Properties

Label 161.2.a.c.1.1
Level 161161
Weight 22
Character 161.1
Self dual yes
Analytic conductor 1.2861.286
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,2,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 161=723 161 = 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.285591472541.28559147254
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x23x+1 x^{3} - x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.170092.17009 of defining polynomial
Character χ\chi == 161.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.70928q21.17009q3+5.34017q41.17009q5+3.17009q61.00000q79.04945q81.63090q9+3.17009q10+3.70928q116.24846q12+4.34017q13+2.70928q14+1.36910q15+13.8371q16+3.17009q17+4.41855q18+5.26180q196.24846q20+1.17009q2110.0494q22+1.00000q23+10.5886q243.63090q2511.7587q26+5.41855q275.34017q28+0.630898q293.70928q30+9.32684q3119.3896q324.34017q338.58864q34+1.17009q358.70928q363.07838q3714.2557q385.07838q39+10.5886q40+2.68035q413.17009q428.49693q43+19.8082q44+1.90829q452.70928q46+6.09171q4716.1906q48+1.00000q49+9.83710q503.70928q51+23.1773q52+4.15676q5314.6803q544.34017q55+9.04945q566.15676q571.70928q588.40522q59+7.31124q606.92881q6125.2690q62+1.63090q63+24.8576q645.07838q65+11.7587q66+9.86603q67+16.9288q681.17009q693.17009q70+10.8371q71+14.7587q7213.0205q73+8.34017q74+4.24846q75+28.0989q763.70928q77+13.7587q784.38962q7916.1906q801.44748q817.26180q82+14.6537q83+6.24846q843.70928q85+23.0205q860.738205q8733.5669q886.77205q895.17009q904.34017q91+5.34017q9210.9132q9316.5041q946.15676q95+22.6875q96+8.58864q972.70928q986.04945q99+O(q100)q-2.70928 q^{2} -1.17009 q^{3} +5.34017 q^{4} -1.17009 q^{5} +3.17009 q^{6} -1.00000 q^{7} -9.04945 q^{8} -1.63090 q^{9} +3.17009 q^{10} +3.70928 q^{11} -6.24846 q^{12} +4.34017 q^{13} +2.70928 q^{14} +1.36910 q^{15} +13.8371 q^{16} +3.17009 q^{17} +4.41855 q^{18} +5.26180 q^{19} -6.24846 q^{20} +1.17009 q^{21} -10.0494 q^{22} +1.00000 q^{23} +10.5886 q^{24} -3.63090 q^{25} -11.7587 q^{26} +5.41855 q^{27} -5.34017 q^{28} +0.630898 q^{29} -3.70928 q^{30} +9.32684 q^{31} -19.3896 q^{32} -4.34017 q^{33} -8.58864 q^{34} +1.17009 q^{35} -8.70928 q^{36} -3.07838 q^{37} -14.2557 q^{38} -5.07838 q^{39} +10.5886 q^{40} +2.68035 q^{41} -3.17009 q^{42} -8.49693 q^{43} +19.8082 q^{44} +1.90829 q^{45} -2.70928 q^{46} +6.09171 q^{47} -16.1906 q^{48} +1.00000 q^{49} +9.83710 q^{50} -3.70928 q^{51} +23.1773 q^{52} +4.15676 q^{53} -14.6803 q^{54} -4.34017 q^{55} +9.04945 q^{56} -6.15676 q^{57} -1.70928 q^{58} -8.40522 q^{59} +7.31124 q^{60} -6.92881 q^{61} -25.2690 q^{62} +1.63090 q^{63} +24.8576 q^{64} -5.07838 q^{65} +11.7587 q^{66} +9.86603 q^{67} +16.9288 q^{68} -1.17009 q^{69} -3.17009 q^{70} +10.8371 q^{71} +14.7587 q^{72} -13.0205 q^{73} +8.34017 q^{74} +4.24846 q^{75} +28.0989 q^{76} -3.70928 q^{77} +13.7587 q^{78} -4.38962 q^{79} -16.1906 q^{80} -1.44748 q^{81} -7.26180 q^{82} +14.6537 q^{83} +6.24846 q^{84} -3.70928 q^{85} +23.0205 q^{86} -0.738205 q^{87} -33.5669 q^{88} -6.77205 q^{89} -5.17009 q^{90} -4.34017 q^{91} +5.34017 q^{92} -10.9132 q^{93} -16.5041 q^{94} -6.15676 q^{95} +22.6875 q^{96} +8.58864 q^{97} -2.70928 q^{98} -6.04945 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3qq2+2q3+5q4+2q5+4q63q79q8q9+4q10+4q1110q12+2q13+q14+8q15+13q16+4q17q18+8q1910q20+q98+O(q100) 3 q - q^{2} + 2 q^{3} + 5 q^{4} + 2 q^{5} + 4 q^{6} - 3 q^{7} - 9 q^{8} - q^{9} + 4 q^{10} + 4 q^{11} - 10 q^{12} + 2 q^{13} + q^{14} + 8 q^{15} + 13 q^{16} + 4 q^{17} - q^{18} + 8 q^{19} - 10 q^{20}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.70928 −1.91575 −0.957873 0.287190i 0.907279π-0.907279\pi
−0.957873 + 0.287190i 0.907279π0.907279\pi
33 −1.17009 −0.675550 −0.337775 0.941227i 0.609674π-0.609674\pi
−0.337775 + 0.941227i 0.609674π0.609674\pi
44 5.34017 2.67009
55 −1.17009 −0.523279 −0.261639 0.965166i 0.584263π-0.584263\pi
−0.261639 + 0.965166i 0.584263π0.584263\pi
66 3.17009 1.29418
77 −1.00000 −0.377964
88 −9.04945 −3.19946
99 −1.63090 −0.543633
1010 3.17009 1.00247
1111 3.70928 1.11839 0.559194 0.829037i 0.311111π-0.311111\pi
0.559194 + 0.829037i 0.311111π0.311111\pi
1212 −6.24846 −1.80378
1313 4.34017 1.20375 0.601874 0.798591i 0.294421π-0.294421\pi
0.601874 + 0.798591i 0.294421π0.294421\pi
1414 2.70928 0.724084
1515 1.36910 0.353501
1616 13.8371 3.45928
1717 3.17009 0.768859 0.384429 0.923154i 0.374398π-0.374398\pi
0.384429 + 0.923154i 0.374398π0.374398\pi
1818 4.41855 1.04146
1919 5.26180 1.20714 0.603569 0.797311i 0.293745π-0.293745\pi
0.603569 + 0.797311i 0.293745π0.293745\pi
2020 −6.24846 −1.39720
2121 1.17009 0.255334
2222 −10.0494 −2.14255
2323 1.00000 0.208514
2424 10.5886 2.16140
2525 −3.63090 −0.726180
2626 −11.7587 −2.30608
2727 5.41855 1.04280
2828 −5.34017 −1.00920
2929 0.630898 0.117155 0.0585774 0.998283i 0.481344π-0.481344\pi
0.0585774 + 0.998283i 0.481344π0.481344\pi
3030 −3.70928 −0.677218
3131 9.32684 1.67515 0.837575 0.546322i 0.183973π-0.183973\pi
0.837575 + 0.546322i 0.183973π0.183973\pi
3232 −19.3896 −3.42763
3333 −4.34017 −0.755527
3434 −8.58864 −1.47294
3535 1.17009 0.197781
3636 −8.70928 −1.45155
3737 −3.07838 −0.506082 −0.253041 0.967456i 0.581431π-0.581431\pi
−0.253041 + 0.967456i 0.581431π0.581431\pi
3838 −14.2557 −2.31257
3939 −5.07838 −0.813191
4040 10.5886 1.67421
4141 2.68035 0.418600 0.209300 0.977852i 0.432882π-0.432882\pi
