Properties

Label 1127.2.a.k.1.2
Level $1127$
Weight $2$
Character 1127.1
Self dual yes
Analytic conductor $8.999$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.99914030780\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 10x^{5} - x^{4} + 29x^{3} + 9x^{2} - 24x - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.04500\) of defining polynomial
Character \(\chi\) \(=\) 1127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.04500 q^{2} +0.886215 q^{3} +2.18203 q^{4} +1.51297 q^{5} -1.81231 q^{6} -0.372248 q^{8} -2.21462 q^{9} -3.09402 q^{10} -3.71824 q^{11} +1.93375 q^{12} +3.46012 q^{13} +1.34081 q^{15} -3.60281 q^{16} +1.88268 q^{17} +4.52890 q^{18} -7.83967 q^{19} +3.30134 q^{20} +7.60380 q^{22} +1.00000 q^{23} -0.329892 q^{24} -2.71093 q^{25} -7.07595 q^{26} -4.62128 q^{27} -8.98292 q^{29} -2.74197 q^{30} -0.0978463 q^{31} +8.11224 q^{32} -3.29516 q^{33} -3.85009 q^{34} -4.83237 q^{36} -7.98903 q^{37} +16.0321 q^{38} +3.06641 q^{39} -0.563199 q^{40} +1.24879 q^{41} +3.32571 q^{43} -8.11330 q^{44} -3.35065 q^{45} -2.04500 q^{46} +6.09232 q^{47} -3.19286 q^{48} +5.54386 q^{50} +1.66846 q^{51} +7.55008 q^{52} -1.23169 q^{53} +9.45052 q^{54} -5.62557 q^{55} -6.94764 q^{57} +18.3701 q^{58} -0.0313522 q^{59} +2.92569 q^{60} -1.87734 q^{61} +0.200096 q^{62} -9.38393 q^{64} +5.23505 q^{65} +6.73860 q^{66} +11.9802 q^{67} +4.10807 q^{68} +0.886215 q^{69} +0.158944 q^{71} +0.824389 q^{72} -13.9659 q^{73} +16.3376 q^{74} -2.40247 q^{75} -17.1064 q^{76} -6.27082 q^{78} -3.07077 q^{79} -5.45093 q^{80} +2.54842 q^{81} -2.55377 q^{82} +12.2989 q^{83} +2.84844 q^{85} -6.80107 q^{86} -7.96080 q^{87} +1.38411 q^{88} -14.2496 q^{89} +6.85208 q^{90} +2.18203 q^{92} -0.0867129 q^{93} -12.4588 q^{94} -11.8612 q^{95} +7.18919 q^{96} -12.9734 q^{97} +8.23449 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 5 q^{3} + 6 q^{4} - 4 q^{5} - 6 q^{6} - 3 q^{8} + 4 q^{9} + 2 q^{10} + 4 q^{11} - 9 q^{12} - 14 q^{13} - 3 q^{15} - 8 q^{16} - 4 q^{17} + 19 q^{18} - 9 q^{19} - 12 q^{20} - 10 q^{22} + 7 q^{23} + 4 q^{24}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.04500 −1.44603 −0.723017 0.690830i \(-0.757245\pi\)
−0.723017 + 0.690830i \(0.757245\pi\)
\(3\) 0.886215 0.511657 0.255828 0.966722i \(-0.417652\pi\)
0.255828 + 0.966722i \(0.417652\pi\)
\(4\) 2.18203 1.09101
\(5\) 1.51297 0.676619 0.338310 0.941035i \(-0.390145\pi\)
0.338310 + 0.941035i \(0.390145\pi\)
\(6\) −1.81231 −0.739873
\(7\) 0 0
\(8\) −0.372248 −0.131610
\(9\) −2.21462 −0.738207
\(10\) −3.09402 −0.978414
\(11\) −3.71824 −1.12109 −0.560545 0.828124i \(-0.689408\pi\)
−0.560545 + 0.828124i \(0.689408\pi\)
\(12\) 1.93375 0.558225
\(13\) 3.46012 0.959665 0.479832 0.877360i \(-0.340697\pi\)
0.479832 + 0.877360i \(0.340697\pi\)
\(14\) 0 0
\(15\) 1.34081 0.346197
\(16\) −3.60281 −0.900702
\(17\) 1.88268 0.456618 0.228309 0.973589i \(-0.426680\pi\)
0.228309 + 0.973589i \(0.426680\pi\)
\(18\) 4.52890 1.06747
\(19\) −7.83967 −1.79854 −0.899272 0.437389i \(-0.855903\pi\)
−0.899272 + 0.437389i \(0.855903\pi\)
\(20\) 3.30134 0.738201
\(21\) 0 0
