Properties

Label 720.2.z.d
Level 720720
Weight 22
Character orbit 720.z
Analytic conductor 5.7495.749
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(163,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 720=24325 720 = 2^{4} \cdot 3^{2} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 720.z (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.749228945535.74922894553
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(i+1)q22iq4+(i+2)q5+(3i3)q7+(2i2)q8+(3i+1)q10+(i+1)q11+2iq136q144q16+(i1)q17+(3i3)q19++(11i+11)q98+O(q100) q + ( - i + 1) q^{2} - 2 i q^{4} + ( - i + 2) q^{5} + ( - 3 i - 3) q^{7} + ( - 2 i - 2) q^{8} + ( - 3 i + 1) q^{10} + ( - i + 1) q^{11} + 2 i q^{13} - 6 q^{14} - 4 q^{16} + ( - i - 1) q^{17} + (3 i - 3) q^{19} + \cdots + (11 i + 11) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+4q56q74q8+2q10+2q1112q148q162q176q194q20+2q23+6q25+4q2612q28+14q298q324q3418q35++22q98+O(q100) 2 q + 2 q^{2} + 4 q^{5} - 6 q^{7} - 4 q^{8} + 2 q^{10} + 2 q^{11} - 12 q^{14} - 8 q^{16} - 2 q^{17} - 6 q^{19} - 4 q^{20} + 2 q^{23} + 6 q^{25} + 4 q^{26} - 12 q^{28} + 14 q^{29} - 8 q^{32} - 4 q^{34} - 18 q^{35}+ \cdots + 22 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/720Z)×\left(\mathbb{Z}/720\mathbb{Z}\right)^\times.

nn 181181 271271 577577 641641
χ(n)\chi(n) ii 1-1 ii 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
163.1
1.00000i
1.00000i
1.00000 + 1.00000i 0 2.00000i 2.00000 + 1.00000i 0 −3.00000 + 3.00000i −2.00000 + 2.00000i 0 1.00000 + 3.00000i
667.1 1.00000 1.00000i 0 2.00000i 2.00000 1.00000i 0 −3.00000 3.00000i −2.00000 2.00000i 0 1.00000 3.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
80.s even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.2.z.d 2
3.b odd 2 1 80.2.s.a yes 2
5.c odd 4 1 720.2.bd.a 2
12.b even 2 1 320.2.s.a 2
15.d odd 2 1 400.2.s.a 2
15.e even 4 1 80.2.j.a 2
15.e even 4 1 400.2.j.a 2
16.f odd 4 1 720.2.bd.a 2
24.f even 2 1 640.2.s.a 2
24.h odd 2 1 640.2.s.b 2
48.i odd 4 1 320.2.j.a 2
48.i odd 4 1 640.2.j.b 2
48.k even 4 1 80.2.j.a 2
48.k even 4 1 640.2.j.a 2
60.h even 2 1 1600.2.s.a 2
60.l odd 4 1 320.2.j.a 2
60.l odd 4 1 1600.2.j.a 2
80.s even 4 1 inner 720.2.z.d 2
120.q odd 4 1 640.2.j.b 2
120.w even 4 1 640.2.j.a 2
240.t even 4 1 400.2.j.a 2
240.z odd 4 1 80.2.s.a yes 2
240.bb even 4 1 320.2.s.a 2
240.bd odd 4 1 400.2.s.a 2
240.bd odd 4 1 640.2.s.b 2
240.bf even 4 1 640.2.s.a 2
240.bf even 4 1 1600.2.s.a 2
240.bm odd 4 1 1600.2.j.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
80.2.j.a 2 15.e even 4 1
80.2.j.a 2 48.k even 4 1
80.2.s.a yes 2 3.b odd 2 1
80.2.s.a yes 2 240.z odd 4 1
320.2.j.a 2 48.i odd 4 1
320.2.j.a 2 60.l odd 4 1
320.2.s.a 2 12.b even 2 1
320.2.s.a 2 240.bb even 4 1
400.2.j.a 2 15.e even 4 1
400.2.j.a 2 240.t even 4 1
400.2.s.a 2 15.d odd 2 1
400.2.s.a 2 240.bd odd 4 1
640.2.j.a 2 48.k even 4 1
640.2.j.a 2 120.w even 4 1
640.2.j.b 2 48.i odd 4 1
640.2.j.b 2 120.q odd 4 1
640.2.s.a 2 24.f even 2 1
640.2.s.a 2 240.bf even 4 1
640.2.s.b 2 24.h odd 2 1
640.2.s.b 2 240.bd odd 4 1
720.2.z.d 2 1.a even 1 1 trivial
720.2.z.d 2 80.s even 4 1 inner
720.2.bd.a 2 5.c odd 4 1
720.2.bd.a 2 16.f odd 4 1
1600.2.j.a 2 60.l odd 4 1
1600.2.j.a 2 240.bm odd 4 1
1600.2.s.a 2 60.h even 2 1
1600.2.s.a 2 240.bf even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(720,[χ])S_{2}^{\mathrm{new}}(720, [\chi]):

T72+6T7+18 T_{7}^{2} + 6T_{7} + 18 Copy content Toggle raw display
T1122T11+2 T_{11}^{2} - 2T_{11} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T24T+5 T^{2} - 4T + 5 Copy content Toggle raw display
77 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
1111 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1313 T2+4 T^{2} + 4 Copy content Toggle raw display
1717 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
1919 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
2323 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
2929 T214T+98 T^{2} - 14T + 98 Copy content Toggle raw display
3131 T2+4 T^{2} + 4 Copy content Toggle raw display
3737 T2+36 T^{2} + 36 Copy content Toggle raw display
4141 T2+16 T^{2} + 16 Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 T214T+98 T^{2} - 14T + 98 Copy content Toggle raw display
5353 (T8)2 (T - 8)^{2} Copy content Toggle raw display
5959 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
6161 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
6767 T2+16 T^{2} + 16 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T26T+18 T^{2} - 6T + 18 Copy content Toggle raw display
7979 (T8)2 (T - 8)^{2} Copy content Toggle raw display
8383 (T2)2 (T - 2)^{2} Copy content Toggle raw display
8989 (T6)2 (T - 6)^{2} Copy content Toggle raw display
9797 T2+22T+242 T^{2} + 22T + 242 Copy content Toggle raw display
show more
show less