes | 2 | |
5.c | odd | 4 | 1 | 720.2.bd.a | 2 | ||
12.b | even | 2 | 1 | 320.2.s.a | 2 | ||
15.d | odd | 2 | 1 | 400.2.s.a | 2 | ||
15.e | even | 4 | 1 | 80.2.j.a | ✓ | 2 | |
15.e | even | 4 | 1 | 400.2.j.a | 2 | ||
16.f | odd | 4 | 1 | 720.2.bd.a | 2 | ||
24.f | even | 2 | 1 | 640.2.s.a | 2 | ||
24.h | odd | 2 | 1 | 640.2.s.b | 2 | ||
48.i | odd | 4 | 1 | 320.2.j.a | 2 | ||
48.i | odd | 4 | 1 | 640.2.j.b | 2 | ||
48.k | even | 4 | 1 | 80.2.j.a | ✓ | 2 | |
48.k | even | 4 | 1 | 640.2.j.a | 2 | ||
60.h | even | 2 | 1 | 1600.2.s.a | 2 | ||
60.l | odd | 4 | 1 | 320.2.j.a | 2 | ||
60.l | odd | 4 | 1 | 1600.2.j.a | 2 | ||
80.s | even | 4 | 1 | inner | 720.2.z.d | 2 | |
120.q | odd | 4 | 1 | 640.2.j.b | 2 | ||
120.w | even | 4 | 1 | 640.2.j.a | 2 | ||
240.t | even | 4 | 1 | 400.2.j.a | 2 | ||
240.z | odd | 4 | 1 | 80.2.s.a | yes | 2 | |
240.bb | even | 4 | 1 | 320.2.s.a | 2 | ||
240.bd | odd | 4 | 1 | 400.2.s.a | 2 | ||
240.bd | odd | 4 | 1 | 640.2.s.b | 2 | ||
240.bf | even | 4 | 1 | 640.2.s.a | 2 | ||
240.bf | even | 4 | 1 | 1600.2.s.a | 2 | ||
240.bm | odd | 4 | 1 | 1600.2.j.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
80.2.j.a | ✓ | 2 | 15.e | even | 4 | 1 | |
80.2.j.a | ✓ | 2 | 48.k | even | 4 | 1 | |
80.2.s.a | yes | 2 | 3.b | odd | 2 | 1 | |
80.2.s.a | yes | 2 | 240.z | odd | 4 | 1 | |
320.2.j.a | 2 | 48.i | odd | 4 | 1 | ||
320.2.j.a | 2 | 60.l | odd | 4 | 1 | ||
320.2.s.a | 2 | 12.b | even | 2 | 1 | ||
320.2.s.a | 2 | 240.bb | even | 4 | 1 | ||
400.2.j.a | 2 | 15.e | even | 4 | 1 | ||
400.2.j.a | 2 | 240.t | even | 4 | 1 | ||
400.2.s.a | 2 | 15.d | odd | 2 | 1 | ||
400.2.s.a | 2 | 240.bd | odd | 4 | 1 | ||
640.2.j.a | 2 | 48.k | even | 4 | 1 | ||
640.2.j.a | 2 | 120.w | even | 4 | 1 | ||
640.2.j.b | 2 | 48.i | odd | 4 | 1 | ||
640.2.j.b | 2 | 120.q | odd | 4 | 1 | ||
640.2.s.a | 2 | 24.f | even | 2 | 1 | ||
640.2.s.a | 2 | 240.bf | even | 4 | 1 | ||
640.2.s.b | 2 | 24.h | odd | 2 | 1 | ||
640.2.s.b | 2 | 240.bd | odd | 4 | 1 | ||
720.2.z.d | 2 | 1.a | even | 1 | 1 | trivial | |
720.2.z.d | 2 | 80.s | even | 4 | 1 | inner | |
720.2.bd.a | 2 | 5.c | odd | 4 | 1 | ||
720.2.bd.a | 2 | 16.f | odd | 4 | 1 | ||
1600.2.j.a | 2 | 60.l | odd | 4 | 1 | ||
1600.2.j.a | 2 | 240.bm | odd | 4 | 1 | ||
1600.2.s.a | 2 | 60.h | even | 2 | 1 | ||
1600.2.s.a | 2 | 240.bf | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|