\(22\) 7.60380 1.62114
\(23\) 1.00000 0.208514
\(24\) −0.329892 −0.0673389
\(25\) −2.71093 −0.542187
\(26\) −7.07595 −1.38771
\(27\) −4.62128 −0.889365
\(28\) 0 0
\(29\) −8.98292 −1.66809 −0.834043 0.551699i \(-0.813980\pi\)
−0.834043 + 0.551699i \(0.813980\pi\)
\(30\) −2.74197 −0.500612
\(31\) −0.0978463 −0.0175737 −0.00878685 0.999961i \(-0.502797\pi\)
−0.00878685 + 0.999961i \(0.502797\pi\)
\(32\) 8.11224 1.43406
\(33\) −3.29516 −0.573614
\(34\) −3.85009 −0.660285
\(35\) 0 0
\(36\) −4.83237 −0.805395
\(37\) −7.98903 −1.31339 −0.656694 0.754157i \(-0.728046\pi\)
−0.656694 + 0.754157i \(0.728046\pi\)
\(38\) 16.0321 2.60076
\(39\) 3.06641 0.491019
\(40\) −0.563199 −0.0890496
\(41\) 1.24879 0.195028 0.0975139 0.995234i \(-0.468911\pi\)
0.0975139 + 0.995234i \(0.468911\pi\)
\(42\) 0 0
\(43\) 3.32571 0.507165 0.253583 0.967314i \(-0.418391\pi\)
0.253583 + 0.967314i \(0.418391\pi\)
\(44\) −8.11330 −1.22313
\(45\) −3.35065 −0.499485
\(46\) −2.04500 −0.301519
\(47\) 6.09232 0.888656 0.444328 0.895864i \(-0.353443\pi\)
0.444328 + 0.895864i \(0.353443\pi\)
\(48\) −3.19286 −0.460850
\(49\) 0 0
\(50\) 5.54386 0.784020
\(51\) 1.66846 0.233632
\(52\) 7.55008 1.04701
\(53\) −1.23169 −0.169185 −0.0845927 0.996416i \(-0.526959\pi\)
−0.0845927 + 0.996416i \(0.526959\pi\)
\(54\) 9.45052 1.28605
\(55\) −5.62557 −0.758551
\(56\) 0 0
\(57\) −6.94764 −0.920237
\(58\) 18.3701 2.41211
\(59\) −0.0313522 −0.00408170 −0.00204085 0.999998i \(-0.500650\pi\)
−0.00204085 + 0.999998i \(0.500650\pi\)
\(60\) 2.92569 0.377705
\(61\) −1.87734 −0.240369 −0.120184 0.992752i \(-0.538349\pi\)
−0.120184 + 0.992752i \(0.538349\pi\)
\(62\) 0.200096 0.0254122
\(63\) 0 0
\(64\) −9.38393 −1.17299
\(65\) 5.23505 0.649328
\(66\) 6.73860 0.829465
\(67\) 11.9802 1.46361 0.731806 0.681513i \(-0.238678\pi\)
0.731806 + 0.681513i \(0.238678\pi\)
\(68\) 4.10807 0.498177
\(69\) 0.886215 0.106688
\(70\) 0 0
\(71\) 0.158944 0.0188632 0.00943162 0.999956i \(-0.496998\pi\)
0.00943162 + 0.999956i \(0.496998\pi\)
\(72\) 0.824389 0.0971552
\(73\) −13.9659 −1.63458 −0.817290 0.576226i \(-0.804525\pi\)
−0.817290 + 0.576226i \(0.804525\pi\)
\(74\) 16.3376 1.89920
\(75\) −2.40247 −0.277413
\(76\) −17.1064 −1.96224
\(77\) 0 0
\(78\) −6.27082 −0.710030
\(79\) −3.07077 −0.345489 −0.172745 0.984967i \(-0.555264\pi\)
−0.172745 + 0.984967i \(0.555264\pi\)
\(80\) −5.45093 −0.609432
\(81\) 2.54842 0.283158
\(82\) −2.55377 −0.282017
\(83\) 12.2989 1.34998 0.674989 0.737828i \(-0.264148\pi\)
0.674989 + 0.737828i \(0.264148\pi\)
\(84\) 0 0
\(85\) 2.84844 0.308956
\(86\) −6.80107 −0.733378
\(87\) −7.96080 −0.853488
\(88\) 1.38411 0.147546
\(89\) −14.2496 −1.51045 −0.755225 0.655465i \(-0.772473\pi\)
−0.755225 + 0.655465i \(0.772473\pi\)
\(90\) 6.85208 0.722273
\(91\) 0 0
\(92\) 2.18203 0.227492
\(93\) −0.0867129 −0.00899171
\(94\) −12.4588 −1.28503
\(95\) −11.8612 −1.21693
\(96\) 7.18919 0.733744
\(97\) −12.9734 −1.31725 −0.658625 0.752471i \(-0.728862\pi\)
−0.658625 + 0.752471i \(0.728862\pi\)
\(98\) 0 0
\(99\) 8.23449 0.827598
\(100\) −5.91533 −0.591533
