Properties

Label 161.2.e.a.116.6
Level $161$
Weight $2$
Character 161.116
Analytic conductor $1.286$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,2,Mod(93,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.93");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28559147254\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 10 x^{12} - 2 x^{11} + 71 x^{10} - 19 x^{9} + 243 x^{8} - 140 x^{7} + 610 x^{6} - 323 x^{5} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 116.6
Root \(-1.02250 + 1.77102i\) of defining polynomial
Character \(\chi\) \(=\) 161.116
Dual form 161.2.e.a.93.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02250 + 1.77102i) q^{2} +(0.443108 - 0.767485i) q^{3} +(-1.09101 + 1.88969i) q^{4} +(0.756483 + 1.31027i) q^{5} +1.81231 q^{6} +(-2.63728 - 0.211547i) q^{7} -0.372248 q^{8} +(1.10731 + 1.91792i) q^{9} +(-1.54701 + 2.67950i) q^{10} +(1.85912 - 3.22009i) q^{11} +(0.966873 + 1.67467i) q^{12} -3.46012 q^{13} +(-2.32197 - 4.88699i) q^{14} +1.34081 q^{15} +(1.80140 + 3.12012i) q^{16} +(0.941342 - 1.63045i) q^{17} +(-2.26445 + 3.92215i) q^{18} +(-3.91984 - 6.78936i) q^{19} -3.30134 q^{20} +(-1.33096 + 1.93033i) q^{21} +7.60380 q^{22} +(-0.500000 - 0.866025i) q^{23} +(-0.164946 + 0.285695i) q^{24} +(1.35547 - 2.34774i) q^{25} +(-3.53797 - 6.12795i) q^{26} +4.62128 q^{27} +(3.27707 - 4.75285i) q^{28} -8.98292 q^{29} +(1.37098 + 2.37461i) q^{30} +(-0.0489231 + 0.0847374i) q^{31} +(-4.05612 + 7.02541i) q^{32} +(-1.64758 - 2.85369i) q^{33} +3.85009 q^{34} +(-1.71787 - 3.61557i) q^{35} -4.83237 q^{36} +(3.99451 + 6.91870i) q^{37} +(8.01607 - 13.8842i) q^{38} +(-1.53321 + 2.65559i) q^{39} +(-0.281599 - 0.487745i) q^{40} -1.24879 q^{41} +(-4.77957 - 0.383389i) q^{42} +3.32571 q^{43} +(4.05665 + 7.02632i) q^{44} +(-1.67532 + 2.90175i) q^{45} +(1.02250 - 1.77102i) q^{46} +(3.04616 + 5.27610i) q^{47} +3.19286 q^{48} +(6.91050 + 1.11582i) q^{49} +5.54386 q^{50} +(-0.834232 - 1.44493i) q^{51} +(3.77504 - 6.53856i) q^{52} +(0.615844 - 1.06667i) q^{53} +(4.72526 + 8.18439i) q^{54} +5.62557 q^{55} +(0.981723 + 0.0787480i) q^{56} -6.94764 q^{57} +(-9.18504 - 15.9090i) q^{58} +(-0.0156761 + 0.0271518i) q^{59} +(-1.46285 + 2.53373i) q^{60} +(-0.938670 - 1.62582i) q^{61} -0.200096 q^{62} +(-2.51456 - 5.29234i) q^{63} -9.38393 q^{64} +(-2.61752 - 4.53368i) q^{65} +(3.36930 - 5.83580i) q^{66} +(-5.99009 + 10.3751i) q^{67} +(2.05403 + 3.55769i) q^{68} -0.886215 q^{69} +(4.64674 - 6.73932i) q^{70} +0.158944 q^{71} +(-0.412195 - 0.713942i) q^{72} +(-6.98293 + 12.0948i) q^{73} +(-8.16878 + 14.1487i) q^{74} +(-1.20124 - 2.08060i) q^{75} +17.1064 q^{76} +(-5.58422 + 8.09898i) q^{77} -6.27082 q^{78} +(1.53539 + 2.65937i) q^{79} +(-2.72546 + 4.72064i) q^{80} +(-1.27421 + 2.20700i) q^{81} +(-1.27689 - 2.21163i) q^{82} -12.2989 q^{83} +(-2.19564 - 4.62112i) q^{84} +2.84844 q^{85} +(3.40054 + 5.88990i) q^{86} +(-3.98040 + 6.89426i) q^{87} +(-0.692053 + 1.19867i) q^{88} +(-7.12478 - 12.3405i) q^{89} -6.85208 q^{90} +(9.12531 + 0.731978i) q^{91} +2.18203 q^{92} +(0.0433564 + 0.0750955i) q^{93} +(-6.22940 + 10.7896i) q^{94} +(5.93058 - 10.2721i) q^{95} +(3.59460 + 6.22602i) q^{96} +12.9734 q^{97} +(5.08985 + 13.3796i) q^{98} +8.23449 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 5 q^{3} - 6 q^{4} - 4 q^{5} + 12 q^{6} - 2 q^{7} - 6 q^{8} - 4 q^{9} + 2 q^{10} - 4 q^{11} - 9 q^{12} + 28 q^{13} - 14 q^{14} - 6 q^{15} + 8 q^{16} - 4 q^{17} - 19 q^{18} - 9 q^{19} + 24 q^{20} - 6 q^{21}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02250 + 1.77102i 0.723017 + 1.25230i 0.959785 + 0.280736i \(0.0905785\pi\)
−0.236768 + 0.971566i \(0.576088\pi\)
\(3\) 0.443108 0.767485i 0.255828 0.443108i −0.709292 0.704915i \(-0.750985\pi\)
0.965120 + 0.261807i \(0.0843185\pi\)
\(4\) −1.09101 + 1.88969i −0.545507 + 0.944846i
\(5\) 0.756483 + 1.31027i 0.338310 + 0.585969i 0.984115 0.177533i \(-0.0568116\pi\)
−0.645805 + 0.763502i \(0.723478\pi\)
\(6\) 1.81231 0.739873
\(7\) −2.63728 0.211547i −0.996798 0.0799573i
\(8\) −0.372248 −0.131610
\(9\) 1.10731 + 1.91792i 0.369104 + 0.639306i
\(10\) −1.54701 + 2.67950i −0.489207 + 0.847332i
\(11\) 1.85912 3.22009i 0.560545 0.970893i −0.436903 0.899508i \(-0.643925\pi\)
0.997449 0.0713847i \(-0.0227418\pi\)
\(12\) 0.966873 + 1.67467i 0.279112 + 0.483437i
\(13\) −3.46012 −0.959665 −0.479832 0.877360i \(-0.659303\pi\)
−0.479832 + 0.877360i \(0.659303\pi\)
\(14\) −2.32197 4.88699i −0.620571 1.30610i
\(15\) 1.34081 0.346197
\(16\) 1.80140 + 3.12012i 0.450351 + 0.780031i
\(17\) 0.941342 1.63045i 0.228309 0.395443i −0.728998 0.684516i \(-0.760014\pi\)
0.957307 + 0.289073i \(0.0933470\pi\)
\(18\) −2.26445 + 3.92215i −0.533737 + 0.924459i
\(19\) −3.91984 6.78936i −0.899272 1.55759i −0.828426 0.560098i \(-0.810764\pi\)
−0.0708458 0.997487i \(-0.522570\pi\)
\(20\) −3.30134 −0.738201
\(21\) −1.33096 + 1.93033i −0.290439 + 0.421234i
\(22\) 7.60380 1.62114
\(23\) −0.500000 0.866025i −0.104257 0.180579i
\(24\) −0.164946 + 0.285695i −0.0336695 + 0.0583172i
\(25\) 1.35547 2.34774i 0.271093 0.469547i
\(26\) −3.53797 6.12795i −0.693854 1.20179i
\(27\) 4.62128 0.889365
\(28\) 3.27707 4.75285i 0.619308 0.898204i
\(29\) −8.98292 −1.66809 −0.834043 0.551699i \(-0.813980\pi\)
−0.834043 + 0.551699i \(0.813980\pi\)
\(30\) 1.37098 + 2.37461i 0.250306 + 0.433543i
\(31\) −0.0489231 + 0.0847374i −0.00878685 + 0.0152193i −0.870385 0.492371i \(-0.836130\pi\)
0.861599 + 0.507590i \(0.169464\pi\)
\(32\) −4.05612 + 7.02541i −0.717028 + 1.24193i
\(33\) −1.64758 2.85369i −0.286807 0.496764i
\(34\) 3.85009 0.660285
\(35\) −1.71787 3.61557i −0.290374 0.611144i
\(36\) −4.83237 −0.805395
\(37\) 3.99451 + 6.91870i 0.656694 + 1.13743i 0.981466 + 0.191635i \(0.0613790\pi\)
−0.324772 + 0.945792i \(0.605288\pi\)
\(38\) 8.01607 13.8842i 1.30038 2.25232i
\(39\) −1.53321 + 2.65559i −0.245509 + 0.425235i
\(40\) −0.281599 0.487745i −0.0445248 0.0771192i
\(41\) −1.24879 −0.195028 −0.0975139 0.995234i \(-0.531089\pi\)
−0.0975139 + 0.995234i \(0.531089\pi\)
\(42\) −4.77957 0.383389i −0.737504 0.0591582i
\(43\) 3.32571 0.507165 0.253583 0.967314i \(-0.418391\pi\)
0.253583 + 0.967314i \(0.418391\pi\)
\(44\) 4.05665 + 7.02632i 0.611563 + 1.05926i
\(45\) −1.67532 + 2.90175i −0.249743 + 0.432567i
\(46\) 1.02250 1.77102i 0.150759 0.261123i
\(47\) 3.04616 + 5.27610i 0.444328 + 0.769598i 0.998005 0.0631329i \(-0.0201092\pi\)
−0.553677 + 0.832731i \(0.686776\pi\)
\(48\) 3.19286 0.460850
\(49\) 6.91050 + 1.11582i 0.987214 + 0.159403i
\(50\) 5.54386 0.784020
\(51\) −0.834232 1.44493i −0.116816 0.202331i
\(52\) 3.77504 6.53856i 0.523504 0.906735i
\(53\) 0.615844 1.06667i 0.0845927 0.146519i −0.820625 0.571467i \(-0.806374\pi\)
0.905218 + 0.424948i \(0.139708\pi\)
\(54\) 4.72526 + 8.18439i 0.643026 + 1.11375i
\(55\) 5.62557 0.758551
\(56\) 0.981723 + 0.0787480i 0.131188 + 0.0105231i
\(57\) −6.94764 −0.920237
\(58\) −9.18504 15.9090i −1.20606 2.08895i
\(59\) −0.0156761 + 0.0271518i −0.00204085 + 0.00353486i −0.867044 0.498232i \(-0.833983\pi\)
0.865003 + 0.501766i \(0.167316\pi\)
\(60\) −1.46285 + 2.53373i −0.188853 + 0.327103i
\(61\) −0.938670 1.62582i −0.120184 0.208165i 0.799656 0.600459i \(-0.205015\pi\)
−0.919840 + 0.392293i \(0.871682\pi\)
\(62\) −0.200096 −0.0254122