0.209300 + 0.977852i 0.432882π0.432882\pi
4242 −3.17009 −0.489155
4343 −8.49693 −1.29577 −0.647885 0.761738i 0.724346π-0.724346\pi
−0.647885 + 0.761738i 0.724346π0.724346\pi
4444 19.8082 2.98619
4545 1.90829 0.284471
4646 −2.70928 −0.399461
4747 6.09171 0.888567 0.444284 0.895886i 0.353458π-0.353458\pi
0.444284 + 0.895886i 0.353458π0.353458\pi
4848 −16.1906 −2.33691
4949 1.00000 0.142857
5050 9.83710 1.39118
5151 −3.70928 −0.519402
5252 23.1773 3.21411
5353 4.15676 0.570974 0.285487 0.958383i 0.407845π-0.407845\pi
0.285487 + 0.958383i 0.407845π0.407845\pi
5454 −14.6803 −1.99774
5555 −4.34017 −0.585229
5656 9.04945 1.20928
5757 −6.15676 −0.815482
5858 −1.70928 −0.224439
5959 −8.40522 −1.09427 −0.547133 0.837046i 0.684281π-0.684281\pi
−0.547133 + 0.837046i 0.684281π0.684281\pi
6060 7.31124 0.943877
6161 −6.92881 −0.887143 −0.443572 0.896239i 0.646289π-0.646289\pi
−0.443572 + 0.896239i 0.646289π0.646289\pi
6262 −25.2690 −3.20916
6363 1.63090 0.205474
6464 24.8576 3.10720
6565 −5.07838 −0.629895
6666 11.7587 1.44740
6767 9.86603 1.20533 0.602664 0.797995i 0.294106π-0.294106\pi
0.602664 + 0.797995i 0.294106π0.294106\pi
6868 16.9288 2.05292
6969 −1.17009 −0.140862
7070 −3.17009 −0.378898
7171 10.8371 1.28613 0.643064 0.765813i 0.277663π-0.277663\pi
0.643064 + 0.765813i 0.277663π0.277663\pi
7272 14.7587 1.73933
7373 −13.0205 −1.52394 −0.761968 0.647614i 0.775767π-0.775767\pi
−0.761968 + 0.647614i 0.775767π0.775767\pi
7474 8.34017 0.969525
7575 4.24846 0.490570
7676 28.0989 3.22316
7777 −3.70928 −0.422711
7878 13.7587 1.55787
7979 −4.38962 −0.493871 −0.246935 0.969032i 0.579424π-0.579424\pi
−0.246935 + 0.969032i 0.579424π0.579424\pi
8080 −16.1906 −1.81016
8181 −1.44748 −0.160831
8282 −7.26180 −0.801931
8383 14.6537 1.60845 0.804225 0.594324i 0.202580π-0.202580\pi
0.804225 + 0.594324i 0.202580π0.202580\pi
8484 6.24846 0.681763
8585 −3.70928 −0.402327
8686 23.0205 2.48237
8787 −0.738205 −0.0791439
8888 −33.5669 −3.57824
8989 −6.77205 −0.717836 −0.358918 0.933369i 0.616854π-0.616854\pi
−0.358918 + 0.933369i 0.616854π0.616854\pi
9090 −5.17009 −0.544975
9191 −4.34017 −0.454974
9292 5.34017 0.556752
9393 −10.9132 −1.13165
9494 −16.5041 −1.70227
9595 −6.15676 −0.631670
9696 22.6875 2.31554
9797 8.58864 0.872044 0.436022 0.899936i 0.356387π-0.356387\pi
0.436022 + 0.899936i 0.356387π0.356387\pi
9898 −2.70928 −0.273678
9999 −6.04945 −0.607992
100100 −19.3896 −1.93896
101101 −4.92162 −0.489720 −0.244860 0.969558i 0.578742π-0.578742\pi
−0.244860 + 0.969558i 0.578742π0.578742\pi
102102 10.0494 0.995044
103103 16.6803 1.64356 0.821782 0.569803i 0.192980π-0.192980\pi
0.821782 + 0.569803i 0.192980π0.192980\pi
104104 −39.2762 −3.85135
105105 −1.36910 −0.133611
106106 −11.2618 −1.09384
107107 −15.3340 −1.48240 −0.741198 0.671286i 0.765742π-0.765742\pi
−0.741198 + 0.671286i 0.765742π0.765742\pi
108108 28.9360 2.78437
109109 −11.1773 −1.07059 −0.535294 0.844666i 0.679799π-0.679799\pi
−0.535294 + 0.844666i 0.679799π0.679799\pi
110110 11.7587 1.12115
111111 3.60197 0.341884
112112 −13.8371 −1.30748
113113 13.5174 1.27161 0.635807 0.771848i 0.280667π-0.280667\pi
0.635807 + 0.771848i 0.280667π0.280667\pi
114114 16.6803 1.56226
115115 −1.17009 −0.109111
116116 3.36910 0.312813
117117 −7.07838 −0.654396
118118 22.7721 2.09634
119119 −3.17009 −0.290601
120120 −12.3896 −1.13101
121121 2.75872 0.250793
122122 18.7721 1.69954
123123 −3.13624 −0.282785
124124 49.8069 4.47280
125125 10.0989 0.903273
126126 −4.41855 −0.393636
127127 2.92162 0.259252 0.129626 0.991563i 0.458622π-0.458622\pi
0.129626 + 0.991563i 0.458622π0.458622\pi
128128 −28.5669 −2.52498
129129 9.94214 0.875357
130130 13.7587 1.20672
131131 −6.27513 −0.548260 −0.274130 0.961693i 0.588390π-0.588390\pi
−0.274130 + 0.961693i 0.588390π0.588390\pi
132132 −23.1773 −2.01732
133133 −5.26180 −0.456256
134134 −26.7298 −2.30910
135135 −6.34017 −0.545675
136136 −28.6875 −2.45994
137137 7.75872 0.662873 0.331436 0.943478i 0.392467π-0.392467\pi
0.331436 + 0.943478i 0.392467π0.392467\pi
138138 3.17009 0.269856
139139 −2.92881 −0.248418 −0.124209 0.992256i 0.539639π-0.539639\pi
−0.124209 + 0.992256i 0.539639π0.539639\pi
140140 6.24846 0.528092
141141 −7.12783 −0.600271
142142 −29.3607 −2.46389
143143 16.0989 1.34626
144144 −22.5669 −1.88057
145145 −0.738205 −0.0613046
146146 35.2762 2.91948
147147 −1.17009 −0.0965071
148148 −16.4391 −1.35128
149149 0.837101 0.0685780 0.0342890 0.999412i 0.489083π-0.489083\pi
0.0342890 + 0.999412i 0.489083π0.489083\pi
150150 −11.5103 −0.939809
151151 15.9155 1.29518 0.647592 0.761988i 0.275776π-0.275776\pi
0.647592 + 0.761988i 0.275776π0.275776\pi
152152 −47.6163 −3.86220
153153 −5.17009 −0.417977
154154 10.0494 0.809808
155155 −10.9132 −0.876570
156156 −27.1194 −2.17129
157157 −11.1701 −0.891470 −0.445735 0.895165i 0.647058π-0.647058\pi
−0.445735 + 0.895165i 0.647058π0.647058\pi
158158 11.8927 0.946132
159159 −4.86376 −0.385722
160160 22.6875 1.79361
161161 −1.00000 −0.0788110
162162 3.92162 0.308112
163163 14.6225 1.14532 0.572661 0.819792i 0.305911π-0.305911\pi
0.572661 + 0.819792i 0.305911π0.305911\pi
164164 14.3135 1.11770
165165 5.07838 0.395351
166166 −39.7009 −3.08138
167167 6.00719 0.464850 0.232425 0.972614i 0.425334π-0.425334\pi
0.232425 + 0.972614i 0.425334π0.425334\pi
168168 −10.5886 −0.816931
169169 5.83710 0.449008