\(101\) −5.68802 −0.565979 −0.282990 0.959123i \(-0.591326\pi\)
−0.282990 + 0.959123i \(0.591326\pi\)
\(102\) −3.41201 −0.337839
\(103\) −5.18929 −0.511316 −0.255658 0.966767i \(-0.582292\pi\)
−0.255658 + 0.966767i \(0.582292\pi\)
\(104\) −1.28802 −0.126301
\(105\) 0 0
\(106\) 2.51880 0.244648
\(107\) 5.77421 0.558214 0.279107 0.960260i \(-0.409962\pi\)
0.279107 + 0.960260i \(0.409962\pi\)
\(108\) −10.0838 −0.970310
\(109\) −6.02633 −0.577218 −0.288609 0.957447i \(-0.593193\pi\)
−0.288609 + 0.957447i \(0.593193\pi\)
\(110\) 11.5043 1.09689
\(111\) −7.08000 −0.672004
\(112\) 0 0
\(113\) 8.44589 0.794522 0.397261 0.917706i \(-0.369961\pi\)
0.397261 + 0.917706i \(0.369961\pi\)
\(114\) 14.2079 1.33069
\(115\) 1.51297 0.141085
\(116\) −19.6010 −1.81991
\(117\) −7.66286 −0.708432
\(118\) 0.0641152 0.00590228
\(119\) 0 0
\(120\) −0.499115 −0.0455628
\(121\) 2.82529 0.256845
\(122\) 3.83916 0.347581
\(123\) 1.10669 0.0997873
\(124\) −0.213503 −0.0191732
\(125\) −11.6664 −1.04347
\(126\) 0 0
\(127\) 0.416632 0.0369701 0.0184851 0.999829i \(-0.494116\pi\)
0.0184851 + 0.999829i \(0.494116\pi\)
\(128\) 2.96565 0.262129
\(129\) 2.94729 0.259495
\(130\) −10.7057 −0.938950
\(131\) 15.0765 1.31724 0.658618 0.752477i \(-0.271141\pi\)
0.658618 + 0.752477i \(0.271141\pi\)
\(132\) −7.19013 −0.625821
\(133\) 0 0
\(134\) −24.4995 −2.11643
\(135\) −6.99184 −0.601762
\(136\) −0.700825 −0.0600953
\(137\) −0.149166 −0.0127441 −0.00637204 0.999980i \(-0.502028\pi\)
−0.00637204 + 0.999980i \(0.502028\pi\)
\(138\) −1.81231 −0.154274
\(139\) −19.6184 −1.66401 −0.832005 0.554768i \(-0.812807\pi\)
−0.832005 + 0.554768i \(0.812807\pi\)
\(140\) 0 0
\(141\) 5.39910 0.454687
\(142\) −0.325042 −0.0272769
\(143\) −12.8656 −1.07587
\(144\) 7.97886 0.664905
\(145\) −13.5909 −1.12866
\(146\) 28.5602 2.36366
\(147\) 0 0
\(148\) −17.4323 −1.43292
\(149\) 9.63713 0.789504 0.394752 0.918788i \(-0.370830\pi\)
0.394752 + 0.918788i \(0.370830\pi\)
\(150\) 4.91305 0.401149
\(151\) −17.5582 −1.42887 −0.714434 0.699703i \(-0.753316\pi\)
−0.714434 + 0.699703i \(0.753316\pi\)
\(152\) 2.91830 0.236706
\(153\) −4.16943 −0.337079
\(154\) 0 0
\(155\) −0.148038 −0.0118907
\(156\) 6.69100 0.535709
\(157\) −22.0414 −1.75909 −0.879546 0.475813i \(-0.842154\pi\)
−0.879546 + 0.475813i \(0.842154\pi\)
\(158\) 6.27974 0.499589
\(159\) −1.09154 −0.0865649
\(160\) 12.2736 0.970309
\(161\) 0 0
\(162\) −5.21152 −0.409456
\(163\) 16.2174 1.27025 0.635123 0.772411i \(-0.280949\pi\)
0.635123 + 0.772411i \(0.280949\pi\)
\(164\) 2.72489 0.212778
\(165\) −4.98546 −0.388118
\(166\) −25.1512 −1.95211
\(167\) −16.6608 −1.28925 −0.644624 0.764499i \(-0.722986\pi\)
−0.644624 + 0.764499i \(0.722986\pi\)
\(168\) 0 0
\(169\) −1.02756 −0.0790434
\(170\) −5.82506 −0.446761
\(171\) 17.3619 1.32770
\(172\) 7.25679 0.553325
\(173\) −3.72382 −0.283117 −0.141559 0.989930i \(-0.545211\pi\)
−0.141559 + 0.989930i \(0.545211\pi\)
\(174\) 16.2798 1.23417
\(175\) 0 0
\(176\) 13.3961 1.00977
\(177\) −0.0277848 −0.00208843
\(178\) 29.1404 2.18416
\(179\) −18.1757 −1.35852 −0.679259 0.733899i \(-0.737699\pi\)