\(63\) −2.51456 5.29234i −0.316805 0.666772i
\(64\) −9.38393 −1.17299
\(65\) −2.61752 4.53368i −0.324664 0.562334i
\(66\) 3.36930 5.83580i 0.414732 0.718337i
\(67\) −5.99009 + 10.3751i −0.731806 + 1.26752i 0.224305 + 0.974519i \(0.427989\pi\)
−0.956111 + 0.293006i \(0.905345\pi\)
\(68\) 2.05403 + 3.55769i 0.249088 + 0.431434i
\(69\) −0.886215 −0.106688
\(70\) 4.64674 6.73932i 0.555391 0.805503i
\(71\) 0.158944 0.0188632 0.00943162 0.999956i \(-0.496998\pi\)
0.00943162 + 0.999956i \(0.496998\pi\)
\(72\) −0.412195 0.713942i −0.0485776 0.0841389i
\(73\) −6.98293 + 12.0948i −0.817290 + 1.41559i 0.0903811 + 0.995907i \(0.471191\pi\)
−0.907672 + 0.419681i \(0.862142\pi\)
\(74\) −8.16878 + 14.1487i −0.949602 + 1.64476i
\(75\) −1.20124 2.08060i −0.138707 0.240247i
\(76\) 17.1064 1.96224
\(77\) −5.58422 + 8.09898i −0.636381 + 0.922965i
\(78\) −6.27082 −0.710030
\(79\) 1.53539 + 2.65937i 0.172745 + 0.299202i 0.939378 0.342882i \(-0.111403\pi\)
−0.766634 + 0.642085i \(0.778070\pi\)
\(80\) −2.72546 + 4.72064i −0.304716 + 0.527784i
\(81\) −1.27421 + 2.20700i −0.141579 + 0.245222i
\(82\) −1.27689 2.21163i −0.141008 0.244234i
\(83\) −12.2989 −1.34998 −0.674989 0.737828i \(-0.735852\pi\)
−0.674989 + 0.737828i \(0.735852\pi\)
\(84\) −2.19564 4.62112i −0.239564 0.504206i
\(85\) 2.84844 0.308956
\(86\) 3.40054 + 5.88990i 0.366689 + 0.635124i
\(87\) −3.98040 + 6.89426i −0.426744 + 0.739142i
\(88\) −0.692053 + 1.19867i −0.0737731 + 0.127779i
\(89\) −7.12478 12.3405i −0.755225 1.30809i −0.945262 0.326312i \(-0.894194\pi\)
0.190037 0.981777i \(-0.439139\pi\)
\(90\) −6.85208 −0.722273
\(91\) 9.12531 + 0.731978i 0.956592 + 0.0767322i
\(92\) 2.18203 0.227492
\(93\) 0.0433564 + 0.0750955i 0.00449585 + 0.00778705i
\(94\) −6.22940 + 10.7896i −0.642513 + 1.11287i
\(95\) 5.93058 10.2721i 0.608465 1.05389i
\(96\) 3.59460 + 6.22602i 0.366872 + 0.635441i
\(97\) 12.9734 1.31725 0.658625 0.752471i \(-0.271138\pi\)
0.658625 + 0.752471i \(0.271138\pi\)
\(98\) 5.08985 + 13.3796i 0.514152 + 1.35154i
\(99\) 8.23449 0.827598
\(100\) 2.95767 + 5.12283i 0.295767 + 0.512283i
\(101\) −2.84401 + 4.92597i −0.282990 + 0.490152i −0.972120 0.234485i \(-0.924660\pi\)
0.689130 + 0.724638i \(0.257993\pi\)
\(102\) 1.70600 2.95489i 0.168920 0.292577i
\(103\) −2.59465 4.49406i −0.255658 0.442813i 0.709416 0.704790i \(-0.248959\pi\)
−0.965074 + 0.261977i \(0.915625\pi\)
\(104\) 1.28802 0.126301
\(105\) −3.53610 0.283645i −0.345088 0.0276809i
\(106\) 2.51880 0.244648
\(107\) −2.88710 5.00061i −0.279107 0.483427i 0.692056 0.721844i \(-0.256705\pi\)
−0.971163 + 0.238416i \(0.923372\pi\)
\(108\) −5.04188 + 8.73279i −0.485155 + 0.840313i
\(109\) 3.01317 5.21896i 0.288609 0.499886i −0.684869 0.728666i \(-0.740141\pi\)
0.973478 + 0.228781i \(0.0734739\pi\)
\(110\) 5.75215 + 9.96301i 0.548446 + 0.949936i
\(111\) 7.08000 0.672004
\(112\) −4.09076 8.60972i −0.386540 0.813542i
\(113\) 8.44589 0.794522 0.397261 0.917706i \(-0.369961\pi\)
0.397261 + 0.917706i \(0.369961\pi\)
\(114\) −7.10396 12.3044i −0.665347 1.15242i
\(115\) 0.756483 1.31027i 0.0705424 0.122183i
\(116\) 9.80050 16.9750i 0.909953 1.57609i
\(117\) −3.83143 6.63623i −0.354216 0.613520i
\(118\) −0.0641152 −0.00590228
\(119\) −2.82750 + 4.10082i −0.259196 + 0.375922i
\(120\) −0.499115 −0.0455628
\(121\) −1.41264 2.44677i −0.128422 0.222434i
\(122\) 1.91958 3.32481i 0.173791 0.301014i
\(123\) −0.553347 + 0.958425i −0.0498936 + 0.0864183i
\(124\) −0.106752 0.184899i −0.00958658 0.0166044i
\(125\) 11.6664 1.04347
\(126\) 6.80171 9.86476i 0.605945 0.878823i
\(127\) 0.416632 0.0369701 0.0184851 0.999829i \(-0.494116\pi\)
0.0184851 + 0.999829i \(0.494116\pi\)
\(128\) −1.48283 2.56833i −0.131064 0.227010i
\(129\) 1.47365 2.55243i 0.129747 0.224729i
\(130\) 5.35284 9.27139i 0.469475 0.813154i
\(131\) 7.53823 + 13.0566i 0.658618 + 1.14076i 0.980974 + 0.194142i \(0.0621921\pi\)
−0.322355 + 0.946619i \(0.604475\pi\)
\(132\) 7.19013 0.625821
\(133\) 8.90144 + 18.7347i 0.771853 + 1.62450i
\(134\) −24.4995 −2.11643
\(135\) 3.49592 + 6.05511i 0.300881 + 0.521141i
\(136\) −0.350413 + 0.606933i −0.0300476 + 0.0520440i
\(137\) 0.0745828 0.129181i 0.00637204 0.0110367i −0.862822 0.505508i \(-0.831305\pi\)
0.869194 + 0.494472i \(0.164638\pi\)
\(138\) −0.906156 1.56951i −0.0771371 0.133605i
\(139\) 19.6184 1.66401 0.832005 0.554768i \(-0.187193\pi\)
0.832005 + 0.554768i \(0.187193\pi\)
\(140\) 8.70655 + 0.698388i 0.735838 + 0.0590245i
\(141\) 5.39910 0.454687
\(142\) 0.162521 + 0.281494i 0.0136384 + 0.0236225i
\(143\) −6.43278 + 11.1419i −0.537936 + 0.931732i
\(144\) −3.98943 + 6.90990i −0.332453 + 0.575825i
\(145\) −6.79543 11.7700i −0.564330 0.977448i
\(146\) −28.5602 −2.36366
\(147\) 3.91847 4.80927i 0.323190 0.396662i
\(148\) −17.4323 −1.43292
\(149\) −4.81856 8.34600i −0.394752 0.683731i 0.598317 0.801259i \(-0.295836\pi\)
−0.993070 + 0.117528i \(0.962503\pi\)
\(150\) 2.45653 4.25483i 0.200575 0.347405i
\(151\) 8.77911 15.2059i 0.714434 1.23744i −0.248744 0.968569i \(-0.580018\pi\)
0.963178 0.268866i \(-0.0866489\pi\)
\(152\) 1.45915 + 2.52733i 0.118353 + 0.204993i
\(153\) 4.16943 0.337079
\(154\) −20.0533 1.60856i −1.61594 0.129622i
\(155\) −0.148038 −0.0118907
\(156\) −3.34550 5.79457i −0.267854 0.463937i
\(157\) −11.0207 + 19.0884i −0.879546 + 1.52342i −0.0277071 + 0.999616i \(0.508821\pi\)
−0.851839 + 0.523803i \(0.824513\pi\)
\(158\) −3.13987 + 5.43841i −0.249794 + 0.432657i
\(159\) −0.545771 0.945303i −0.0432824 0.0749674i
\(160\) −12.2736 −0.970309
\(161\) 1.13544 + 2.38973i 0.0894848 + 0.188337i
\(162\) −5.21152 −0.409456
\(163\) −8.10871 14.0447i −0.635123 1.10007i −0.986489 0.163828i \(-0.947616\pi\)
0.351366 0.936238i \(-0.385717\pi\)
\(164\) 1.36244 2.35982i 0.106389 0.184271i
\(165\) 2.49273 4.31754i 0.194059 0.336120i
\(166\) −12.5756 21.7816i −0.976057 1.69058i
\(167\) 16.6608 1.28925 0.644624 0.764499i \(-0.277014\pi\)
0.644624 + 0.764499i \(0.277014\pi\)
\(168\) 0.495447 0.718564i 0.0382245 0.0554384i
\(169\) −1.02756 −0.0790434
\(170\) 2.91253 + 5.04465i 0.223381 + 0.386907i
\(171\) 8.68096 15.0359i 0.663849 1.14982i
\(172\) −3.62839 + 6.28456i −0.276662 + 0.479193i
\(173\) −1.86191 3.22493i −0.141559 0.245187i 0.786525 0.617558i \(-0.211878\pi\)
−0.928084 + 0.372372i \(0.878545\pi\)
\(174\) −16.2798 −1.23417
\(175\) −4.07140 + 5.90490i −0.307769 + 0.446368i
\(176\) 13.3961 1.00977
\(177\) 0.0138924 + 0.0240623i 0.00104422 + 0.00180863i
\(178\) 14.5702 25.2363i 1.09208 1.89154i
\(179\) 9.08786 15.7406i 0.679259 1.17651i −0.295946 0.955205i \(-0.595635\pi\)
0.975205 0.221306i \(-0.0710318\pi\)
\(180\) −3.65561 6.33169i −0.272473 0.471937i
\(181\) −9.63548 −0.716200 −0.358100 0.933683i \(-0.616575\pi\)
−0.358100 + 0.933683i \(0.616575\pi\)
\(182\) 8.03428 + 16.9096i 0.595541 + 1.25342i
\(183\) −1.66373 −0.122986
\(184\) 0.186124 + 0.322376i 0.0137212 + 0.0237659i
\(185\) −6.04356 + 10.4678i −0.444332 + 0.769605i
\(186\) −0.0886639 + 0.153570i −0.00650116 + 0.0112603i
\(187\) −3.50013 6.06241i −0.255955 0.443327i
\(188\) −13.2936 −0.969536
\(189\) −12.1876 0.977618i −0.886518 0.0711112i
\(190\) 24.2561 1.75972
\(191\) −7.18600 12.4465i −0.519961 0.900598i −0.999731 0.0232040i \(-0.992613\pi\)
0.479770 0.877394i \(-0.340720\pi\)
\(192\) −4.15809 + 7.20202i −0.300084 + 0.519761i