170170 10.0494 0.770758
171171 −8.58145 −0.656240
172172 −45.3751 −3.45982
173173 14.0989 1.07192 0.535960 0.844244i 0.319950π-0.319950\pi
0.535960 + 0.844244i 0.319950π0.319950\pi
174174 2.00000 0.151620
175175 3.63090 0.274470
176176 51.3256 3.86881
177177 9.83483 0.739231
178178 18.3474 1.37519
179179 −18.1256 −1.35477 −0.677384 0.735630i 0.736886π-0.736886\pi
−0.677384 + 0.735630i 0.736886π0.736886\pi
180180 10.1906 0.759563
181181 12.4319 0.924054 0.462027 0.886866i 0.347122π-0.347122\pi
0.462027 + 0.886866i 0.347122π0.347122\pi
182182 11.7587 0.871615
183183 8.10731 0.599309
184184 −9.04945 −0.667134
185185 3.60197 0.264822
186186 29.5669 2.16795
187187 11.7587 0.859883
188188 32.5308 2.37255
189189 −5.41855 −0.394142
190190 16.6803 1.21012
191191 −4.86376 −0.351930 −0.175965 0.984396i 0.556304π-0.556304\pi
−0.175965 + 0.984396i 0.556304π0.556304\pi
192192 −29.0856 −2.09907
193193 −17.2351 −1.24061 −0.620306 0.784360i 0.712992π-0.712992\pi
−0.620306 + 0.784360i 0.712992π0.712992\pi
194194 −23.2690 −1.67062
195195 5.94214 0.425526
196196 5.34017 0.381441
197197 −12.5236 −0.892269 −0.446134 0.894966i 0.647200π-0.647200\pi
−0.446134 + 0.894966i 0.647200π0.647200\pi
198198 16.3896 1.16476
199199 1.16290 0.0824357 0.0412178 0.999150i 0.486876π-0.486876\pi
0.0412178 + 0.999150i 0.486876π0.486876\pi
200200 32.8576 2.32338
201201 −11.5441 −0.814259
202202 13.3340 0.938179
203203 −0.630898 −0.0442803
204204 −19.8082 −1.38685
205205 −3.13624 −0.219044
206206 −45.1917 −3.14865
207207 −1.63090 −0.113355
208208 60.0554 4.16409
209209 19.5174 1.35005
210210 3.70928 0.255964
211211 4.76487 0.328027 0.164013 0.986458i 0.447556π-0.447556\pi
0.164013 + 0.986458i 0.447556π0.447556\pi
212212 22.1978 1.52455
213213 −12.6803 −0.868843
214214 41.5441 2.83990
215215 9.94214 0.678048
216216 −49.0349 −3.33640
217217 −9.32684 −0.633147
218218 30.2823 2.05098
219219 15.2351 1.02949
220220 −23.1773 −1.56261
221221 13.7587 0.925512
222222 −9.75872 −0.654963
223223 −21.3679 −1.43090 −0.715450 0.698664i 0.753778π-0.753778\pi
−0.715450 + 0.698664i 0.753778π0.753778\pi
224224 19.3896 1.29552
225225 5.92162 0.394775
226226 −36.6225 −2.43609
227227 −5.84324 −0.387830 −0.193915 0.981018i 0.562119π-0.562119\pi
−0.193915 + 0.981018i 0.562119π0.562119\pi
228228 −32.8781 −2.17741
229229 2.85658 0.188768 0.0943839 0.995536i 0.469912π-0.469912\pi
0.0943839 + 0.995536i 0.469912π0.469912\pi
230230 3.17009 0.209029
231231 4.34017 0.285562
232232 −5.70928 −0.374832
233233 −13.5259 −0.886108 −0.443054 0.896495i 0.646105π-0.646105\pi
−0.443054 + 0.896495i 0.646105π0.646105\pi
234234 19.1773 1.25366
235235 −7.12783 −0.464968
236236 −44.8853 −2.92179
237237 5.13624 0.333634
238238 8.58864 0.556719
239239 4.76487 0.308214 0.154107 0.988054i 0.450750π-0.450750\pi
0.154107 + 0.988054i 0.450750π0.450750\pi
240240 18.9444 1.22286
241241 24.4775 1.57673 0.788366 0.615207i 0.210928π-0.210928\pi
0.788366 + 0.615207i 0.210928π0.210928\pi
242242 −7.47414 −0.480456
243243 −14.5620 −0.934151
244244 −37.0010 −2.36875
245245 −1.17009 −0.0747541
246246 8.49693 0.541744
247247 22.8371 1.45309
248248 −84.4028 −5.35958
249249 −17.1461 −1.08659
250250 −27.3607 −1.73044
251251 −26.2557 −1.65724 −0.828621 0.559810i 0.810874π-0.810874\pi
−0.828621 + 0.559810i 0.810874π0.810874\pi
252252 8.70928 0.548633
253253 3.70928 0.233200
254254 −7.91548 −0.496661
255255 4.34017 0.271792
256256 27.6803 1.73002
257257 7.84324 0.489248 0.244624 0.969618i 0.421335π-0.421335\pi
0.244624 + 0.969618i 0.421335π0.421335\pi
258258 −26.9360 −1.67696
259259 3.07838 0.191281
260260 −27.1194 −1.68187
261261 −1.02893 −0.0636891
262262 17.0010 1.05033
263263 10.9132 0.672937 0.336469 0.941695i 0.390767π-0.390767\pi
0.336469 + 0.941695i 0.390767π0.390767\pi
264264 39.2762 2.41728
265265 −4.86376 −0.298779
266266 14.2557 0.874070
267267 7.92389 0.484934
268268 52.6863 3.21833
269269 −3.57531 −0.217990 −0.108995 0.994042i 0.534763π-0.534763\pi
−0.108995 + 0.994042i 0.534763π0.534763\pi
270270 17.1773 1.04538
271271 −5.98053 −0.363291 −0.181646 0.983364i 0.558142π-0.558142\pi
−0.181646 + 0.983364i 0.558142π0.558142\pi
272272 43.8648 2.65969
273273 5.07838 0.307357
274274 −21.0205 −1.26990
275275 −13.4680 −0.812151
276276 −6.24846 −0.376113
277277 −13.3112 −0.799795 −0.399898 0.916560i 0.630954π-0.630954\pi
−0.399898 + 0.916560i 0.630954π0.630954\pi
278278 7.93495 0.475907
279279 −15.2111 −0.910666
280280 −10.5886 −0.632792
281281 −2.13009 −0.127071 −0.0635354 0.997980i 0.520238π-0.520238\pi
−0.0635354 + 0.997980i 0.520238π0.520238\pi
282282 19.3112 1.14997
283283 13.6742 0.812847 0.406423 0.913685i 0.366776π-0.366776\pi
0.406423 + 0.913685i 0.366776π0.366776\pi
284284 57.8720 3.43407
285285 7.20394 0.426724
286286 −43.6163 −2.57909
287287 −2.68035 −0.158216
288288 31.6225 1.86337
289289 −6.95055 −0.408856
290290 2.00000 0.117444
291291 −10.0494 −0.589109
292292 −69.5318 −4.06904
293293 −13.2690 −0.775182 −0.387591 0.921831i 0.626693π-0.626693\pi
−0.387591 + 0.921831i 0.626693π0.626693\pi
294294 3.17009 0.184883
295295 9.83483 0.572606
296296 27.8576 1.61919
297297 20.0989 1.16626
298298 −2.26794 −0.131378
299299 4.34017 0.250999
300300 22.6875 1.30987
301301 8.49693 0.489755
302302 −43.1194 −2.48124
303303 5.75872 0.330830
304304 72.8080 4.17582
305305 8.10731 0.464223
306306 14.0072 0.800738