−0.679259 + 0.733899i \(0.737699\pi\)
\(180\) −7.31121 −0.544946
\(181\) 9.63548 0.716200 0.358100 0.933683i \(-0.383425\pi\)
0.358100 + 0.933683i \(0.383425\pi\)
\(182\) 0 0
\(183\) −1.66373 −0.122986
\(184\) −0.372248 −0.0274425
\(185\) −12.0871 −0.888663
\(186\) 0.177328 0.0130023
\(187\) −7.00026 −0.511910
\(188\) 13.2936 0.969536
\(189\) 0 0
\(190\) 24.2561 1.75972
\(191\) 14.3720 1.03992 0.519961 0.854190i \(-0.325947\pi\)
0.519961 + 0.854190i \(0.325947\pi\)
\(192\) −8.31618 −0.600169
\(193\) 10.9713 0.789730 0.394865 0.918739i \(-0.370791\pi\)
0.394865 + 0.918739i \(0.370791\pi\)
\(194\) 26.5306 1.90479
\(195\) 4.63938 0.332233
\(196\) 0 0
\(197\) 5.10847 0.363964 0.181982 0.983302i \(-0.441749\pi\)
0.181982 + 0.983302i \(0.441749\pi\)
\(198\) −16.8395 −1.19673
\(199\) 4.49584 0.318702 0.159351 0.987222i \(-0.449060\pi\)
0.159351 + 0.987222i \(0.449060\pi\)
\(200\) 1.00914 0.0713570
\(201\) 10.6170 0.748867
\(202\) 11.6320 0.818425
\(203\) 0 0
\(204\) 3.64063 0.254895
\(205\) 1.88937 0.131960
\(206\) 10.6121 0.739380
\(207\) −2.21462 −0.153927
\(208\) −12.4662 −0.864372
\(209\) 29.1498 2.01633
\(210\) 0 0
\(211\) 2.58550 0.177993 0.0889965 0.996032i \(-0.471634\pi\)
0.0889965 + 0.996032i \(0.471634\pi\)
\(212\) −2.68758 −0.184584
\(213\) 0.140859 0.00965150
\(214\) −11.8083 −0.807196
\(215\) 5.03168 0.343158
\(216\) 1.72026 0.117049
\(217\) 0 0
\(218\) 12.3239 0.834677
\(219\) −12.3768 −0.836344
\(220\) −12.2751 −0.827590
\(221\) 6.51431 0.438200
\(222\) 14.4786 0.971740
\(223\) −5.65862 −0.378929 −0.189465 0.981888i \(-0.560675\pi\)
−0.189465 + 0.981888i \(0.560675\pi\)
\(224\) 0 0
\(225\) 6.00369 0.400246
\(226\) −17.2718 −1.14891
\(227\) 10.5592 0.700841 0.350421 0.936592i \(-0.386039\pi\)
0.350421 + 0.936592i \(0.386039\pi\)
\(228\) −15.1599 −1.00399
\(229\) 11.5726 0.764741 0.382371 0.924009i \(-0.375108\pi\)
0.382371 + 0.924009i \(0.375108\pi\)
\(230\) −3.09402 −0.204013
\(231\) 0 0
\(232\) 3.34388 0.219536
\(233\) −10.9110 −0.714805 −0.357403 0.933950i \(-0.616338\pi\)
−0.357403 + 0.933950i \(0.616338\pi\)
\(234\) 15.6706 1.02442
\(235\) 9.21747 0.601281
\(236\) −0.0684113 −0.00445320
\(237\) −2.72137 −0.176772
\(238\) 0 0
\(239\) −17.8912 −1.15729 −0.578644 0.815580i \(-0.696418\pi\)
−0.578644 + 0.815580i \(0.696418\pi\)
\(240\) −4.83070 −0.311820
\(241\) −3.34537 −0.215494 −0.107747 0.994178i \(-0.534364\pi\)
−0.107747 + 0.994178i \(0.534364\pi\)
\(242\) −5.77772 −0.371406
\(243\) 16.1223 1.03424
\(244\) −4.09641 −0.262246
\(245\) 0 0
\(246\) −2.26319 −0.144296
\(247\) −27.1262 −1.72600
\(248\) 0.0364231 0.00231287
\(249\) 10.8995 0.690725
\(250\) 23.8578 1.50890
\(251\) 19.2286 1.21370 0.606851 0.794816i \(-0.292433\pi\)
0.606851 + 0.794816i \(0.292433\pi\)
\(252\) 0 0
\(253\) −3.71824 −0.233764
\(254\) −0.852013 −0.0534601
\(255\) 2.52433 0.158080
\(256\) 12.7031 0.793943
\(257\) −8.79403 −0.548556 −0.274278 0.961650i \(-0.588439\pi\)
−0.274278 + 0.961650i \(0.588439\pi\)
\(258\) −6.02721 −0.375238
\(259\) 0 0
\(260\) 11.4230 0.708426
\(261\) 19.8938 1.23139
\(262\) −30.8314 −1.90477