\(193\) −5.48564 + 9.50140i −0.394865 + 0.683926i −0.993084 0.117407i \(-0.962542\pi\)
0.598219 + 0.801333i \(0.295875\pi\)
\(194\) 13.2653 + 22.9762i 0.952395 + 1.64960i
\(195\) −4.63938 −0.332233
\(196\) −9.64800 + 11.8413i −0.689143 + 0.845810i
\(197\) 5.10847 0.363964 0.181982 0.983302i \(-0.441749\pi\)
0.181982 + 0.983302i \(0.441749\pi\)
\(198\) 8.41977 + 14.5835i 0.598367 + 1.03640i
\(199\) 2.24792 3.89352i 0.159351 0.276004i −0.775284 0.631613i \(-0.782393\pi\)
0.934635 + 0.355609i \(0.115727\pi\)
\(200\) −0.504570 + 0.873941i −0.0356785 + 0.0617969i
\(201\) 5.30851 + 9.19461i 0.374433 + 0.648537i
\(202\) −11.6320 −0.818425
\(203\) 23.6905 + 1.90031i 1.66275 + 0.133376i
\(204\) 3.64063 0.254895
\(205\) −0.944686 1.63624i −0.0659798 0.114280i
\(206\) 5.30605 9.19035i 0.369690 0.640322i
\(207\) 1.10731 1.91792i 0.0769635 0.133305i
\(208\) −6.23308 10.7960i −0.432186 0.748568i
\(209\) −29.1498 −2.01633
\(210\) −3.11332 6.55254i −0.214840 0.452169i
\(211\) 2.58550 0.177993 0.0889965 0.996032i \(-0.471634\pi\)
0.0889965 + 0.996032i \(0.471634\pi\)
\(212\) 1.34379 + 2.32751i 0.0922919 + 0.159854i
\(213\) 0.0704295 0.121987i 0.00482575 0.00835844i
\(214\) 5.90413 10.2263i 0.403598 0.699052i
\(215\) 2.51584 + 4.35756i 0.171579 + 0.297183i
\(216\) −1.72026 −0.117049
\(217\) 0.146950 0.213127i 0.00997561 0.0144680i
\(218\) 12.3239 0.834677
\(219\) 6.18838 + 10.7186i 0.418172 + 0.724295i
\(220\) −6.13757 + 10.6306i −0.413795 + 0.716714i
\(221\) −3.25716 + 5.64156i −0.219100 + 0.379492i
\(222\) 7.23930 + 12.5388i 0.485870 + 0.841551i
\(223\) 5.65862 0.378929 0.189465 0.981888i \(-0.439325\pi\)
0.189465 + 0.981888i \(0.439325\pi\)
\(224\) 12.1833 17.6699i 0.814033 1.18062i
\(225\) 6.00369 0.400246
\(226\) 8.63592 + 14.9579i 0.574453 + 0.994982i
\(227\) 5.27962 9.14457i 0.350421 0.606946i −0.635902 0.771769i \(-0.719372\pi\)
0.986323 + 0.164823i \(0.0527053\pi\)
\(228\) 7.57997 13.1289i 0.501996 0.869482i
\(229\) 5.78632 + 10.0222i 0.382371 + 0.662285i 0.991401 0.130862i \(-0.0417744\pi\)
−0.609030 + 0.793147i \(0.708441\pi\)
\(230\) 3.09402 0.204013
\(231\) 3.74144 + 7.87452i 0.246169 + 0.518106i
\(232\) 3.34388 0.219536
\(233\) 5.45551 + 9.44923i 0.357403 + 0.619039i 0.987526 0.157455i \(-0.0503291\pi\)
−0.630123 + 0.776495i \(0.716996\pi\)
\(234\) 7.83528 13.5711i 0.512208 0.887171i
\(235\) −4.60874 + 7.98256i −0.300641 + 0.520725i
\(236\) −0.0342057 0.0592459i −0.00222660 0.00385658i
\(237\) 2.72137 0.176772
\(238\) −10.1538 0.814475i −0.658171 0.0527946i
\(239\) −17.8912 −1.15729 −0.578644 0.815580i \(-0.696418\pi\)
−0.578644 + 0.815580i \(0.696418\pi\)
\(240\) 2.41535 + 4.18351i 0.155910 + 0.270044i
\(241\) −1.67268 + 2.89718i −0.107747 + 0.186623i −0.914857 0.403777i \(-0.867697\pi\)
0.807110 + 0.590401i \(0.201030\pi\)
\(242\) 2.88886 5.00365i 0.185703 0.321647i
\(243\) 8.06114 + 13.9623i 0.517122 + 0.895682i
\(244\) 4.09641 0.262246
\(245\) 3.76565 + 9.89869i 0.240579 + 0.632404i
\(246\) −2.26319 −0.144296
\(247\) 13.5631 + 23.4920i 0.863000 + 1.49476i
\(248\) 0.0182115 0.0315433i 0.00115643 0.00200300i
\(249\) −5.44973 + 9.43921i −0.345363 + 0.598186i
\(250\) 11.9289 + 20.6614i 0.754449 + 1.30674i
\(251\) −19.2286 −1.21370 −0.606851 0.794816i \(-0.707567\pi\)
−0.606851 + 0.794816i \(0.707567\pi\)
\(252\) 12.7443 + 1.02227i 0.802816 + 0.0643972i
\(253\) −3.71824 −0.233764
\(254\) 0.426007 + 0.737865i 0.0267300 + 0.0462978i
\(255\) 1.26216 2.18613i 0.0790398 0.136901i
\(256\) −6.35155 + 11.0012i −0.396972 + 0.687575i
\(257\) −4.39701 7.61585i −0.274278 0.475064i 0.695675 0.718357i \(-0.255106\pi\)
−0.969953 + 0.243293i \(0.921772\pi\)
\(258\) 6.02721 0.375238
\(259\) −9.07102 19.0916i −0.563646 1.18629i
\(260\) 11.4230 0.708426
\(261\) −9.94689 17.2285i −0.615697 1.06642i
\(262\) −15.4157 + 26.7008i −0.952385 + 1.64958i
\(263\) −5.28547 + 9.15471i −0.325916 + 0.564503i −0.981697 0.190448i \(-0.939006\pi\)
0.655781 + 0.754951i \(0.272339\pi\)
\(264\) 0.613308 + 1.06228i 0.0377465 + 0.0653789i
\(265\) 1.86350 0.114474
\(266\) −24.0778 + 34.9209i −1.47630 + 2.14114i
\(267\) −12.6282 −0.772832
\(268\) −13.0705 22.6388i −0.798410 1.38289i
\(269\) 15.4306 26.7266i 0.940821 1.62955i 0.176911 0.984227i \(-0.443390\pi\)
0.763910 0.645323i \(-0.223277\pi\)
\(270\) −7.14916 + 12.3827i −0.435084 + 0.753587i
\(271\) 5.15958 + 8.93665i 0.313422 + 0.542863i 0.979101 0.203376i \(-0.0651913\pi\)
−0.665679 + 0.746238i \(0.731858\pi\)
\(272\) 6.78295 0.411277
\(273\) 4.60528 6.67919i 0.278724 0.404243i
\(274\) 0.305044 0.0184284
\(275\) −5.03995 8.72944i −0.303920 0.526405i
\(276\) 0.966873 1.67467i 0.0581989 0.100804i
\(277\) 10.6735 18.4871i 0.641310 1.11078i −0.343831 0.939032i \(-0.611725\pi\)
0.985141 0.171750i \(-0.0549421\pi\)
\(278\) 20.0598 + 34.7446i 1.20311 + 2.08384i
\(279\) −0.216693 −0.0129730
\(280\) 0.639476 + 1.34589i 0.0382160 + 0.0804323i
\(281\) 5.64761 0.336908 0.168454 0.985709i \(-0.446122\pi\)
0.168454 + 0.985709i \(0.446122\pi\)
\(282\) 5.52059 + 9.56194i 0.328746 + 0.569405i
\(283\) −8.27078 + 14.3254i −0.491647 + 0.851557i −0.999954 0.00961857i \(-0.996938\pi\)
0.508307 + 0.861176i \(0.330272\pi\)
\(284\) −0.173411 + 0.300356i −0.0102900 + 0.0178229i
\(285\) −5.25577 9.10326i −0.311325 0.539231i
\(286\) −26.3101 −1.55575
\(287\) 3.29340 + 0.264177i 0.194403 + 0.0155939i
\(288\) −17.9656 −1.05863
\(289\) 6.72775 + 11.6528i 0.395750 + 0.685459i
\(290\) 13.8967 24.0697i 0.816040 1.41342i
\(291\) 5.74862 9.95690i 0.336990 0.583684i
\(292\) −15.2370 26.3912i −0.891675 1.54443i
\(293\) −15.8804 −0.927744 −0.463872 0.885902i \(-0.653540\pi\)
−0.463872 + 0.885902i \(0.653540\pi\)
\(294\) 12.5240 + 2.02221i 0.730413 + 0.117938i
\(295\) −0.0474348 −0.00276176
\(296\) −1.48695 2.57547i −0.0864272 0.149696i
\(297\) 8.59150 14.8809i 0.498530 0.863479i
\(298\) 9.85397 17.0676i 0.570825 0.988698i
\(299\) 1.73006 + 2.99655i 0.100052 + 0.173295i
\(300\) 5.24226 0.302662
\(301\) −8.77082 0.703543i −0.505542 0.0405516i
\(302\) 35.9066 2.06619
\(303\) 2.52040 + 4.36547i 0.144793 + 0.250790i
\(304\) 14.1224 24.4608i 0.809976 1.40292i
\(305\) 1.42018 2.45982i 0.0813191 0.140849i
\(306\) 4.26325 + 7.38416i 0.243714 + 0.422124i
\(307\) −14.4841 −0.826650 −0.413325 0.910584i \(-0.635633\pi\)
−0.413325 + 0.910584i \(0.635633\pi\)
\(308\) −9.21212 19.3886i −0.524910 1.10477i
\(309\) −4.59883 −0.261618
\(310\) −0.151369 0.262179i −0.00859718 0.0148908i
\(311\) −6.55236 + 11.3490i −0.371550 + 0.643544i −0.989804 0.142434i \(-0.954507\pi\)
0.618254 + 0.785978i \(0.287840\pi\)
\(312\) 0.570733 0.988539i 0.0323114 0.0559650i
\(313\) 7.66422 + 13.2748i 0.433207 + 0.750337i 0.997147 0.0754788i \(-0.0240485\pi\)
−0.563940 + 0.825816i \(0.690715\pi\)
\(314\) −45.0746 −2.54371
\(315\) 5.03216 7.29831i 0.283530 0.411213i
\(316\) −6.70052 −0.376934
\(317\) −16.3703 28.3541i −0.919446 1.59253i −0.800259 0.599655i \(-0.795304\pi\)
−0.119187 0.992872i \(-0.538029\pi\)
\(318\) 1.11610 1.93314i 0.0625879 0.108405i
\(319\) −16.7003 + 28.9258i −0.935038 + 1.61953i
\(320\) −7.09878 12.2955i −0.396834 0.687337i
\(321\) −5.11719 −0.285614
\(322\) −3.07127 + 4.45438i −0.171155 + 0.248233i
\(323\) −14.7596 −0.821247
\(324\) −2.78036 4.81573i −0.154465 0.267540i