307307 −17.5103 −0.999363 −0.499682 0.866209i 0.666550π-0.666550\pi
−0.499682 + 0.866209i 0.666550π0.666550\pi
308308 −19.8082 −1.12868
309309 −19.5174 −1.11031
310310 29.5669 1.67929
311311 2.03385 0.115329 0.0576645 0.998336i 0.481635π-0.481635\pi
0.0576645 + 0.998336i 0.481635π0.481635\pi
312312 45.9565 2.60178
313313 12.3786 0.699677 0.349839 0.936810i 0.386236π-0.386236\pi
0.349839 + 0.936810i 0.386236π0.386236\pi
314314 30.2628 1.70783
315315 −1.90829 −0.107520
316316 −23.4413 −1.31868
317317 −20.1483 −1.13164 −0.565822 0.824527i 0.691441π-0.691441\pi
−0.565822 + 0.824527i 0.691441π0.691441\pi
318318 13.1773 0.738945
319319 2.34017 0.131025
320320 −29.0856 −1.62593
321321 17.9421 1.00143
322322 2.70928 0.150982
323323 16.6803 0.928119
324324 −7.72979 −0.429433
325325 −15.7587 −0.874137
326326 −39.6163 −2.19415
327327 13.0784 0.723236
328328 −24.2557 −1.33929
329329 −6.09171 −0.335847
330330 −13.7587 −0.757393
331331 −6.70701 −0.368650 −0.184325 0.982865i 0.559010π-0.559010\pi
−0.184325 + 0.982865i 0.559010π0.559010\pi
332332 78.2532 4.29470
333333 5.02052 0.275123
334334 −16.2751 −0.890535
335335 −11.5441 −0.630722
336336 16.1906 0.883270
337337 −29.0205 −1.58085 −0.790424 0.612560i 0.790140π-0.790140\pi
−0.790424 + 0.612560i 0.790140π0.790140\pi
338338 −15.8143 −0.860185
339339 −15.8166 −0.859039
340340 −19.8082 −1.07425
341341 34.5958 1.87347
342342 23.2495 1.25719
343343 −1.00000 −0.0539949
344344 76.8925 4.14577
345345 1.36910 0.0737100
346346 −38.1978 −2.05353
347347 −18.2413 −0.979243 −0.489622 0.871935i 0.662865π-0.662865\pi
−0.489622 + 0.871935i 0.662865π0.662865\pi
348348 −3.94214 −0.211321
349349 −8.35455 −0.447209 −0.223604 0.974680i 0.571782π-0.571782\pi
−0.223604 + 0.974680i 0.571782π0.571782\pi
350350 −9.83710 −0.525815
351351 23.5174 1.25527
352352 −71.9214 −3.83343
353353 −31.5897 −1.68135 −0.840675 0.541541i 0.817841π-0.817841\pi
−0.840675 + 0.541541i 0.817841π0.817841\pi
354354 −26.6453 −1.41618
355355 −12.6803 −0.673003
356356 −36.1639 −1.91669
357357 3.70928 0.196316
358358 49.1071 2.59539
359359 −4.48852 −0.236895 −0.118447 0.992960i 0.537792π-0.537792\pi
−0.118447 + 0.992960i 0.537792π0.537792\pi
360360 −17.2690 −0.910155
361361 8.68649 0.457184
362362 −33.6814 −1.77025
363363 −3.22795 −0.169423
364364 −23.1773 −1.21482
365365 15.2351 0.797443
366366 −21.9649 −1.14813
367367 −18.7526 −0.978877 −0.489438 0.872038i 0.662798π-0.662798\pi
−0.489438 + 0.872038i 0.662798π0.662798\pi
368368 13.8371 0.721309
369369 −4.37137 −0.227564
370370 −9.75872 −0.507332
371371 −4.15676 −0.215808
372372 −58.2784 −3.02160
373373 22.5113 1.16559 0.582796 0.812619i 0.301959π-0.301959\pi
0.582796 + 0.812619i 0.301959π0.301959\pi
374374 −31.8576 −1.64732
375375 −11.8166 −0.610206
376376 −55.1266 −2.84294
377377 2.73820 0.141025
378378 14.6803 0.755076
379379 −22.3318 −1.14711 −0.573553 0.819169i 0.694435π-0.694435\pi
−0.573553 + 0.819169i 0.694435π0.694435\pi
380380 −32.8781 −1.68661
381381 −3.41855 −0.175138
382382 13.1773 0.674208
383383 15.2351 0.778479 0.389239 0.921137i 0.372738π-0.372738\pi
0.389239 + 0.921137i 0.372738π0.372738\pi
384384 33.4257 1.70575
385385 4.34017 0.221196
386386 46.6947 2.37670
387387 13.8576 0.704422
388388 45.8648 2.32843
389389 21.3874 1.08438 0.542191 0.840255i 0.317595π-0.317595\pi
0.542191 + 0.840255i 0.317595π0.317595\pi
390390 −16.0989 −0.815199
391391 3.17009 0.160318
392392 −9.04945 −0.457066
393393 7.34244 0.370377
394394 33.9299 1.70936
395395 5.13624 0.258432
396396 −32.3051 −1.62339
397397 20.6537 1.03658 0.518289 0.855205i 0.326569π-0.326569\pi
0.518289 + 0.855205i 0.326569π0.326569\pi
398398 −3.15061 −0.157926
399399 6.15676 0.308223
400400 −50.2411 −2.51205
401401 24.3402 1.21549 0.607745 0.794132i 0.292074π-0.292074\pi
0.607745 + 0.794132i 0.292074π0.292074\pi
402402 31.2762 1.55991
403403 40.4801 2.01646
404404 −26.2823 −1.30759
405405 1.69368 0.0841595
406406 1.70928 0.0848299
407407 −11.4186 −0.565997
408408 33.5669 1.66181
409409 17.2885 0.854859 0.427430 0.904049i 0.359419π-0.359419\pi
0.427430 + 0.904049i 0.359419π0.359419\pi
410410 8.49693 0.419633
411411 −9.07838 −0.447803
412412 89.0759 4.38846
413413 8.40522 0.413594
414414 4.41855 0.217160
415415 −17.1461 −0.841668
416416 −84.1543 −4.12600
417417 3.42696 0.167819
418418 −52.8781 −2.58635
419419 −3.05172 −0.149086 −0.0745430 0.997218i 0.523750π-0.523750\pi
−0.0745430 + 0.997218i 0.523750π0.523750\pi
420420 −7.31124 −0.356752
421421 13.8843 0.676679 0.338339 0.941024i 0.390135π-0.390135\pi
0.338339 + 0.941024i 0.390135π0.390135\pi
422422 −12.9093 −0.628417
423423 −9.93495 −0.483054
424424 −37.6163 −1.82681
425425 −11.5103 −0.558330
426426 34.3545 1.66448
427427 6.92881 0.335309
428428 −81.8864 −3.95813
429429 −18.8371 −0.909464
430430 −26.9360 −1.29897
431431 15.2039 0.732348 0.366174 0.930546i 0.380668π-0.380668\pi
0.366174 + 0.930546i 0.380668π0.380668\pi
432432 74.9770 3.60733
433433 12.8566 0.617848 0.308924 0.951087i 0.400031π-0.400031\pi
0.308924 + 0.951087i 0.400031π0.400031\pi
434434 25.2690 1.21295
435435 0.863763 0.0414143
436436 −59.6886 −2.85856
437437 5.26180 0.251706
438438 −41.2762 −1.97225
439439 14.5620 0.695005 0.347503 0.937679i 0.387030π-0.387030\pi
0.347503 + 0.937679i 0.387030π0.387030\pi
440440 39.2762 1.87242
441441 −1.63090 −0.0776618
442442 −37.2762 −1.77305