\(263\) 10.5709 0.651832 0.325916 0.945399i \(-0.394327\pi\)
0.325916 + 0.945399i \(0.394327\pi\)
\(264\) 1.22662 0.0754930
\(265\) −1.86350 −0.114474
\(266\) 0 0
\(267\) −12.6282 −0.772832
\(268\) 26.1411 1.59682
\(269\) 30.8612 1.88164 0.940821 0.338904i \(-0.110056\pi\)
0.940821 + 0.338904i \(0.110056\pi\)
\(270\) 14.2983 0.870168
\(271\) 10.3192 0.626844 0.313422 0.949614i \(-0.398525\pi\)
0.313422 + 0.949614i \(0.398525\pi\)
\(272\) −6.78295 −0.411277
\(273\) 0 0
\(274\) 0.305044 0.0184284
\(275\) 10.0799 0.607840
\(276\) 1.93375 0.116398
\(277\) −21.3471 −1.28262 −0.641310 0.767282i \(-0.721609\pi\)
−0.641310 + 0.767282i \(0.721609\pi\)
\(278\) 40.1196 2.40622
\(279\) 0.216693 0.0129730
\(280\) 0 0
\(281\) 5.64761 0.336908 0.168454 0.985709i \(-0.446122\pi\)
0.168454 + 0.985709i \(0.446122\pi\)
\(282\) −11.0412 −0.657492
\(283\) −16.5416 −0.983294 −0.491647 0.870795i \(-0.663605\pi\)
−0.491647 + 0.870795i \(0.663605\pi\)
\(284\) 0.346821 0.0205801
\(285\) −10.5115 −0.622650
\(286\) 26.3101 1.55575
\(287\) 0 0
\(288\) −17.9656 −1.05863
\(289\) −13.4555 −0.791500
\(290\) 27.7933 1.63208
\(291\) −11.4972 −0.673980
\(292\) −30.4739 −1.78335
\(293\) 15.8804 0.927744 0.463872 0.885902i \(-0.346460\pi\)
0.463872 + 0.885902i \(0.346460\pi\)
\(294\) 0 0
\(295\) −0.0474348 −0.00276176
\(296\) 2.97390 0.172854
\(297\) 17.1830 0.997059
\(298\) −19.7079 −1.14165
\(299\) 3.46012 0.200104
\(300\) −5.24226 −0.302662
\(301\) 0 0
\(302\) 35.9066 2.06619
\(303\) −5.04081 −0.289587
\(304\) 28.2448 1.61995
\(305\) −2.84035 −0.162638
\(306\) 8.52649 0.487427
\(307\) 14.4841 0.826650 0.413325 0.910584i \(-0.364367\pi\)
0.413325 + 0.910584i \(0.364367\pi\)
\(308\) 0 0
\(309\) −4.59883 −0.261618
\(310\) 0.302738 0.0171944
\(311\) −13.1047 −0.743101 −0.371550 0.928413i \(-0.621174\pi\)
−0.371550 + 0.928413i \(0.621174\pi\)
\(312\) −1.14147 −0.0646228
\(313\) 15.3284 0.866414 0.433207 0.901294i \(-0.357382\pi\)
0.433207 + 0.901294i \(0.357382\pi\)
\(314\) 45.0746 2.54371
\(315\) 0 0
\(316\) −6.70052 −0.376934
\(317\) 32.7405 1.83889 0.919446 0.393217i \(-0.128638\pi\)
0.919446 + 0.393217i \(0.128638\pi\)
\(318\) 2.23220 0.125176
\(319\) 33.4006 1.87008
\(320\) −14.1976 −0.793668
\(321\) 5.11719 0.285614
\(322\) 0 0
\(323\) −14.7596 −0.821247
\(324\) 5.56072 0.308929
\(325\) −9.38016 −0.520317
\(326\) −33.1646 −1.83682
\(327\) −5.34063 −0.295338
\(328\) −0.464859 −0.0256675
\(329\) 0 0
\(330\) 10.1953 0.561232
\(331\) 31.8302 1.74954 0.874772 0.484534i \(-0.161011\pi\)
0.874772 + 0.484534i \(0.161011\pi\)
\(332\) 26.8365 1.47285
\(333\) 17.6927 0.969553
\(334\) 34.0713 1.86430
\(335\) 18.1256 0.990307
\(336\) 0 0
\(337\) 30.6355 1.66882 0.834410 0.551144i \(-0.185809\pi\)
0.834410 + 0.551144i \(0.185809\pi\)
\(338\) 2.10137 0.114299
\(339\) 7.48487 0.406523
\(340\) 6.21537 0.337076
\(341\) 0.363816 0.0197017
\(342\) −35.5051 −1.91990
\(343\) 0 0
\(344\) −1.23799 −0.0667478
\(345\) 1.34081 0.0721870
\(346\) 7.61522 0.409397
\(347\) −13.8571 −0.743888 −0.371944 0.928255i \(-0.621309\pi\)
−0.371944 + 0.928255i \(0.621309\pi\)