\(325\) −4.69008 + 8.12345i −0.260159 + 0.450608i
\(326\) 16.5823 28.7214i 0.918410 1.59073i
\(327\) −2.67031 4.62512i −0.147669 0.255770i
\(328\) 0.464859 0.0256675
\(329\) −6.91743 14.5590i −0.381370 0.802662i
\(330\) 10.1953 0.561232
\(331\) −15.9151 27.5657i −0.874772 1.51515i −0.857005 0.515308i \(-0.827678\pi\)
−0.0177670 0.999842i \(-0.505656\pi\)
\(332\) 13.4183 23.2411i 0.736423 1.27552i
\(333\) −8.84634 + 15.3223i −0.484776 + 0.839657i
\(334\) 17.0356 + 29.5066i 0.932149 + 1.61453i
\(335\) −18.1256 −0.990307
\(336\) −8.42048 0.675441i −0.459375 0.0368483i
\(337\) 30.6355 1.66882 0.834410 0.551144i \(-0.185809\pi\)
0.834410 + 0.551144i \(0.185809\pi\)
\(338\) −1.05068 1.81984i −0.0571497 0.0989862i
\(339\) 3.74244 6.48209i 0.203261 0.352059i
\(340\) −3.10768 + 5.38267i −0.168538 + 0.291916i
\(341\) 0.181908 + 0.315074i 0.00985086 + 0.0170622i
\(342\) 35.5051 1.91990
\(343\) −17.9889 4.40462i −0.971308 0.237827i
\(344\) −1.23799 −0.0667478
\(345\) −0.670407 1.16118i −0.0360935 0.0625158i
\(346\) 3.80761 6.59498i 0.204698 0.354548i
\(347\) 6.92855 12.0006i 0.371944 0.644226i −0.617920 0.786241i \(-0.712025\pi\)
0.989865 + 0.142015i \(0.0453580\pi\)
\(348\) −8.68535 15.0435i −0.465584 0.806414i
\(349\) 22.8620 1.22377 0.611887 0.790945i \(-0.290411\pi\)
0.611887 + 0.790945i \(0.290411\pi\)
\(350\) −14.6207 1.17279i −0.781510 0.0626881i
\(351\) −15.9902 −0.853493
\(352\) 15.0816 + 26.1221i 0.803853 + 1.39231i
\(353\) −4.14830 + 7.18507i −0.220792 + 0.382423i −0.955049 0.296449i \(-0.904198\pi\)
0.734257 + 0.678872i \(0.237531\pi\)
\(354\) −0.0284099 + 0.0492075i −0.00150997 + 0.00261535i
\(355\) 0.120239 + 0.208260i 0.00638161 + 0.0110533i
\(356\) 31.0929 1.64792
\(357\) 1.89443 + 3.98717i 0.100264 + 0.211023i
\(358\) 37.1694 1.96446
\(359\) −12.8677 22.2875i −0.679131 1.17629i −0.975243 0.221136i \(-0.929024\pi\)
0.296112 0.955153i \(-0.404310\pi\)
\(360\) 0.623636 1.08017i 0.0328685 0.0569300i
\(361\) −21.2302 + 36.7719i −1.11738 + 1.93536i
\(362\) −9.85229 17.0647i −0.517825 0.896899i
\(363\) −2.50382 −0.131416
\(364\) −11.3391 + 16.4454i −0.594328 + 0.861974i
\(365\) −21.1299 −1.10599
\(366\) −1.70116 2.94650i −0.0889212 0.154016i
\(367\) −0.616910 + 1.06852i −0.0322024 + 0.0557763i −0.881677 0.471853i \(-0.843585\pi\)
0.849475 + 0.527629i \(0.176919\pi\)
\(368\) 1.80140 3.12012i 0.0939047 0.162648i
\(369\) −1.38280 2.39507i −0.0719855 0.124683i
\(370\) −24.7182 −1.28504
\(371\) −1.84981 + 2.68284i −0.0960372 + 0.139286i
\(372\) −0.189210 −0.00981008
\(373\) 16.9774 + 29.4057i 0.879055 + 1.52257i 0.852379 + 0.522924i \(0.175159\pi\)
0.0266759 + 0.999644i \(0.491508\pi\)
\(374\) 7.15777 12.3976i 0.370120 0.641066i
\(375\) 5.16946 8.95377i 0.266950 0.462371i
\(376\) −1.13393 1.96402i −0.0584778 0.101287i
\(377\) 31.0820 1.60080
\(378\) −10.7304 22.5841i −0.551915 1.16160i
\(379\) −25.2824 −1.29867 −0.649335 0.760502i \(-0.724953\pi\)
−0.649335 + 0.760502i \(0.724953\pi\)
\(380\) 12.9407 + 22.4139i 0.663844 + 1.14981i
\(381\) 0.184613 0.319759i 0.00945801 0.0163817i
\(382\) 14.6954 25.4531i 0.751881 1.30230i
\(383\) 14.9944 + 25.9711i 0.766180 + 1.32706i 0.939620 + 0.342218i \(0.111178\pi\)
−0.173440 + 0.984844i \(0.555488\pi\)
\(384\) −2.62821 −0.134120
\(385\) −14.8362 1.19007i −0.756123 0.0606517i
\(386\) −22.4363 −1.14198
\(387\) 3.68259 + 6.37844i 0.187197 + 0.324234i
\(388\) −14.1542 + 24.5158i −0.718570 + 1.24460i
\(389\) 11.0221 19.0908i 0.558842 0.967942i −0.438752 0.898608i \(-0.644579\pi\)
0.997593 0.0693341i \(-0.0220874\pi\)
\(390\) −4.74377 8.21644i −0.240210 0.416056i
\(391\) −1.88268 −0.0952114
\(392\) −2.57242 0.415361i −0.129927 0.0209789i
\(393\) 13.3610 0.673973
\(394\) 5.22341 + 9.04722i 0.263152 + 0.455792i
\(395\) −2.32299 + 4.02354i −0.116882 + 0.202446i
\(396\) −8.98395 + 15.5607i −0.451460 + 0.781952i
\(397\) −6.86442 11.8895i −0.344515 0.596718i 0.640750 0.767749i \(-0.278623\pi\)
−0.985266 + 0.171031i \(0.945290\pi\)
\(398\) 9.19401 0.460854
\(399\) 18.3229 + 1.46975i 0.917291 + 0.0735797i
\(400\) 9.76697 0.488349
\(401\) 2.90649 + 5.03419i 0.145143 + 0.251395i 0.929426 0.369008i \(-0.120302\pi\)
−0.784283 + 0.620403i \(0.786969\pi\)
\(402\) −10.8559 + 18.8030i −0.541443 + 0.937807i
\(403\) 0.169280 0.293201i 0.00843244 0.0146054i
\(404\) −6.20571 10.7486i −0.308746 0.534763i
\(405\) −3.85567 −0.191590
\(406\) 20.8580 + 43.8995i 1.03517 + 2.17869i
\(407\) 29.7051 1.47243
\(408\) 0.310541 + 0.537873i 0.0153741 + 0.0266287i
\(409\) 14.7647 25.5732i 0.730068 1.26451i −0.226786 0.973945i \(-0.572822\pi\)
0.956854 0.290570i \(-0.0938449\pi\)
\(410\) 1.93188 3.34612i 0.0954090 0.165253i
\(411\) −0.0660964 0.114482i −0.00326029 0.00564700i
\(412\) 11.3232 0.557853
\(413\) 0.0470861 0.0682906i 0.00231696 0.00336036i
\(414\) 4.52890 0.222584
\(415\) −9.30390 16.1148i −0.456711 0.791046i
\(416\) 14.0347 24.3088i 0.688106 1.19184i
\(417\) 8.69306 15.0568i 0.425701 0.737336i
\(418\) −29.8056 51.6249i −1.45784 2.52506i
\(419\) 14.6409 0.715255 0.357628 0.933864i \(-0.383586\pi\)
0.357628 + 0.933864i \(0.383586\pi\)
\(420\) 4.39394 6.37268i 0.214402 0.310955i
\(421\) −4.25571 −0.207411 −0.103705 0.994608i \(-0.533070\pi\)
−0.103705 + 0.994608i \(0.533070\pi\)
\(422\) 2.64367 + 4.57897i 0.128692 + 0.222901i
\(423\) −6.74609 + 11.6846i −0.328006 + 0.568123i
\(424\) −0.229247 + 0.397067i −0.0111332 + 0.0192833i
\(425\) −2.55191 4.42005i −0.123786 0.214404i
\(426\) 0.288057 0.0139564
\(427\) 2.13160 + 4.48633i 0.103155 + 0.217109i
\(428\) 12.5995 0.609019
\(429\) 5.70082 + 9.87412i 0.275238 + 0.476727i
\(430\) −5.14490 + 8.91122i −0.248109 + 0.429737i
\(431\) 0.326349 0.565253i 0.0157197 0.0272273i −0.858059 0.513552i \(-0.828329\pi\)
0.873778 + 0.486325i \(0.161663\pi\)
\(432\) 8.32479 + 14.4190i 0.400527 + 0.693733i
\(433\) −6.56790 −0.315633 −0.157817 0.987468i \(-0.550445\pi\)
−0.157817 + 0.987468i \(0.550445\pi\)
\(434\) 0.527708 + 0.0423297i 0.0253308 + 0.00203189i
\(435\) −12.0444 −0.577486
\(436\) 6.57482 + 11.3879i 0.314877 + 0.545382i
\(437\) −3.91984 + 6.78936i −0.187511 + 0.324779i
\(438\) −12.6552 + 21.9195i −0.604691 + 1.04736i
\(439\) 7.00651 + 12.1356i 0.334403 + 0.579202i 0.983370 0.181614i \(-0.0581321\pi\)
−0.648967 + 0.760816i \(0.724799\pi\)
\(440\) −2.09411 −0.0998326
\(441\) 5.51202 + 14.4893i 0.262477 + 0.689968i
\(442\) −13.3218 −0.633652
\(443\) −18.5502 32.1299i −0.881347 1.52654i −0.849844 0.527034i \(-0.823304\pi\)
−0.0315030 0.999504i \(-0.510029\pi\)
\(444\) −7.72438 + 13.3790i −0.366583 + 0.634940i
\(445\) 10.7796 18.6707i 0.511000 0.885078i
\(446\) 5.78594 + 10.0215i 0.273972 + 0.474534i
\(447\) −8.54057 −0.403955
\(448\) 24.7480 + 1.98514i 1.16924 + 0.0937891i
\(449\) 4.57195 0.215764 0.107882 0.994164i \(-0.465593\pi\)
0.107882 + 0.994164i \(0.465593\pi\)
\(450\) 6.13878 + 10.6327i 0.289385 + 0.501229i
\(451\) −2.32164 + 4.02120i −0.109322 + 0.189351i
\(452\) −9.21458 + 15.9601i −0.433417 + 0.750701i
\(453\) −7.78018 13.4757i −0.365545 0.633142i
\(454\) 21.5937 1.01344
\(455\) 5.94405 + 12.5103i 0.278662 + 0.586493i
\(456\) 2.58625 0.121112
\(457\) 11.5646 + 20.0305i 0.540969 + 0.936986i 0.998849 + 0.0479716i \(0.0152757\pi\)
−0.457880 + 0.889014i \(0.651391\pi\)
\(458\) −11.8330 + 20.4954i −0.552921 + 0.957687i