443443 −30.2557 −1.43749 −0.718745 0.695274i 0.755283π-0.755283\pi
−0.718745 + 0.695274i 0.755283π0.755283\pi
444444 19.2351 0.912859
445445 7.92389 0.375628
446446 57.8915 2.74124
447447 −0.979481 −0.0463279
448448 −24.8576 −1.17441
449449 −4.68422 −0.221062 −0.110531 0.993873i 0.535255π-0.535255\pi
−0.110531 + 0.993873i 0.535255π0.535255\pi
450450 −16.0433 −0.756289
451451 9.94214 0.468157
452452 72.1855 3.39532
453453 −18.6225 −0.874961
454454 15.8310 0.742984
455455 5.07838 0.238078
456456 55.7152 2.60911
457457 23.4596 1.09739 0.548697 0.836022i 0.315124π-0.315124\pi
0.548697 + 0.836022i 0.315124π0.315124\pi
458458 −7.73925 −0.361631
459459 17.1773 0.801767
460460 −6.24846 −0.291336
461461 6.58145 0.306529 0.153264 0.988185i 0.451021π-0.451021\pi
0.153264 + 0.988185i 0.451021π0.451021\pi
462462 −11.7587 −0.547065
463463 20.0144 0.930147 0.465073 0.885272i 0.346028π-0.346028\pi
0.465073 + 0.885272i 0.346028π0.346028\pi
464464 8.72979 0.405271
465465 12.7694 0.592167
466466 36.6453 1.69756
467467 21.4596 0.993031 0.496516 0.868028i 0.334613π-0.334613\pi
0.496516 + 0.868028i 0.334613π0.334613\pi
468468 −37.7998 −1.74729
469469 −9.86603 −0.455571
470470 19.3112 0.890761
471471 13.0700 0.602232
472472 76.0626 3.50107
473473 −31.5174 −1.44917
474474 −13.9155 −0.639159
475475 −19.1050 −0.876599
476476 −16.9288 −0.775931
477477 −6.77924 −0.310400
478478 −12.9093 −0.590459
479479 −14.3090 −0.653794 −0.326897 0.945060i 0.606003π-0.606003\pi
−0.326897 + 0.945060i 0.606003π0.606003\pi
480480 −26.5464 −1.21167
481481 −13.3607 −0.609195
482482 −66.3162 −3.02062
483483 1.17009 0.0532408
484484 14.7321 0.669639
485485 −10.0494 −0.456322
486486 39.4524 1.78960
487487 −5.36069 −0.242916 −0.121458 0.992597i 0.538757π-0.538757\pi
−0.121458 + 0.992597i 0.538757π0.538757\pi
488488 62.7019 2.83838
489489 −17.1096 −0.773722
490490 3.17009 0.143210
491491 8.99386 0.405887 0.202944 0.979190i 0.434949π-0.434949\pi
0.202944 + 0.979190i 0.434949π0.434949\pi
492492 −16.7480 −0.755060
493493 2.00000 0.0900755
494494 −61.8720 −2.78375
495495 7.07838 0.318149
496496 129.056 5.79481
497497 −10.8371 −0.486110
498498 46.4534 2.08163
499499 2.02666 0.0907259 0.0453629 0.998971i 0.485556π-0.485556\pi
0.0453629 + 0.998971i 0.485556π0.485556\pi
500500 53.9299 2.41182
501501 −7.02893 −0.314029
502502 71.1338 3.17486
503503 −32.4124 −1.44520 −0.722599 0.691268i 0.757053π-0.757053\pi
−0.722599 + 0.691268i 0.757053π0.757053\pi
504504 −14.7587 −0.657406
505505 5.75872 0.256260
506506 −10.0494 −0.446752
507507 −6.82991 −0.303327
508508 15.6020 0.692225
509509 −10.4826 −0.464631 −0.232315 0.972640i 0.574630π-0.574630\pi
−0.232315 + 0.972640i 0.574630π0.574630\pi
510510 −11.7587 −0.520685
511511 13.0205 0.575994
512512 −17.8599 −0.789303
513513 28.5113 1.25880
514514 −21.2495 −0.937276
515515 −19.5174 −0.860041
516516 53.0928 2.33728
517517 22.5958 0.993763
518518 −8.34017 −0.366446
519519 −16.4969 −0.724135
520520 45.9565 2.01533
521521 −24.6030 −1.07788 −0.538939 0.842345i 0.681175π-0.681175\pi
−0.538939 + 0.842345i 0.681175π0.681175\pi
522522 2.78765 0.122012
523523 12.1978 0.533372 0.266686 0.963783i 0.414071π-0.414071\pi
0.266686 + 0.963783i 0.414071π0.414071\pi
524524 −33.5103 −1.46390
525525 −4.24846 −0.185418
526526 −29.5669 −1.28918
527527 29.5669 1.28795
528528 −60.0554 −2.61358
529529 1.00000 0.0434783
530530 13.1773 0.572384
531531 13.7081 0.594879
532532 −28.0989 −1.21824
533533 11.6332 0.503888
534534 −21.4680 −0.929011
535535 17.9421 0.775706
536536 −89.2821 −3.85640
537537 21.2085 0.915213
538538 9.68649 0.417614
539539 3.70928 0.159770
540540 −33.8576 −1.45700
541541 17.5259 0.753495 0.376748 0.926316i 0.377042π-0.377042\pi
0.376748 + 0.926316i 0.377042π0.377042\pi
542542 16.2029 0.695974
543543 −14.5464 −0.624245
544544 −61.4668 −2.63537
545545 13.0784 0.560216
546546 −13.7587 −0.588819
547547 12.5958 0.538559 0.269279 0.963062i 0.413215π-0.413215\pi
0.269279 + 0.963062i 0.413215π0.413215\pi
548548 41.4329 1.76993
549549 11.3002 0.482280
550550 36.4885 1.55588
551551 3.31965 0.141422
552552 10.5886 0.450682
553553 4.38962 0.186666
554554 36.0638 1.53221
555555 −4.21461 −0.178900
556556 −15.6404 −0.663299
557557 −26.5113 −1.12332 −0.561660 0.827368i 0.689837π-0.689837\pi
−0.561660 + 0.827368i 0.689837π0.689837\pi
558558 41.2111 1.74461
559559 −36.8781 −1.55978
560560 16.1906 0.684178
561561 −13.7587 −0.580894
562562 5.77101 0.243435
563563 −17.0472 −0.718453 −0.359227 0.933250i 0.616959π-0.616959\pi
−0.359227 + 0.933250i 0.616959π0.616959\pi
564564 −38.0638 −1.60278
565565 −15.8166 −0.665409
566566 −37.0472 −1.55721
567567 1.44748 0.0607885
568568 −98.0698 −4.11492
569569 −25.1194 −1.05306 −0.526530 0.850156i 0.676507π-0.676507\pi
−0.526530 + 0.850156i 0.676507π0.676507\pi
570570 −19.5174 −0.817496
571571 −12.0144 −0.502786 −0.251393 0.967885i 0.580889π-0.580889\pi
−0.251393 + 0.967885i 0.580889π0.580889\pi
572572 85.9709 3.59462
573573 5.69102 0.237746
574574 7.26180 0.303101
575575 −3.63090 −0.151419
576576 −40.5402 −1.68918
577577 −10.1133 −0.421021 −0.210511 0.977592i 0.567513π-0.567513\pi
−0.210511 + 0.977592i 0.567513π0.567513\pi
578578 18.8310 0.783265
579579 20.1666 0.838095
580580 −3.94214 −0.163689
581581 −14.6537 −0.607937
582582 27.2267 1.12858
583583 15.4186 0.638571
584584 117.829 4.87578