\(348\) −17.3707 −0.931167
\(349\) −22.8620 −1.22377 −0.611887 0.790945i \(-0.709589\pi\)
−0.611887 + 0.790945i \(0.709589\pi\)
\(350\) 0 0
\(351\) −15.9902 −0.853493
\(352\) −30.1632 −1.60771
\(353\) −8.29661 −0.441584 −0.220792 0.975321i \(-0.570864\pi\)
−0.220792 + 0.975321i \(0.570864\pi\)
\(354\) 0.0568199 0.00301994
\(355\) 0.240478 0.0127632
\(356\) −31.0929 −1.64792
\(357\) 0 0
\(358\) 37.1694 1.96446
\(359\) 25.7354 1.35826 0.679131 0.734017i \(-0.262357\pi\)
0.679131 + 0.734017i \(0.262357\pi\)
\(360\) 1.24727 0.0657370
\(361\) 42.4605 2.23476
\(362\) −19.7046 −1.03565
\(363\) 2.50382 0.131416
\(364\) 0 0
\(365\) −21.1299 −1.10599
\(366\) 3.40232 0.177842
\(367\) −1.23382 −0.0644049 −0.0322024 0.999481i \(-0.510252\pi\)
−0.0322024 + 0.999481i \(0.510252\pi\)
\(368\) −3.60281 −0.187809
\(369\) −2.76559 −0.143971
\(370\) 24.7182 1.28504
\(371\) 0 0
\(372\) −0.189210 −0.00981008
\(373\) −33.9548 −1.75811 −0.879055 0.476720i \(-0.841826\pi\)
−0.879055 + 0.476720i \(0.841826\pi\)
\(374\) 14.3155 0.740239
\(375\) −10.3389 −0.533900
\(376\) −2.26785 −0.116956
\(377\) −31.0820 −1.60080
\(378\) 0 0
\(379\) −25.2824 −1.29867 −0.649335 0.760502i \(-0.724953\pi\)
−0.649335 + 0.760502i \(0.724953\pi\)
\(380\) −25.8814 −1.32769
\(381\) 0.369226 0.0189160
\(382\) −29.3907 −1.50376
\(383\) 29.9889 1.53236 0.766180 0.642626i \(-0.222155\pi\)
0.766180 + 0.642626i \(0.222155\pi\)
\(384\) 2.62821 0.134120
\(385\) 0 0
\(386\) −22.4363 −1.14198
\(387\) −7.36518 −0.374393
\(388\) −28.3084 −1.43714
\(389\) −22.0442 −1.11768 −0.558842 0.829274i \(-0.688754\pi\)
−0.558842 + 0.829274i \(0.688754\pi\)
\(390\) −9.48753 −0.480420
\(391\) 1.88268 0.0952114
\(392\) 0 0
\(393\) 13.3610 0.673973
\(394\) −10.4468 −0.526304
\(395\) −4.64598 −0.233765
\(396\) 17.9679 0.902921
\(397\) −13.7288 −0.689031 −0.344515 0.938781i \(-0.611957\pi\)
−0.344515 + 0.938781i \(0.611957\pi\)
\(398\) −9.19401 −0.460854
\(399\) 0 0
\(400\) 9.76697 0.488349
\(401\) −5.81298 −0.290286 −0.145143 0.989411i \(-0.546364\pi\)
−0.145143 + 0.989411i \(0.546364\pi\)
\(402\) −21.7118 −1.08289
\(403\) −0.338560 −0.0168649
\(404\) −12.4114 −0.617491
\(405\) 3.85567 0.191590
\(406\) 0 0
\(407\) 29.7051 1.47243
\(408\) −0.621082 −0.0307482
\(409\) 29.5294 1.46014 0.730068 0.683375i \(-0.239488\pi\)
0.730068 + 0.683375i \(0.239488\pi\)
\(410\) −3.86377 −0.190818
\(411\) −0.132193 −0.00652059
\(412\) −11.3232 −0.557853
\(413\) 0 0
\(414\) 4.52890 0.222584
\(415\) 18.6078 0.913421
\(416\) 28.0693 1.37621
\(417\) −17.3861 −0.851402
\(418\) −59.6113 −2.91568
\(419\) −14.6409 −0.715255 −0.357628 0.933864i \(-0.616414\pi\)
−0.357628 + 0.933864i \(0.616414\pi\)
\(420\) 0 0
\(421\) −4.25571 −0.207411 −0.103705 0.994608i \(-0.533070\pi\)
−0.103705 + 0.994608i \(0.533070\pi\)
\(422\) −5.28734 −0.257384
\(423\) −13.4922 −0.656012
\(424\) 0.458494 0.0222664
\(425\) −5.10383 −0.247572
\(426\) −0.288057 −0.0139564
\(427\) 0 0
\(428\) 12.5995 0.609019
\(429\) −11.4016 −0.550477
\(430\) −10.2898 −0.496218
\(431\) −0.652698 −0.0314393 −0.0157197 0.999876i \(-0.505004\pi\)