\(459\) 4.35020 7.53477i 0.203050 0.351693i
\(460\) 1.65067 + 2.85904i 0.0769628 + 0.133303i
\(461\) 21.5238 1.00246 0.501232 0.865313i \(-0.332880\pi\)
0.501232 + 0.865313i \(0.332880\pi\)
\(462\) −10.1203 + 14.6779i −0.470841 + 0.682877i
\(463\) 3.69564 0.171751 0.0858754 0.996306i \(-0.472631\pi\)
0.0858754 + 0.996306i \(0.472631\pi\)
\(464\) −16.1819 28.0278i −0.751225 1.30116i
\(465\) −0.0655968 + 0.113617i −0.00304198 + 0.00526886i
\(466\) −11.1565 + 19.3237i −0.516816 + 0.895152i
\(467\) −9.87212 17.0990i −0.456827 0.791248i 0.541964 0.840402i \(-0.317681\pi\)
−0.998791 + 0.0491540i \(0.984347\pi\)
\(468\) 16.7206 0.772909
\(469\) 17.9924 26.0950i 0.830811 1.20495i
\(470\) −18.8497 −0.869473
\(471\) 9.76670 + 16.9164i 0.450026 + 0.779468i
\(472\) 0.00583539 0.0101072i 0.000268596 0.000465221i
\(473\) 6.18288 10.7091i 0.284289 0.492403i
\(474\) 2.78260 + 4.81960i 0.127809 + 0.221372i
\(475\) −21.2528 −0.975147
\(476\) −4.66445 9.81716i −0.213795 0.449969i
\(477\) 2.72773 0.124894
\(478\) −18.2938 31.6858i −0.836739 1.44927i
\(479\) −18.4457 + 31.9489i −0.842807 + 1.45978i 0.0447052 + 0.999000i \(0.485765\pi\)
−0.887512 + 0.460784i \(0.847568\pi\)
\(480\) −5.43850 + 9.41977i −0.248233 + 0.429952i
\(481\) −13.8215 23.9395i −0.630206 1.09155i
\(482\) −6.84128 −0.311612
\(483\) 2.33720 + 0.187476i 0.106346 + 0.00853046i
\(484\) 6.16486 0.280221
\(485\) 9.81417 + 16.9986i 0.445639 + 0.771869i
\(486\) −16.4850 + 28.5529i −0.747777 + 1.29519i
\(487\) −10.7847 + 18.6796i −0.488699 + 0.846452i −0.999915 0.0130001i \(-0.995862\pi\)
0.511216 + 0.859452i \(0.329195\pi\)
\(488\) 0.349418 + 0.605210i 0.0158174 + 0.0273966i
\(489\) −14.3721 −0.649930
\(490\) −13.6804 + 16.7905i −0.618019 + 0.758516i
\(491\) −3.74105 −0.168831 −0.0844156 0.996431i \(-0.526902\pi\)
−0.0844156 + 0.996431i \(0.526902\pi\)
\(492\) −1.20742 2.09131i −0.0544347 0.0942836i
\(493\) −8.45600 + 14.6462i −0.380839 + 0.659633i
\(494\) −27.7366 + 48.0411i −1.24793 + 2.16147i
\(495\) 6.22925 + 10.7894i 0.279984 + 0.484947i
\(496\) −0.352521 −0.0158287
\(497\) −0.419181 0.0336242i −0.0188028 0.00150825i
\(498\) −22.2894 −0.998812
\(499\) 13.8137 + 23.9261i 0.618388 + 1.07108i 0.989780 + 0.142603i \(0.0455472\pi\)
−0.371392 + 0.928476i \(0.621119\pi\)
\(500\) −12.7282 + 22.0459i −0.569222 + 0.985921i
\(501\) 7.38251 12.7869i 0.329826 0.571276i
\(502\) −19.6613 34.0544i −0.877527 1.51992i
\(503\) 35.6054 1.58757 0.793783 0.608201i \(-0.208109\pi\)
0.793783 + 0.608201i \(0.208109\pi\)
\(504\) 0.936040 + 1.97006i 0.0416945 + 0.0877536i
\(505\) −8.60578 −0.382952
\(506\) −3.80190 6.58508i −0.169015 0.292743i
\(507\) −0.455321 + 0.788640i −0.0202215 + 0.0350247i
\(508\) −0.454552 + 0.787307i −0.0201675 + 0.0349311i
\(509\) 3.82914 + 6.63226i 0.169723 + 0.293970i 0.938323 0.345761i \(-0.112379\pi\)
−0.768599 + 0.639731i \(0.779046\pi\)
\(510\) 5.16225 0.228588
\(511\) 20.9746 30.4201i 0.927860 1.34571i
\(512\) −31.9091 −1.41020
\(513\) −18.1147 31.3755i −0.799782 1.38526i
\(514\) 8.99190 15.5744i 0.396616 0.686958i
\(515\) 3.92561 6.79936i 0.172983 0.299616i
\(516\) 3.21554 + 5.56947i 0.141556 + 0.245182i
\(517\) 22.6527 0.996264
\(518\) 24.5365 35.5861i 1.07807 1.56356i
\(519\) −3.30011 −0.144859
\(520\) 0.974368 + 1.68765i 0.0427289 + 0.0740086i
\(521\) −5.61264 + 9.72137i −0.245894 + 0.425901i −0.962383 0.271698i \(-0.912415\pi\)
0.716489 + 0.697599i \(0.245748\pi\)
\(522\) 20.3414 35.2323i 0.890319 1.54208i
\(523\) 0.0675806 + 0.117053i 0.00295509 + 0.00511837i 0.867499 0.497439i \(-0.165726\pi\)
−0.864544 + 0.502557i \(0.832393\pi\)
\(524\) −32.8973 −1.43712
\(525\) 2.72785 + 5.74124i 0.119053 + 0.250568i
\(526\) −21.6176 −0.942572
\(527\) 0.0921068 + 0.159534i 0.00401223 + 0.00694939i
\(528\) 5.93591 10.2813i 0.258328 0.447436i
\(529\) −0.500000 + 0.866025i −0.0217391 + 0.0376533i
\(530\) 1.90543 + 3.30031i 0.0827667 + 0.143356i
\(531\) −0.0694332 −0.00301315
\(532\) −45.1143 3.61881i −1.95595 0.156895i
\(533\) 4.32095 0.187161
\(534\) −12.9123 22.3648i −0.558771 0.967819i
\(535\) 4.36809 7.56575i 0.188849 0.327096i
\(536\) 2.22980 3.86213i 0.0963127 0.166818i
\(537\) −8.05380 13.9496i −0.347547 0.601969i
\(538\) 63.1112 2.72092
\(539\) 16.4405 20.1780i 0.708141 0.869127i
\(540\) −15.2564 −0.656530
\(541\) 1.90578 + 3.30091i 0.0819360 + 0.141917i 0.904081 0.427360i \(-0.140556\pi\)
−0.822145 + 0.569277i \(0.807223\pi\)
\(542\) −10.5513 + 18.2755i −0.453219 + 0.784998i
\(543\) −4.26956 + 7.39509i −0.183224 + 0.317354i
\(544\) 7.63639 + 13.2266i 0.327408 + 0.567087i
\(545\) 9.11764 0.390557
\(546\) 16.5379 + 1.32657i 0.707757 + 0.0567721i
\(547\) −10.7277 −0.458683 −0.229341 0.973346i \(-0.573657\pi\)
−0.229341 + 0.973346i \(0.573657\pi\)
\(548\) 0.162742 + 0.281877i 0.00695198 + 0.0120412i
\(549\) 2.07880 3.60059i 0.0887210 0.153669i
\(550\) 10.3067 17.8517i 0.439479 0.761200i
\(551\) 35.2116 + 60.9883i 1.50006 + 2.59819i
\(552\) 0.329892 0.0140411
\(553\) −3.48667 7.33831i −0.148268 0.312057i
\(554\) 43.6547 1.85471
\(555\) 5.35590 + 9.27669i 0.227345 + 0.393773i
\(556\) −21.4039 + 37.0727i −0.907729 + 1.57223i
\(557\) −15.6929 + 27.1810i −0.664931 + 1.15170i 0.314372 + 0.949300i \(0.398206\pi\)
−0.979304 + 0.202395i \(0.935127\pi\)
\(558\) −0.221568 0.383767i −0.00937973 0.0162462i
\(559\) −11.5073 −0.486709
\(560\) 8.18645 11.8731i 0.345941 0.501730i
\(561\) −6.20374 −0.261922
\(562\) 5.77469 + 10.0020i 0.243590 + 0.421911i
\(563\) 14.8248 25.6773i 0.624789 1.08217i −0.363792 0.931480i \(-0.618518\pi\)
0.988582 0.150687i \(-0.0481485\pi\)
\(564\) −5.89050 + 10.2026i −0.248035 + 0.429609i
\(565\) 6.38917 + 11.0664i 0.268794 + 0.465566i
\(566\) −33.8275 −1.42188
\(567\) 3.82733 5.55091i 0.160733 0.233116i
\(568\) −0.0591668 −0.00248258
\(569\) −7.81122 13.5294i −0.327464 0.567184i 0.654544 0.756024i \(-0.272861\pi\)
−0.982008 + 0.188840i \(0.939527\pi\)
\(570\) 10.7481 18.6162i 0.450187 0.779746i
\(571\) −4.18981 + 7.25697i −0.175338 + 0.303695i −0.940278 0.340407i \(-0.889435\pi\)
0.764940 + 0.644101i \(0.222769\pi\)
\(572\) −14.0365 24.3119i −0.586895 1.01653i
\(573\) −12.7367 −0.532083
\(574\) 2.89964 + 6.10281i 0.121029 + 0.254726i
\(575\) −2.71093 −0.113054
\(576\) −10.3909 17.9976i −0.432955 0.749901i
\(577\) 2.16297 3.74638i 0.0900457 0.155964i −0.817484 0.575951i \(-0.804632\pi\)
0.907530 + 0.419987i \(0.137965\pi\)
\(578\) −13.7583 + 23.8300i −0.572268 + 0.991197i
\(579\) 4.86146 + 8.42029i 0.202035 + 0.349935i
\(580\) 29.6556 1.23138
\(581\) 32.4356 + 2.60179i 1.34566 + 0.107941i
\(582\) 23.5119 0.974598
\(583\) −2.28986 3.96615i −0.0948361 0.164261i
\(584\) 2.59938 4.50226i 0.107563 0.186305i
\(585\) 5.79683 10.0404i 0.239669 0.415119i
\(586\) −16.2377 28.1246i −0.670775 1.16182i
\(587\) −8.87385 −0.366263 −0.183132 0.983088i \(-0.558623\pi\)
−0.183132 + 0.983088i \(0.558623\pi\)
\(588\) 4.81294 + 12.6517i 0.198482 + 0.521747i
\(589\) 0.767083 0.0316071
\(590\) −0.0485021 0.0840081i −0.00199680 0.00345856i
\(591\) 2.26360 3.92068i 0.0931122 0.161275i
\(592\) −14.3915 + 24.9268i −0.591486 + 1.02448i
\(593\) 8.24706 + 14.2843i 0.338666 + 0.586587i 0.984182 0.177160i \(-0.0566910\pi\)
−0.645516 + 0.763747i \(0.723358\pi\)
\(594\) 35.1393 1.44178
\(595\) −7.51213 0.602578i −0.307967 0.0247033i