585585 8.28231 0.342432
586586 35.9493 1.48505
587587 −14.2485 −0.588097 −0.294049 0.955790i 0.595003π-0.595003\pi
−0.294049 + 0.955790i 0.595003π0.595003\pi
588588 −6.24846 −0.257682
589589 49.0759 2.02214
590590 −26.6453 −1.09697
591591 14.6537 0.602772
592592 −42.5958 −1.75068
593593 −20.2557 −0.831800 −0.415900 0.909410i 0.636533π-0.636533\pi
−0.415900 + 0.909410i 0.636533π0.636533\pi
594594 −54.4534 −2.23425
595595 3.70928 0.152065
596596 4.47027 0.183109
597597 −1.36069 −0.0556894
598598 −11.7587 −0.480850
599599 −19.2351 −0.785926 −0.392963 0.919554i 0.628550π-0.628550\pi
−0.392963 + 0.919554i 0.628550π0.628550\pi
600600 −38.4463 −1.56956
601601 −21.4329 −0.874267 −0.437134 0.899397i 0.644006π-0.644006\pi
−0.437134 + 0.899397i 0.644006π0.644006\pi
602602 −23.0205 −0.938246
603603 −16.0905 −0.655255
604604 84.9914 3.45825
605605 −3.22795 −0.131235
606606 −15.6020 −0.633787
607607 −37.7926 −1.53395 −0.766977 0.641675i 0.778240π-0.778240\pi
−0.766977 + 0.641675i 0.778240π0.778240\pi
608608 −102.024 −4.13763
609609 0.738205 0.0299136
610610 −21.9649 −0.889334
611611 26.4391 1.06961
612612 −27.6092 −1.11603
613613 14.6947 0.593514 0.296757 0.954953i 0.404095π-0.404095\pi
0.296757 + 0.954953i 0.404095π0.404095\pi
614614 47.4401 1.91453
615615 3.66967 0.147975
616616 33.5669 1.35245
617617 12.1256 0.488157 0.244078 0.969756i 0.421515π-0.421515\pi
0.244078 + 0.969756i 0.421515π0.421515\pi
618618 52.8781 2.12707
619619 −12.0144 −0.482899 −0.241449 0.970413i 0.577623π-0.577623\pi
−0.241449 + 0.970413i 0.577623π0.577623\pi
620620 −58.2784 −2.34052
621621 5.41855 0.217439
622622 −5.51026 −0.220941
623623 6.77205 0.271317
624624 −70.2700 −2.81305
625625 6.33791 0.253516
626626 −33.5369 −1.34040
627627 −22.8371 −0.912026
628628 −59.6502 −2.38030
629629 −9.75872 −0.389106
630630 5.17009 0.205981
631631 10.9300 0.435118 0.217559 0.976047i 0.430191π-0.430191\pi
0.217559 + 0.976047i 0.430191π0.430191\pi
632632 39.7237 1.58012
633633 −5.57531 −0.221599
634634 54.5874 2.16794
635635 −3.41855 −0.135661
636636 −25.9733 −1.02991
637637 4.34017 0.171964
638638 −6.34017 −0.251010
639639 −17.6742 −0.699181
640640 33.4257 1.32127
641641 −33.1194 −1.30814 −0.654069 0.756435i 0.726939π-0.726939\pi
−0.654069 + 0.756435i 0.726939π0.726939\pi
642642 −48.6102 −1.91849
643643 −17.5297 −0.691305 −0.345653 0.938363i 0.612342π-0.612342\pi
−0.345653 + 0.938363i 0.612342π0.612342\pi
644644 −5.34017 −0.210432
645645 −11.6332 −0.458055
646646 −45.1917 −1.77804
647647 −6.88777 −0.270786 −0.135393 0.990792i 0.543230π-0.543230\pi
−0.135393 + 0.990792i 0.543230π0.543230\pi
648648 13.0989 0.514573
649649 −31.1773 −1.22382
650650 42.6947 1.67462
651651 10.9132 0.427722
652652 78.0866 3.05811
653653 −36.3545 −1.42266 −0.711332 0.702856i 0.751908π-0.751908\pi
−0.711332 + 0.702856i 0.751908π0.751908\pi
654654 −35.4329 −1.38554
655655 7.34244 0.286893
656656 37.0882 1.44805
657657 21.2351 0.828461
658658 16.5041 0.643397
659659 −2.63931 −0.102813 −0.0514064 0.998678i 0.516370π-0.516370\pi
−0.0514064 + 0.998678i 0.516370π0.516370\pi
660660 27.1194 1.05562
661661 21.0010 0.816846 0.408423 0.912793i 0.366079π-0.366079\pi
0.408423 + 0.912793i 0.366079π0.366079\pi
662662 18.1711 0.706241
663663 −16.0989 −0.625229
664664 −132.608 −5.14618
665665 6.15676 0.238749
666666 −13.6020 −0.527066
667667 0.630898 0.0244285
668668 32.0794 1.24119
669669 25.0023 0.966644
670670 31.2762 1.20830
671671 −25.7009 −0.992171
672672 −22.6875 −0.875191
673673 −51.2534 −1.97567 −0.987836 0.155497i 0.950302π-0.950302\pi
−0.987836 + 0.155497i 0.950302π0.950302\pi
674674 78.6246 3.02851
675675 −19.6742 −0.757260
676676 31.1711 1.19889
677677 41.4668 1.59370 0.796849 0.604179i 0.206499π-0.206499\pi
0.796849 + 0.604179i 0.206499π0.206499\pi
678678 42.8515 1.64570
679679 −8.58864 −0.329602
680680 33.5669 1.28723
681681 6.83710 0.261998
682682 −93.7296 −3.58909
683683 −26.2557 −1.00464 −0.502322 0.864680i 0.667521π-0.667521\pi
−0.502322 + 0.864680i 0.667521π0.667521\pi
684684 −45.8264 −1.75222
685685 −9.07838 −0.346867
686686 2.70928 0.103441
687687 −3.34244 −0.127522
688688 −117.573 −4.48242
689689 18.0410 0.687309
690690 −3.70928 −0.141210
691691 −12.0338 −0.457789 −0.228895 0.973451i 0.573511π-0.573511\pi
−0.228895 + 0.973451i 0.573511π0.573511\pi
692692 75.2905 2.86212
693693 6.04945 0.229800
694694 49.4206 1.87598
695695 3.42696 0.129992
696696 6.68035 0.253218
697697 8.49693 0.321844
698698 22.6348 0.856739
699699 15.8264 0.598610
700700 19.3896 0.732859
701701 34.6491 1.30868 0.654340 0.756200i 0.272946π-0.272946\pi
0.654340 + 0.756200i 0.272946π0.272946\pi
702702 −63.7152 −2.40478
703703 −16.1978 −0.610911
704704 92.2038 3.47506
705705 8.34017 0.314109
706706 85.5851 3.22104
707707 4.92162 0.185097
708708 52.5197 1.97381
709709 7.65983 0.287671 0.143835 0.989602i 0.454056π-0.454056\pi
0.143835 + 0.989602i 0.454056π0.454056\pi
710710 34.3545 1.28930
711711 7.15902 0.268484
712712 61.2834 2.29669
713713 9.32684 0.349293
714714 −10.0494 −0.376091
715715 −18.8371 −0.704468
716716 −96.7936 −3.61735
717717 −5.57531 −0.208214
718718 12.1606 0.453831
719719 22.4196 0.836110 0.418055 0.908422i 0.362712π-0.362712\pi
0.418055 + 0.908422i 0.362712π0.362712\pi
720720 26.4052 0.984064
721721 −16.6803 −0.621209
722722 −23.5341 −0.875848
723723 −28.6407 −1.06516
724724 66.3884 2.46731