−0.0157197 + 0.999876i \(0.505004\pi\)
\(432\) 16.6496 0.801053
\(433\) 6.56790 0.315633 0.157817 0.987468i \(-0.449555\pi\)
0.157817 + 0.987468i \(0.449555\pi\)
\(434\) 0 0
\(435\) −12.0444 −0.577486
\(436\) −13.1496 −0.629753
\(437\) −7.83967 −0.375022
\(438\) 25.3105 1.20938
\(439\) 14.0130 0.668805 0.334403 0.942430i \(-0.391465\pi\)
0.334403 + 0.942430i \(0.391465\pi\)
\(440\) 2.09411 0.0998326
\(441\) 0 0
\(442\) −13.3218 −0.633652
\(443\) 37.1004 1.76269 0.881347 0.472469i \(-0.156637\pi\)
0.881347 + 0.472469i \(0.156637\pi\)
\(444\) −15.4488 −0.733165
\(445\) −21.5591 −1.02200
\(446\) 11.5719 0.547944
\(447\) 8.54057 0.403955
\(448\) 0 0
\(449\) 4.57195 0.215764 0.107882 0.994164i \(-0.465593\pi\)
0.107882 + 0.994164i \(0.465593\pi\)
\(450\) −12.2776 −0.578770
\(451\) −4.64329 −0.218644
\(452\) 18.4292 0.866835
\(453\) −15.5604 −0.731089
\(454\) −21.5937 −1.01344
\(455\) 0 0
\(456\) 2.58625 0.121112
\(457\) −23.1292 −1.08194 −0.540969 0.841043i \(-0.681942\pi\)
−0.540969 + 0.841043i \(0.681942\pi\)
\(458\) −23.6660 −1.10584
\(459\) −8.70040 −0.406100
\(460\) 3.30134 0.153926
\(461\) −21.5238 −1.00246 −0.501232 0.865313i \(-0.667120\pi\)
−0.501232 + 0.865313i \(0.667120\pi\)
\(462\) 0 0
\(463\) 3.69564 0.171751 0.0858754 0.996306i \(-0.472631\pi\)
0.0858754 + 0.996306i \(0.472631\pi\)
\(464\) 32.3638 1.50245
\(465\) −0.131194 −0.00608396
\(466\) 22.3131 1.03363
\(467\) −19.7442 −0.913654 −0.456827 0.889556i \(-0.651014\pi\)
−0.456827 + 0.889556i \(0.651014\pi\)
\(468\) −16.7206 −0.772909
\(469\) 0 0
\(470\) −18.8497 −0.869473
\(471\) −19.5334 −0.900052
\(472\) 0.0116708 0.000537191 0
\(473\) −12.3658 −0.568578
\(474\) 5.56520 0.255618
\(475\) 21.2528 0.975147
\(476\) 0 0
\(477\) 2.72773 0.124894
\(478\) 36.5876 1.67348
\(479\) −36.8915 −1.68561 −0.842807 0.538216i \(-0.819098\pi\)
−0.842807 + 0.538216i \(0.819098\pi\)
\(480\) 10.8770 0.496465
\(481\) −27.6430 −1.26041
\(482\) 6.84128 0.311612
\(483\) 0 0
\(484\) 6.16486 0.280221
\(485\) −19.6283 −0.891277
\(486\) −32.9701 −1.49555
\(487\) 21.5693 0.977399 0.488699 0.872452i \(-0.337471\pi\)
0.488699 + 0.872452i \(0.337471\pi\)
\(488\) 0.698836 0.0316348
\(489\) 14.3721 0.649930
\(490\) 0 0
\(491\) −3.74105 −0.168831 −0.0844156 0.996431i \(-0.526902\pi\)
−0.0844156 + 0.996431i \(0.526902\pi\)
\(492\) 2.41484 0.108869
\(493\) −16.9120 −0.761678
\(494\) 55.4731 2.49585
\(495\) 12.4585 0.559968
\(496\) 0.352521 0.0158287
\(497\) 0 0
\(498\) −22.2894 −0.998812
\(499\) −27.6275 −1.23678 −0.618388 0.785873i \(-0.712214\pi\)
−0.618388 + 0.785873i \(0.712214\pi\)
\(500\) −25.4564 −1.13844
\(501\) −14.7650 −0.659653
\(502\) −39.3226 −1.75505
\(503\) −35.6054 −1.58757 −0.793783 0.608201i \(-0.791891\pi\)
−0.793783 + 0.608201i \(0.791891\pi\)
\(504\) 0 0
\(505\) −8.60578 −0.382952
\(506\) 7.60380 0.338030
\(507\) −0.910643 −0.0404431
\(508\) 0.909103 0.0403349
\(509\) 7.65827 0.339447 0.169723 0.985492i \(-0.445713\pi\)
0.169723 + 0.985492i \(0.445713\pi\)
\(510\) −5.16225 −0.228588
\(511\) 0 0
\(512\) −31.9091 −1.41020
\(513\) 36.2293 1.59956
\(514\) 17.9838 0.793231