\(596\) 21.0285 0.861360
\(597\) −1.99214 3.45049i −0.0815330 0.141219i
\(598\) −3.53797 + 6.12795i −0.144679 + 0.250591i
\(599\) −14.7100 + 25.4786i −0.601036 + 1.04103i 0.391628 + 0.920124i \(0.371912\pi\)
−0.992664 + 0.120902i \(0.961421\pi\)
\(600\) 0.447158 + 0.774500i 0.0182551 + 0.0316188i
\(601\) 41.9446 1.71095 0.855477 0.517841i \(-0.173264\pi\)
0.855477 + 0.517841i \(0.173264\pi\)
\(602\) −7.72218 16.2527i −0.314732 0.662410i
\(603\) −26.5316 −1.08045
\(604\) 19.1563 + 33.1796i 0.779457 + 1.35006i
\(605\) 2.13728 3.70188i 0.0868930 0.150503i
\(606\) −5.15423 + 8.92739i −0.209376 + 0.362650i
\(607\) −8.59096 14.8800i −0.348696 0.603960i 0.637322 0.770598i \(-0.280042\pi\)
−0.986018 + 0.166638i \(0.946709\pi\)
\(608\) 63.5973 2.57921
\(609\) 11.9559 17.3400i 0.484477 0.702654i
\(610\) 5.80852 0.235180
\(611\) −10.5401 18.2559i −0.426406 0.738557i
\(612\) −4.54891 + 7.87894i −0.183879 + 0.318487i
\(613\) 13.6447 23.6333i 0.551103 0.954539i −0.447092 0.894488i \(-0.647540\pi\)
0.998195 0.0600509i \(-0.0191263\pi\)
\(614\) −14.8100 25.6516i −0.597682 1.03522i
\(615\) −1.67439 −0.0675180
\(616\) 2.07871 3.01483i 0.0837538 0.121471i
\(617\) 28.5612 1.14983 0.574915 0.818213i \(-0.305035\pi\)
0.574915 + 0.818213i \(0.305035\pi\)
\(618\) −4.70230 8.14463i −0.189154 0.327625i
\(619\) 11.6594 20.1946i 0.468629 0.811689i −0.530728 0.847542i \(-0.678081\pi\)
0.999357 + 0.0358530i \(0.0114148\pi\)
\(620\) 0.161512 0.279746i 0.00648647 0.0112349i
\(621\) −2.31064 4.00214i −0.0927228 0.160601i
\(622\) −26.7992 −1.07455
\(623\) 16.1795 + 34.0525i 0.648216 + 1.36429i
\(624\) −11.0477 −0.442262
\(625\) 2.04809 + 3.54739i 0.0819235 + 0.141896i
\(626\) −15.6733 + 27.1470i −0.626432 + 1.08501i
\(627\) −12.9165 + 22.3720i −0.515835 + 0.893452i
\(628\) −24.0474 41.6514i −0.959598 1.66207i
\(629\) 15.0408 0.599716
\(630\) 18.0709 + 1.44954i 0.719960 + 0.0577509i
\(631\) −8.32633 −0.331466 −0.165733 0.986171i \(-0.552999\pi\)
−0.165733 + 0.986171i \(0.552999\pi\)
\(632\) −0.571545 0.989945i −0.0227348 0.0393779i
\(633\) 1.14565 1.98433i 0.0455356 0.0788700i
\(634\) 33.4772 57.9842i 1.32955 2.30285i
\(635\) 0.315175 + 0.545900i 0.0125073 + 0.0216634i
\(636\) 2.38177 0.0944435
\(637\) −23.9112 3.86086i −0.947394 0.152973i
\(638\) −68.3043 −2.70419
\(639\) 0.176001 + 0.304843i 0.00696249 + 0.0120594i
\(640\) 2.24346 3.88580i 0.0886807 0.153600i
\(641\) 6.38867 11.0655i 0.252337 0.437061i −0.711832 0.702350i \(-0.752134\pi\)
0.964169 + 0.265289i \(0.0854674\pi\)
\(642\) −5.23233 9.06266i −0.206504 0.357675i
\(643\) −44.8214 −1.76759 −0.883793 0.467879i \(-0.845018\pi\)
−0.883793 + 0.467879i \(0.845018\pi\)
\(644\) −5.75462 0.461602i −0.226764 0.0181897i
\(645\) 4.45915 0.175579
\(646\) −15.0917 26.1396i −0.593776 1.02845i
\(647\) 4.56646 7.90933i 0.179526 0.310948i −0.762192 0.647351i \(-0.775877\pi\)
0.941718 + 0.336403i \(0.109210\pi\)
\(648\) 0.474322 0.821550i 0.0186331 0.0322735i
\(649\) 0.0582874 + 0.100957i 0.00228798 + 0.00396290i
\(650\) −19.1824 −0.752397
\(651\) −0.0984568 0.207220i −0.00385883 0.00812159i
\(652\) 35.3869 1.38586
\(653\) 5.74912 + 9.95777i 0.224980 + 0.389678i 0.956314 0.292343i \(-0.0944348\pi\)
−0.731333 + 0.682020i \(0.761102\pi\)
\(654\) 5.46080 9.45838i 0.213534 0.369852i
\(655\) −11.4051 + 19.7542i −0.445634 + 0.771860i
\(656\) −2.24957 3.89637i −0.0878310 0.152128i
\(657\) −30.9291 −1.20666
\(658\) 18.7112 27.1375i 0.729438 1.05793i
\(659\) −32.6074 −1.27021 −0.635103 0.772428i \(-0.719042\pi\)
−0.635103 + 0.772428i \(0.719042\pi\)
\(660\) 5.43921 + 9.42099i 0.211721 + 0.366712i
\(661\) 1.09549 1.89744i 0.0426095 0.0738017i −0.843934 0.536447i \(-0.819766\pi\)
0.886544 + 0.462645i \(0.153100\pi\)
\(662\) 32.5464 56.3720i 1.26495 2.19096i
\(663\) 2.88654 + 4.99964i 0.112104 + 0.194170i
\(664\) 4.57824 0.177670
\(665\) −17.8136 + 25.8357i −0.690783 + 1.00187i
\(666\) −36.1815 −1.40201
\(667\) 4.49146 + 7.77944i 0.173910 + 0.301221i
\(668\) −18.1771 + 31.4837i −0.703294 + 1.21814i
\(669\) 2.50738 4.34290i 0.0969408 0.167906i
\(670\) −18.5334 32.1009i −0.716009 1.24016i
\(671\) −6.98040 −0.269475
\(672\) −8.16286 17.1802i −0.314889 0.662741i
\(673\) −3.08634 −0.118969 −0.0594847 0.998229i \(-0.518946\pi\)
−0.0594847 + 0.998229i \(0.518946\pi\)
\(674\) 31.3248 + 54.2561i 1.20658 + 2.08987i
\(675\) 6.26399 10.8495i 0.241101 0.417599i
\(676\) 1.12109 1.94178i 0.0431187 0.0746838i
\(677\) 5.91089 + 10.2380i 0.227174 + 0.393477i 0.956969 0.290189i \(-0.0937180\pi\)
−0.729795 + 0.683666i \(0.760385\pi\)
\(678\) 15.3066 0.587845
\(679\) −34.2145 2.74449i −1.31303 0.105324i
\(680\) −1.06033 −0.0406616
\(681\) −4.67888 8.10406i −0.179295 0.310548i
\(682\) −0.372002 + 0.644326i −0.0142447 + 0.0246725i
\(683\) 7.87365 13.6376i 0.301277 0.521827i −0.675148 0.737682i \(-0.735920\pi\)
0.976425 + 0.215855i \(0.0692538\pi\)
\(684\) 18.9421 + 32.8087i 0.724269 + 1.25447i
\(685\) 0.225682 0.00862288
\(686\) −10.5929 36.3624i −0.404440 1.38832i
\(687\) 10.2558 0.391285
\(688\) 5.99094 + 10.3766i 0.228403 + 0.395605i
\(689\) −2.13090 + 3.69082i −0.0811807 + 0.140609i
\(690\) 1.37098 2.37461i 0.0521924 0.0903999i
\(691\) 11.0465 + 19.1330i 0.420227 + 0.727855i 0.995961 0.0897819i \(-0.0286170\pi\)
−0.575734 + 0.817637i \(0.695284\pi\)
\(692\) 8.12549 0.308885
\(693\) −21.7167 1.74198i −0.824948 0.0661724i
\(694\) 28.3378 1.07569
\(695\) 14.8410 + 25.7053i 0.562951 + 0.975059i
\(696\) 1.48170 2.56637i 0.0561636 0.0972782i
\(697\) −1.17554 + 2.03609i −0.0445266 + 0.0771223i
\(698\) 23.3764 + 40.4891i 0.884810 + 1.53254i
\(699\) 9.66952 0.365735
\(700\) −6.71648 14.1360i −0.253859 0.534291i
\(701\) 2.71631 0.102594 0.0512969 0.998683i \(-0.483665\pi\)
0.0512969 + 0.998683i \(0.483665\pi\)
\(702\) −16.3500 28.3190i −0.617090 1.06883i
\(703\) 31.3157 54.2403i 1.18109 2.04571i
\(704\) −17.4458 + 30.2171i −0.657515 + 1.13885i
\(705\) 4.08433 + 7.07427i 0.153825 + 0.266432i
\(706\) −16.9666 −0.638545
\(707\) 8.54253 12.3895i 0.321275 0.465956i
\(708\) −0.0606272 −0.00227851
\(709\) −9.63195 16.6830i −0.361735 0.626544i 0.626511 0.779412i \(-0.284482\pi\)
−0.988247 + 0.152868i \(0.951149\pi\)
\(710\) −0.245888 + 0.425891i −0.00922803 + 0.0159834i
\(711\) −3.40030 + 5.88950i −0.127521 + 0.220873i
\(712\) 2.65219 + 4.59372i 0.0993949 + 0.172157i
\(713\) 0.0978463 0.00366437
\(714\) −5.12431 + 7.43196i −0.191772 + 0.278134i
\(715\) −19.4651 −0.727955
\(716\) 19.8300 + 34.3465i 0.741081 + 1.28359i
\(717\) −7.92774 + 13.7313i −0.296067 + 0.512803i
\(718\) 26.3144 45.5779i 0.982046 1.70095i
\(719\) −2.50869 4.34518i −0.0935583 0.162048i 0.815448 0.578831i \(-0.196491\pi\)
−0.909006 + 0.416783i \(0.863157\pi\)
\(720\) −12.0717 −0.449888
\(721\) 5.89210 + 12.4010i 0.219433 + 0.461837i
\(722\) −86.8317 −3.23154
\(723\) 1.48236 + 2.56752i 0.0551295 + 0.0954871i
\(724\) 10.5124 18.2081i 0.390692 0.676699i
\(725\) −12.1761 + 21.0895i −0.452207 + 0.783246i
\(726\) −2.56015 4.43431i −0.0950161 0.164573i
\(727\) 16.1209 0.597892 0.298946 0.954270i \(-0.403365\pi\)
0.298946 + 0.954270i \(0.403365\pi\)
\(728\) −3.39688 0.272478i −0.125897 0.0100987i
\(729\) 6.64255 0.246021
\(730\) −21.6053 37.4215i −0.799649 1.38503i
\(731\) 3.13063 5.42240i 0.115790 0.200555i