725725 −2.29072 −0.0850754
726726 8.74539 0.324572
727727 34.8371 1.29204 0.646018 0.763322i 0.276433π-0.276433\pi
0.646018 + 0.763322i 0.276433π0.276433\pi
728728 39.2762 1.45567
729729 21.3812 0.791897
730730 −41.2762 −1.52770
731731 −26.9360 −0.996264
732732 43.2944 1.60021
733733 −38.6752 −1.42850 −0.714251 0.699889i 0.753233π-0.753233\pi
−0.714251 + 0.699889i 0.753233π0.753233\pi
734734 50.8059 1.87528
735735 1.36910 0.0505001
736736 −19.3896 −0.714711
737737 36.5958 1.34802
738738 11.8432 0.435956
739739 −51.3484 −1.88888 −0.944441 0.328682i 0.893396π-0.893396\pi
−0.944441 + 0.328682i 0.893396π0.893396\pi
740740 19.2351 0.707098
741741 −26.7214 −0.981635
742742 11.2618 0.413434
743743 8.00597 0.293710 0.146855 0.989158i 0.453085π-0.453085\pi
0.146855 + 0.989158i 0.453085π0.453085\pi
744744 98.7585 3.62066
745745 −0.979481 −0.0358854
746746 −60.9893 −2.23298
747747 −23.8987 −0.874406
748748 62.7936 2.29596
749749 15.3340 0.560293
750750 32.0144 1.16900
751751 23.3958 0.853724 0.426862 0.904317i 0.359619π-0.359619\pi
0.426862 + 0.904317i 0.359619π0.359619\pi
752752 84.2916 3.07380
753753 30.7214 1.11955
754754 −7.41855 −0.270168
755755 −18.6225 −0.677742
756756 −28.9360 −1.05239
757757 −29.1194 −1.05836 −0.529182 0.848509i 0.677501π-0.677501\pi
−0.529182 + 0.848509i 0.677501π0.677501\pi
758758 60.5029 2.19756
759759 −4.34017 −0.157538
760760 55.7152 2.02100
761761 −10.1834 −0.369149 −0.184574 0.982819i 0.559091π-0.559091\pi
−0.184574 + 0.982819i 0.559091π0.559091\pi
762762 9.26180 0.335519
763763 11.1773 0.404645
764764 −25.9733 −0.939682
765765 6.04945 0.218718
766766 −41.2762 −1.49137
767767 −36.4801 −1.31722
768768 −32.3884 −1.16872
769769 0.431882 0.0155741 0.00778703 0.999970i 0.497521π-0.497521\pi
0.00778703 + 0.999970i 0.497521π0.497521\pi
770770 −11.7587 −0.423755
771771 −9.17727 −0.330511
772772 −92.0386 −3.31254
773773 −0.0650468 −0.00233957 −0.00116978 0.999999i 0.500372π-0.500372\pi
−0.00116978 + 0.999999i 0.500372π0.500372\pi
774774 −37.5441 −1.34950
775775 −33.8648 −1.21646
776776 −77.7224 −2.79007
777777 −3.60197 −0.129220
778778 −57.9442 −2.07740
779779 14.1034 0.505308
780780 31.7321 1.13619
781781 40.1978 1.43839
782782 −8.58864 −0.307129
783783 3.41855 0.122169
784784 13.8371 0.494182
785785 13.0700 0.466487
786786 −19.8927 −0.709549
787787 31.5486 1.12459 0.562294 0.826937i 0.309919π-0.309919\pi
0.562294 + 0.826937i 0.309919π0.309919\pi
788788 −66.8781 −2.38244
789789 −12.7694 −0.454603
790790 −13.9155 −0.495091
791791 −13.5174 −0.480625
792792 54.7442 1.94525
793793 −30.0722 −1.06790
794794 −55.9565 −1.98582
795795 5.69102 0.201840
796796 6.21008 0.220110
797797 51.8336 1.83604 0.918020 0.396533i 0.129787π-0.129787\pi
0.918020 + 0.396533i 0.129787π0.129787\pi
798798 −16.6803 −0.590478
799799 19.3112 0.683183
800800 70.4017 2.48908
801801 11.0445 0.390239
802802 −65.9442 −2.32857
803803 −48.2967 −1.70435
804804 −61.6475 −2.17414
805805 1.17009 0.0412401
806806 −109.672 −3.86302
807807 4.18342 0.147263
808808 44.5380 1.56684
809809 44.4391 1.56239 0.781197 0.624284i 0.214609π-0.214609\pi
0.781197 + 0.624284i 0.214609π0.214609\pi
810810 −4.58864 −0.161228
811811 −23.6358 −0.829966 −0.414983 0.909829i 0.636212π-0.636212\pi
−0.414983 + 0.909829i 0.636212π0.636212\pi
812812 −3.36910 −0.118232
813813 6.99773 0.245421
814814 30.9360 1.08431
815815 −17.1096 −0.599322
816816 −51.3256 −1.79676
817817 −44.7091 −1.56417
818818 −46.8392 −1.63769
819819 7.07838 0.247339
820820 −16.7480 −0.584867
821821 −14.9399 −0.521405 −0.260703 0.965419i 0.583954π-0.583954\pi
−0.260703 + 0.965419i 0.583954π0.583954\pi
822822 24.5958 0.857878
823823 30.7670 1.07247 0.536234 0.844069i 0.319846π-0.319846\pi
0.536234 + 0.844069i 0.319846π0.319846\pi
824824 −150.948 −5.25852
825825 15.7587 0.548648
826826 −22.7721 −0.792341
827827 −24.5113 −0.852342 −0.426171 0.904643i 0.640138π-0.640138\pi
−0.426171 + 0.904643i 0.640138π0.640138\pi
828828 −8.70928 −0.302668
829829 43.8720 1.52374 0.761869 0.647731i 0.224282π-0.224282\pi
0.761869 + 0.647731i 0.224282π0.224282\pi
830830 46.4534 1.61242
831831 15.5753 0.540301
832832 107.886 3.74029
833833 3.17009 0.109837
834834 −9.28458 −0.321499
835835 −7.02893 −0.243246
836836 104.227 3.60475
837837 50.5380 1.74685
838838 8.26794 0.285611
839839 −5.39189 −0.186149 −0.0930743 0.995659i 0.529669π-0.529669\pi
−0.0930743 + 0.995659i 0.529669π0.529669\pi
840840 12.3896 0.427483
841841 −28.6020 −0.986275
842842 −37.6163 −1.29634
843843 2.49239 0.0858426
844844 25.4452 0.875860
845845 −6.82991 −0.234956
846846 26.9165 0.925409
847847 −2.75872 −0.0947909
848848 57.5174 1.97516
849849 −16.0000 −0.549119
850850 31.1845 1.06962
851851 −3.07838 −0.105525
852852 −67.7152 −2.31989
853853 −1.33403 −0.0456763 −0.0228382 0.999739i 0.507270π-0.507270\pi
−0.0228382 + 0.999739i 0.507270π0.507270\pi
854854 −18.7721 −0.642366
855855 10.0410 0.343396
856856 138.765 4.74287
857857 12.1034 0.413445 0.206723 0.978400i 0.433720π-0.433720\pi
0.206723 + 0.978400i 0.433720π0.433720\pi
858858 51.0349 1.74230
859859 40.5718 1.38429 0.692146 0.721757i 0.256665π-0.256665\pi
0.692146 + 0.721757i 0.256665π0.256665\pi
860860 53.0928 1.81045
861861 3.13624 0.106883
862862 −41.1917 −1.40299
863863 34.0944 1.16059 0.580293 0.814408i 0.302938π-0.302938\pi
0.580293 + 0.814408i 0.302938π0.302938\pi