\(732\) 1.81515 3.14393i 0.0670899 0.116203i
\(733\) −3.87132 6.70533i −0.142991 0.247667i 0.785631 0.618695i \(-0.212339\pi\)
−0.928621 + 0.371029i \(0.879005\pi\)
\(734\) −2.52316 −0.0931317
\(735\) 9.26569 + 1.49610i 0.341770 + 0.0551846i
\(736\) 8.11224 0.299021
\(737\) 22.2726 + 38.5772i 0.820421 + 1.42101i
\(738\) 2.82782 4.89793i 0.104093 0.180295i
\(739\) −4.20053 + 7.27554i −0.154519 + 0.267635i −0.932884 0.360177i \(-0.882716\pi\)
0.778365 + 0.627812i \(0.216049\pi\)
\(740\) −13.1872 22.8409i −0.484772 0.839650i
\(741\) 24.0397 0.883119
\(742\) −6.64279 0.532846i −0.243865 0.0195614i
\(743\) −32.4828 −1.19168 −0.595839 0.803104i \(-0.703180\pi\)
−0.595839 + 0.803104i \(0.703180\pi\)
\(744\) −0.0161394 0.0279542i −0.000591697 0.00102485i
\(745\) 7.29033 12.6272i 0.267097 0.462625i
\(746\) −34.7187 + 60.1346i −1.27114 + 2.20169i
\(747\) −13.6187 23.5883i −0.498282 0.863050i
\(748\) 15.2748 0.558501
\(749\) 6.55624 + 13.7988i 0.239560 + 0.504196i
\(750\) 21.1431 0.772037
\(751\) 1.71971 + 2.97863i 0.0627532 + 0.108692i 0.895695 0.444669i \(-0.146679\pi\)
−0.832942 + 0.553360i \(0.813345\pi\)
\(752\) −10.9747 + 19.0088i −0.400207 + 0.693179i
\(753\) −8.52036 + 14.7577i −0.310499 + 0.537800i
\(754\) 31.7814 + 55.0469i 1.15741 + 2.00469i
\(755\) 26.5650 0.966799
\(756\) 15.1442 21.9642i 0.550791 0.798831i
\(757\) 49.6866 1.80589 0.902946 0.429755i \(-0.141400\pi\)
0.902946 + 0.429755i \(0.141400\pi\)
\(758\) −25.8513 44.7757i −0.938961 1.62633i
\(759\) −1.64758 + 2.85369i −0.0598033 + 0.103582i
\(760\) −2.20765 + 3.82376i −0.0800798 + 0.138702i
\(761\) −24.4628 42.3708i −0.886776 1.53594i −0.843664 0.536872i \(-0.819606\pi\)
−0.0431124 0.999070i \(-0.513727\pi\)
\(762\) 0.755067 0.0273532
\(763\) −9.05062 + 13.1264i −0.327655 + 0.475209i
\(764\) 31.3601 1.13457
\(765\) 3.15411 + 5.46307i 0.114037 + 0.197518i
\(766\) −30.6636 + 53.1110i −1.10792 + 1.91898i
\(767\) 0.0542411 0.0939484i 0.00195853 0.00339228i
\(768\) 5.62884 + 9.74943i 0.203113 + 0.351802i
\(769\) −34.2752 −1.23600 −0.617998 0.786179i \(-0.712056\pi\)
−0.617998 + 0.786179i \(0.712056\pi\)
\(770\) −13.0624 27.4921i −0.470735 0.990746i
\(771\) −7.79340 −0.280673
\(772\) −11.9698 20.7323i −0.430803 0.746173i
\(773\) −6.91486 + 11.9769i −0.248710 + 0.430779i −0.963168 0.268900i \(-0.913340\pi\)
0.714458 + 0.699678i \(0.246673\pi\)
\(774\) −7.53090 + 13.0439i −0.270693 + 0.468854i
\(775\) 0.132627 + 0.229717i 0.00476412 + 0.00825169i
\(776\) −4.82933 −0.173363
\(777\) −18.6719 1.49775i −0.669852 0.0537316i
\(778\) 45.0803 1.61621
\(779\) 4.89504 + 8.47846i 0.175383 + 0.303772i
\(780\) 5.06163 8.76700i 0.181235 0.313909i
\(781\) 0.295497 0.511815i 0.0105737 0.0183142i
\(782\) −1.92504 3.33428i −0.0688395 0.119233i
\(783\) −41.5126 −1.48354
\(784\) 8.96711 + 23.5716i 0.320254 + 0.841844i
\(785\) −33.3479 −1.19024
\(786\) 13.6616 + 23.6626i 0.487294 + 0.844018i
\(787\) −8.80794 + 15.2558i −0.313969 + 0.543811i −0.979218 0.202811i \(-0.934992\pi\)
0.665249 + 0.746622i \(0.268326\pi\)
\(788\) −5.57342 + 9.65344i −0.198545 + 0.343890i
\(789\) 4.68407 + 8.11304i 0.166757 + 0.288832i
\(790\) −9.50103 −0.338031
\(791\) −22.2742 1.78670i −0.791978 0.0635278i
\(792\) −3.06527 −0.108920
\(793\) 3.24791 + 5.62555i 0.115337 + 0.199769i
\(794\) 14.0377 24.3141i 0.498181 0.862874i
\(795\) 0.825733 1.43021i 0.0292857 0.0507244i
\(796\) 4.90503 + 8.49576i 0.173854 + 0.301124i
\(797\) −32.3522 −1.14598 −0.572988 0.819564i \(-0.694216\pi\)
−0.572988 + 0.819564i \(0.694216\pi\)
\(798\) 16.1322 + 33.9530i 0.571073 + 1.20192i
\(799\) 11.4699 0.405776
\(800\) 10.9959 + 19.0454i 0.388763 + 0.673357i
\(801\) 15.7787 27.3295i 0.557513 0.965641i
\(802\) −5.94377 + 10.2949i −0.209882 + 0.363526i
\(803\) 25.9642 + 44.9713i 0.916257 + 1.58700i
\(804\) −23.1666 −0.817024
\(805\) −2.27224 + 3.29551i −0.0800860 + 0.116151i
\(806\) 0.692355 0.0243872
\(807\) −13.6748 23.6855i −0.481377 0.833770i
\(808\) 1.05868 1.83368i 0.0372441 0.0645087i
\(809\) −7.53742 + 13.0552i −0.265002 + 0.458996i −0.967564 0.252626i \(-0.918706\pi\)
0.702562 + 0.711622i \(0.252039\pi\)
\(810\) −3.94243 6.82848i −0.138523 0.239928i
\(811\) 36.2016 1.27121 0.635605 0.772014i \(-0.280751\pi\)
0.635605 + 0.772014i \(0.280751\pi\)
\(812\) −29.4377 + 42.6945i −1.03306 + 1.49828i
\(813\) 9.14499 0.320729
\(814\) 30.3735 + 52.6084i 1.06459 + 1.84392i
\(815\) 12.2682 21.2492i 0.429737 0.744326i
\(816\) 3.00558 5.20581i 0.105216 0.182240i
\(817\) −13.0362 22.5794i −0.456080 0.789953i
\(818\) 60.3877 2.11141
\(819\) 8.70068 + 18.3121i 0.304026 + 0.639878i
\(820\) 4.12267 0.143970
\(821\) 4.36683 + 7.56356i 0.152403 + 0.263970i 0.932110 0.362174i \(-0.117965\pi\)
−0.779707 + 0.626144i \(0.784632\pi\)
\(822\) 0.135167 0.234116i 0.00471450 0.00816575i
\(823\) −24.7466 + 42.8624i −0.862613 + 1.49409i 0.00678427 + 0.999977i \(0.497840\pi\)
−0.869398 + 0.494113i \(0.835493\pi\)
\(824\) 0.965852 + 1.67290i 0.0336470 + 0.0582784i
\(825\) −8.93296 −0.311006
\(826\) 0.169090 + 0.0135634i 0.00588339 + 0.000471930i
\(827\) 26.4116 0.918423 0.459211 0.888327i \(-0.348132\pi\)
0.459211 + 0.888327i \(0.348132\pi\)
\(828\) 2.41618 + 4.18495i 0.0839682 + 0.145437i
\(829\) 19.6103 33.9660i 0.681093 1.17969i −0.293554 0.955942i \(-0.594838\pi\)
0.974648 0.223746i \(-0.0718285\pi\)
\(830\) 19.0265 32.9548i 0.660419 1.14388i
\(831\) −9.45904 16.3835i −0.328131 0.568339i
\(832\) 32.4695 1.12568
\(833\) 8.32443 10.2169i 0.288424 0.353993i
\(834\) 35.5546 1.23116
\(835\) 12.6036 + 21.8301i 0.436165 + 0.755460i
\(836\) 31.8028 55.0841i 1.09992 1.90512i
\(837\) −0.226087 + 0.391595i −0.00781472 + 0.0135355i
\(838\) 14.9703 + 25.9294i 0.517142 + 0.895716i
\(839\) −14.8912 −0.514101 −0.257050 0.966398i \(-0.582751\pi\)
−0.257050 + 0.966398i \(0.582751\pi\)
\(840\) 1.31631 + 0.105586i 0.0454169 + 0.00364308i
\(841\) 51.6929 1.78251
\(842\) −4.35147 7.53696i −0.149961 0.259741i
\(843\) 2.50250 4.33446i 0.0861907 0.149287i
\(844\) −2.82081 + 4.88579i −0.0970964 + 0.168176i
\(845\) −0.777335 1.34638i −0.0267411 0.0463170i
\(846\) −27.5915 −0.948616
\(847\) 3.20793 + 6.75167i 0.110226 + 0.231990i
\(848\) 4.43754 0.152386
\(849\) 7.32969 + 12.6954i 0.251554 + 0.435705i
\(850\) 5.21867 9.03900i 0.178999 0.310035i
\(851\) 3.99451 6.91870i 0.136930 0.237170i
\(852\) 0.153679 + 0.266180i 0.00526496 + 0.00911918i
\(853\) −42.1641 −1.44367 −0.721836 0.692064i \(-0.756702\pi\)
−0.721836 + 0.692064i \(0.756702\pi\)
\(854\) −5.76583 + 8.36238i −0.197303 + 0.286155i
\(855\) 26.2680 0.898346
\(856\) 1.07472 + 1.86147i 0.0367331 + 0.0636237i
\(857\) −22.7241 + 39.3593i −0.776240 + 1.34449i 0.157855 + 0.987462i \(0.449542\pi\)
−0.934095 + 0.357025i \(0.883791\pi\)
\(858\) −11.6582 + 20.1926i −0.398004 + 0.689363i
\(859\) 0.359104 + 0.621987i 0.0122525 + 0.0212219i 0.872087 0.489352i \(-0.162766\pi\)
−0.859834 + 0.510573i \(0.829433\pi\)
\(860\) −10.9793 −0.374390
\(861\) 1.66208 2.41058i 0.0566437 0.0821523i
\(862\) 1.33477 0.0454623
\(863\) 12.1628 + 21.0665i 0.414025 + 0.717113i 0.995326 0.0965765i \(-0.0307892\pi\)
−0.581300 + 0.813689i \(0.697456\pi\)
\(864\) −18.7445 + 32.4664i −0.637700 + 1.10453i
\(865\) 2.81701 4.87920i 0.0957812 0.165898i
\(866\) −6.71568 11.6319i −0.228208 0.395268i