864864 −105.064 −3.57434
865865 −16.4969 −0.560912
866866 −34.8320 −1.18364
867867 8.13275 0.276203
868868 −49.8069 −1.69056
869869 −16.2823 −0.552340
870870 −2.34017 −0.0793393
871871 42.8203 1.45091
872872 101.148 3.42531
873873 −14.0072 −0.474071
874874 −14.2557 −0.482205
875875 −10.0989 −0.341405
876876 81.3582 2.74884
877877 −20.4163 −0.689409 −0.344704 0.938711i 0.612021π-0.612021\pi
−0.344704 + 0.938711i 0.612021π0.612021\pi
878878 −39.4524 −1.33145
879879 15.5259 0.523674
880880 −60.0554 −2.02447
881881 −35.4668 −1.19491 −0.597453 0.801904i 0.703821π-0.703821\pi
−0.597453 + 0.801904i 0.703821π0.703821\pi
882882 4.41855 0.148780
883883 7.91548 0.266377 0.133189 0.991091i 0.457478π-0.457478\pi
0.133189 + 0.991091i 0.457478π0.457478\pi
884884 73.4740 2.47120
885885 −11.5076 −0.386824
886886 81.9709 2.75387
887887 −8.10608 −0.272176 −0.136088 0.990697i 0.543453π-0.543453\pi
−0.136088 + 0.990697i 0.543453π0.543453\pi
888888 −32.5958 −1.09384
889889 −2.92162 −0.0979881
890890 −21.4680 −0.719609
891891 −5.36910 −0.179872
892892 −114.108 −3.82062
893893 32.0533 1.07262
894894 2.65368 0.0887525
895895 21.2085 0.708921
896896 28.5669 0.954353
897897 −5.07838 −0.169562
898898 12.6908 0.423499
899899 5.88428 0.196252
900900 31.6225 1.05408
901901 13.1773 0.438999
902902 −26.9360 −0.896871
903903 −9.94214 −0.330854
904904 −122.325 −4.06848
905905 −14.5464 −0.483538
906906 50.4534 1.67620
907907 −18.8371 −0.625476 −0.312738 0.949839i 0.601246π-0.601246\pi
−0.312738 + 0.949839i 0.601246π0.601246\pi
908908 −31.2039 −1.03554
909909 8.02666 0.266228
910910 −13.7587 −0.456097
911911 33.6514 1.11492 0.557461 0.830203i 0.311776π-0.311776\pi
0.557461 + 0.830203i 0.311776π0.311776\pi
912912 −85.1917 −2.82098
913913 54.3545 1.79887
914914 −63.5585 −2.10233
915915 −9.48625 −0.313606
916916 15.2546 0.504026
917917 6.27513 0.207223
918918 −46.5380 −1.53598
919919 42.5464 1.40348 0.701738 0.712435i 0.252408π-0.252408\pi
0.701738 + 0.712435i 0.252408π0.252408\pi
920920 10.5886 0.349097
921921 20.4885 0.675120
922922 −17.8310 −0.587231
923923 47.0349 1.54817
924924 23.1773 0.762476
925925 11.1773 0.367507
926926 −54.2245 −1.78193
927927 −27.2039 −0.893495
928928 −12.2329 −0.401563
929929 36.3012 1.19100 0.595502 0.803354i 0.296953π-0.296953\pi
0.595502 + 0.803354i 0.296953π0.296953\pi
930930 −34.5958 −1.13444
931931 5.26180 0.172448
932932 −72.2304 −2.36599
933933 −2.37978 −0.0779105
934934 −58.1399 −1.90240
935935 −13.7587 −0.449958
936936 64.0554 2.09372
937937 6.50412 0.212480 0.106240 0.994341i 0.466119π-0.466119\pi
0.106240 + 0.994341i 0.466119π0.466119\pi
938938 26.7298 0.872759
939939 −14.4840 −0.472667
940940 −38.0638 −1.24151
941941 −2.35965 −0.0769223 −0.0384611 0.999260i 0.512246π-0.512246\pi
−0.0384611 + 0.999260i 0.512246π0.512246\pi
942942 −35.4101 −1.15372
943943 2.68035 0.0872841
944944 −116.304 −3.78537
945945 6.34017 0.206246
946946 85.3894 2.77625
947947 1.17727 0.0382563 0.0191281 0.999817i 0.493911π-0.493911\pi
0.0191281 + 0.999817i 0.493911π0.493911\pi
948948 27.4284 0.890833
949949 −56.5113 −1.83443
950950 51.7608 1.67934
951951 23.5753 0.764482
952952 28.6875 0.929768
953953 −31.8264 −1.03096 −0.515479 0.856902i 0.672386π-0.672386\pi
−0.515479 + 0.856902i 0.672386π0.672386\pi
954954 18.3668 0.594648
955955 5.69102 0.184157
956956 25.4452 0.822957
957957 −2.73820 −0.0885136
958958 38.7670 1.25250
959959 −7.75872 −0.250542
960960 34.0326 1.09840
961961 55.9900 1.80613
962962 36.1978 1.16706
963963 25.0082 0.805879
964964 130.714 4.21001
965965 20.1666 0.649186
966966 −3.17009 −0.101996
967967 42.6225 1.37065 0.685323 0.728239i 0.259661π-0.259661\pi
0.685323 + 0.728239i 0.259661π0.259661\pi
968968 −24.9649 −0.802403
969969 −19.5174 −0.626991
970970 27.2267 0.874197
971971 55.7998 1.79070 0.895350 0.445364i 0.146926π-0.146926\pi
0.895350 + 0.445364i 0.146926π0.146926\pi
972972 −77.7635 −2.49426
973973 2.92881 0.0938933
974974 14.5236 0.465366
975975 18.4391 0.590523
976976 −95.8746 −3.06887
977977 52.2245 1.67081 0.835404 0.549636i 0.185234π-0.185234\pi
0.835404 + 0.549636i 0.185234π0.185234\pi
978978 46.3545 1.48226
979979 −25.1194 −0.802820
980980 −6.24846 −0.199600
981981 18.2290 0.582007
982982 −24.3668 −0.777577
983983 −16.7649 −0.534716 −0.267358 0.963597i 0.586151π-0.586151\pi
−0.267358 + 0.963597i 0.586151π0.586151\pi
984984 28.3812 0.904760
985985 14.6537 0.466905
986986 −5.41855 −0.172562
987987 7.12783 0.226881
988988 121.954 3.87988
989989 −8.49693 −0.270187
990990 −19.1773 −0.609494
991991 −39.0349 −1.23998 −0.619992 0.784608i 0.712864π-0.712864\pi
−0.619992 + 0.784608i 0.712864π0.712864\pi
992992 −180.844 −5.74180
993993 7.84778 0.249042
994994 29.3607 0.931265
995995 −1.36069 −0.0431368
996996 −91.5630 −2.90129
997997 −11.2618 −0.356665 −0.178332 0.983970i 0.557070π-0.557070\pi
−0.178332 + 0.983970i 0.557070π0.557070\pi
998998 −5.49079 −0.173808
999999 −16.6803 −0.527743
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.2.a.c.1.1 3
3.2 odd 2 1449.2.a.m.1.3 3
4.3 odd 2 2576.2.a.v.1.3 3
5.4 even 2 4025.2.a.j.1.3 3
7.6 odd 2 1127.2.a.f.1.1 3
23.22 odd 2 3703.2.a.c.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.a.c.1.1 3 1.1 even 1 trivial
1127.2.a.f.1.1 3 7.6 odd 2
1449.2.a.m.1.3 3 3.2 odd 2
2576.2.a.v.1.3 3 4.3 odd 2
3703.2.a.c.1.1 3 23.22 odd 2
4025.2.a.j.1.3 3 5.4 even 2