\(867\) 11.9245 0.404976
\(868\) 0.242419 + 0.510214i 0.00822824 + 0.0173178i
\(869\) 11.4179 0.387325
\(870\) −12.3154 21.3310i −0.417532 0.723187i
\(871\) 20.7264 35.8992i 0.702288 1.21640i
\(872\) −1.12165 + 1.94275i −0.0379837 + 0.0657897i
\(873\) 14.3656 + 24.8820i 0.486202 + 0.842127i
\(874\) −16.0321 −0.542295
\(875\) −30.7675 2.46799i −1.04013 0.0834332i
\(876\) −27.0064 −0.912463
\(877\) −20.0394 34.7093i −0.676684 1.17205i −0.975974 0.217889i \(-0.930083\pi\)
0.299290 0.954162i \(-0.403250\pi\)
\(878\) −14.3283 + 24.8174i −0.483558 + 0.837546i
\(879\) −7.03673 + 12.1880i −0.237343 + 0.411090i
\(880\) 10.1339 + 17.5525i 0.341614 + 0.591694i
\(881\) 35.8620 1.20822 0.604111 0.796901i \(-0.293529\pi\)
0.604111 + 0.796901i \(0.293529\pi\)
\(882\) −20.0249 + 24.5773i −0.674273 + 0.827559i
\(883\) 27.0684 0.910925 0.455463 0.890255i \(-0.349474\pi\)
0.455463 + 0.890255i \(0.349474\pi\)
\(884\) −7.10721 12.3100i −0.239041 0.414032i
\(885\) −0.0210187 + 0.0364055i −0.000706536 + 0.00122376i
\(886\) 37.9352 65.7057i 1.27446 2.20743i
\(887\) −28.5904 49.5200i −0.959970 1.66272i −0.722560 0.691308i \(-0.757035\pi\)
−0.237410 0.971410i \(-0.576299\pi\)
\(888\) −2.63552 −0.0884421
\(889\) −1.09878 0.0881373i −0.0368518 0.00295603i
\(890\) 44.0884 1.47785
\(891\) 4.73782 + 8.20614i 0.158723 + 0.274916i
\(892\) −6.17363 + 10.6930i −0.206709 + 0.358030i
\(893\) 23.8809 41.3629i 0.799143 1.38416i
\(894\) −8.73274 15.1255i −0.292066 0.505874i
\(895\) 27.4993 0.919199
\(896\) 3.36730 + 7.08709i 0.112494 + 0.236763i
\(897\) 3.06641 0.102385
\(898\) 4.67482 + 8.09703i 0.156001 + 0.270201i
\(899\) 0.439473 0.761189i 0.0146572 0.0253871i
\(900\) −6.55011 + 11.3451i −0.218337 + 0.378171i
\(901\) −1.15944 2.00821i −0.0386266 0.0669032i
\(902\) −9.49553 −0.316166
\(903\) −4.42638 + 6.41973i −0.147301 + 0.213635i
\(904\) −3.14397 −0.104567
\(905\) −7.28908 12.6251i −0.242297 0.419671i
\(906\) 15.9105 27.5577i 0.528590 0.915545i
\(907\) −7.98765 + 13.8350i −0.265225 + 0.459384i −0.967623 0.252401i \(-0.918780\pi\)
0.702397 + 0.711785i \(0.252113\pi\)
\(908\) 11.5203 + 19.9537i 0.382314 + 0.662187i
\(909\) −12.5968 −0.417810
\(910\) −16.0783 + 23.3189i −0.532989 + 0.773013i
\(911\) −12.2417 −0.405587 −0.202793 0.979222i \(-0.565002\pi\)
−0.202793 + 0.979222i \(0.565002\pi\)
\(912\) −12.5155 21.6775i −0.414430 0.717814i
\(913\) −22.8651 + 39.6035i −0.756724 + 1.31068i
\(914\) −23.6496 + 40.9623i −0.782260 + 1.35491i
\(915\) −1.25858 2.17993i −0.0416074 0.0720662i
\(916\) −25.2518 −0.834344
\(917\) −17.1183 36.0286i −0.565298 1.18977i
\(918\) 17.7923 0.587235
\(919\) −6.50353 11.2645i −0.214532 0.371580i 0.738596 0.674148i \(-0.235489\pi\)
−0.953128 + 0.302569i \(0.902156\pi\)
\(920\) −0.281599 + 0.487745i −0.00928406 + 0.0160805i
\(921\) −6.41801 + 11.1163i −0.211481 + 0.366295i
\(922\) 22.0081 + 38.1191i 0.724798 + 1.25539i
\(923\) −0.549967 −0.0181024
\(924\) −18.9624 1.52105i −0.623817 0.0500389i
\(925\) 21.6577 0.712101
\(926\) 3.77879 + 6.54506i 0.124179 + 0.215084i
\(927\) 5.74616 9.95264i 0.188729 0.326888i
\(928\) 36.4358 63.1087i 1.19606 2.07164i
\(929\) −22.3927 38.7853i −0.734682 1.27251i −0.954863 0.297047i \(-0.903998\pi\)
0.220181 0.975459i \(-0.429335\pi\)
\(930\) −0.268291 −0.00879761
\(931\) −19.5123 51.2916i −0.639491 1.68102i
\(932\) −23.8082 −0.779863
\(933\) 5.80680 + 10.0577i 0.190106 + 0.329274i
\(934\) 20.1885 34.9675i 0.660587 1.14417i
\(935\) 5.29558 9.17222i 0.173184 0.299964i
\(936\) 1.42624 + 2.47033i 0.0466182 + 0.0807451i
\(937\) 31.7090 1.03589 0.517943 0.855415i \(-0.326698\pi\)
0.517943 + 0.855415i \(0.326698\pi\)
\(938\) 64.6120 + 5.18279i 2.10966 + 0.169224i
\(939\) 13.5843 0.443307
\(940\) −10.0564 17.4182i −0.328003 0.568118i
\(941\) −7.51121 + 13.0098i −0.244858 + 0.424107i −0.962092 0.272726i \(-0.912075\pi\)
0.717233 + 0.696833i \(0.245408\pi\)
\(942\) −19.9729 + 34.5941i −0.650753 + 1.12714i
\(943\) 0.624394 + 1.08148i 0.0203331 + 0.0352179i
\(944\) −0.112956 −0.00367640
\(945\) −7.93878 16.7086i −0.258248 0.543530i
\(946\) 25.2880 0.822184
\(947\) 14.1428 + 24.4961i 0.459580 + 0.796015i 0.998939 0.0460606i \(-0.0146667\pi\)
−0.539359 + 0.842076i \(0.681333\pi\)
\(948\) −2.96905 + 5.14255i −0.0964303 + 0.167022i
\(949\) 24.1618 41.8494i 0.784325 1.35849i
\(950\) −21.7310 37.6392i −0.705048 1.22118i
\(951\) −29.0152 −0.940881
\(952\) 1.05253 1.52652i 0.0341127 0.0494749i
\(953\) −21.1837 −0.686209 −0.343104 0.939297i \(-0.611478\pi\)
−0.343104 + 0.939297i \(0.611478\pi\)
\(954\) 2.78910 + 4.83086i 0.0903005 + 0.156405i
\(955\) 10.8722 18.8312i 0.351815 0.609362i
\(956\) 19.5196 33.8089i 0.631309 1.09346i
\(957\) 14.8001 + 25.6345i 0.478419 + 0.828645i
\(958\) −75.4431 −2.43746
\(959\) −0.224024 + 0.324909i −0.00723410 + 0.0104919i
\(960\) −12.5821 −0.406086
\(961\) 15.4952 + 26.8385i 0.499846 + 0.865758i
\(962\) 28.2650 48.9564i 0.911299 1.57842i
\(963\) 6.39384 11.0745i 0.206039 0.356870i
\(964\) −3.64985 6.32172i −0.117554 0.203609i
\(965\) −16.5992 −0.534346
\(966\) 2.05776 + 4.33093i 0.0662074 + 0.139345i
\(967\) −30.9508 −0.995310 −0.497655 0.867375i \(-0.665805\pi\)
−0.497655 + 0.867375i \(0.665805\pi\)
\(968\) 0.525854 + 0.910807i 0.0169016 + 0.0292744i
\(969\) −6.54010 + 11.3278i −0.210098 + 0.363901i
\(970\) −20.0700 + 34.7622i −0.644408 + 1.11615i
\(971\) −25.4824 44.1367i −0.817768 1.41642i −0.907323 0.420434i \(-0.861878\pi\)
0.0895552 0.995982i \(-0.471455\pi\)
\(972\) −35.1793 −1.12838
\(973\) −51.7392 4.15021i −1.65868 0.133050i
\(974\) −44.1093 −1.41335
\(975\) 4.15642 + 7.19913i 0.133112 + 0.230557i
\(976\) 3.38185 5.85753i 0.108250 0.187495i
\(977\) −0.186816 + 0.323575i −0.00597677 + 0.0103521i −0.868998 0.494815i \(-0.835236\pi\)
0.863022 + 0.505167i \(0.168569\pi\)
\(978\) −14.6955 25.4534i −0.469911 0.813909i
\(979\) −52.9833 −1.69335
\(980\) −22.8139 3.68369i −0.728762 0.117671i
\(981\) 13.3461 0.426107
\(982\) −3.82523 6.62548i −0.122068 0.211428i
\(983\) −8.39099 + 14.5336i −0.267631 + 0.463551i −0.968250 0.249985i \(-0.919574\pi\)
0.700618 + 0.713536i \(0.252908\pi\)
\(984\) 0.205982 0.356772i 0.00656648 0.0113735i
\(985\) 3.86447 + 6.69346i 0.123132 + 0.213271i
\(986\) −34.5851 −1.10141
\(987\) −14.2390 1.14216i −0.453231 0.0363555i
\(988\) −59.1902 −1.88309
\(989\) −1.66285 2.88015i −0.0528757 0.0915833i
\(990\) −12.7388 + 22.0643i −0.404867 + 0.701250i
\(991\) 11.2778 19.5338i 0.358252 0.620510i −0.629417 0.777068i \(-0.716706\pi\)
0.987669 + 0.156557i \(0.0500396\pi\)
\(992\) −0.396876 0.687410i −0.0126008 0.0218253i
\(993\) −28.2084 −0.895166
\(994\) −0.369064 0.776760i −0.0117060 0.0246373i
\(995\) 6.80206 0.215640
\(996\) −11.8915 20.5966i −0.376796 0.652629i
\(997\) −13.6719 + 23.6805i −0.432995 + 0.749969i −0.997130 0.0757137i \(-0.975876\pi\)
0.564135 + 0.825683i \(0.309210\pi\)
\(998\) −28.2491 + 48.9289i −0.894210 + 1.54882i
\(999\) 18.4598 + 31.9732i 0.584041 + 1.01159i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.2.e.a.116.6 yes 14
7.2 even 3 inner 161.2.e.a.93.6 14
7.3 odd 6 1127.2.a.k.1.2 7
7.4 even 3 1127.2.a.n.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.e.a.93.6 14 7.2 even 3 inner
161.2.e.a.116.6 yes 14 1.1 even 1 trivial
1127.2.a.k.1.2 7 7.3 odd 6
1127.2.a.n.1.2 7 7.4 even 3