\(515\) −7.85122 −0.345966
\(516\) 6.43107 0.283112
\(517\) −22.6527 −0.996264
\(518\) 0 0
\(519\) −3.30011 −0.144859
\(520\) −1.94874 −0.0854577
\(521\) −11.2253 −0.491788 −0.245894 0.969297i \(-0.579082\pi\)
−0.245894 + 0.969297i \(0.579082\pi\)
\(522\) −40.6828 −1.78064
\(523\) 0.135161 0.00591018 0.00295509 0.999996i \(-0.499059\pi\)
0.00295509 + 0.999996i \(0.499059\pi\)
\(524\) 32.8973 1.43712
\(525\) 0 0
\(526\) −21.6176 −0.942572
\(527\) −0.184214 −0.00802447
\(528\) 11.8718 0.516655
\(529\) 1.00000 0.0434783
\(530\) 3.81087 0.165533
\(531\) 0.0694332 0.00301315
\(532\) 0 0
\(533\) 4.32095 0.187161
\(534\) 25.8246 1.11754
\(535\) 8.73618 0.377698
\(536\) −4.45960 −0.192625
\(537\) −16.1076 −0.695094
\(538\) −63.1112 −2.72092
\(539\) 0 0
\(540\) −15.2564 −0.656530
\(541\) −3.81157 −0.163872 −0.0819360 0.996638i \(-0.526110\pi\)
−0.0819360 + 0.996638i \(0.526110\pi\)
\(542\) −21.1027 −0.906437
\(543\) 8.53911 0.366448
\(544\) 15.2728 0.654815
\(545\) −9.11764 −0.390557
\(546\) 0 0
\(547\) −10.7277 −0.458683 −0.229341 0.973346i \(-0.573657\pi\)
−0.229341 + 0.973346i \(0.573657\pi\)
\(548\) −0.325483 −0.0139040
\(549\) 4.15760 0.177442
\(550\) −20.6134 −0.878958
\(551\) 70.4232 3.00013
\(552\) −0.329892 −0.0140411
\(553\) 0 0
\(554\) 43.6547 1.85471
\(555\) −10.7118 −0.454690
\(556\) −42.8079 −1.81546
\(557\) 31.3859 1.32986 0.664931 0.746904i \(-0.268461\pi\)
0.664931 + 0.746904i \(0.268461\pi\)
\(558\) −0.443136 −0.0187595
\(559\) 11.5073 0.486709
\(560\) 0 0
\(561\) −6.20374 −0.261922
\(562\) −11.5494 −0.487181
\(563\) 29.6495 1.24958 0.624789 0.780793i \(-0.285185\pi\)
0.624789 + 0.780793i \(0.285185\pi\)
\(564\) 11.7810 0.496070
\(565\) 12.7783 0.537589
\(566\) 33.8275 1.42188
\(567\) 0 0
\(568\) −0.0591668 −0.00248258
\(569\) 15.6224 0.654927 0.327464 0.944864i \(-0.393806\pi\)
0.327464 + 0.944864i \(0.393806\pi\)
\(570\) 21.4961 0.900373
\(571\) 8.37962 0.350676 0.175338 0.984508i \(-0.443898\pi\)
0.175338 + 0.984508i \(0.443898\pi\)
\(572\) −28.0730 −1.17379
\(573\) 12.7367 0.532083
\(574\) 0 0
\(575\) −2.71093 −0.113054
\(576\) 20.7819 0.865911
\(577\) 4.32594 0.180091 0.0900457 0.995938i \(-0.471299\pi\)
0.0900457 + 0.995938i \(0.471299\pi\)
\(578\) 27.5165 1.14454
\(579\) 9.72291 0.404070
\(580\) −29.6556 −1.23138
\(581\) 0 0
\(582\) 23.5119 0.974598
\(583\) 4.57971 0.189672
\(584\) 5.19877 0.215127
\(585\) −11.5937 −0.479338
\(586\) −32.4755 −1.34155
\(587\) 8.87385 0.366263 0.183132 0.983088i \(-0.441377\pi\)
0.183132 + 0.983088i \(0.441377\pi\)
\(588\) 0 0
\(589\) 0.767083 0.0316071
\(590\) 0.0970042 0.00399360
\(591\) 4.52721 0.186224
\(592\) 28.7829 1.18297
\(593\) 16.4941 0.677332 0.338666 0.940907i \(-0.390024\pi\)
0.338666 + 0.940907i \(0.390024\pi\)
\(594\) −35.1393 −1.44178
\(595\) 0 0
\(596\) 21.0285 0.861360
\(597\) 3.98429 0.163066
\(598\) −7.07595 −0.289357
\(599\) 29.4201 1.20207 0.601036 0.799222i \(-0.294755\pi\)
0.601036 + 0.799222i \(0.294755\pi\)
\(600\) 0.894315 0.0365103
\(601\) −41.9446 −1.71095 −0.855477 0.517841i \(-0.826736\pi\)
−0.855477 + 0.517841i \(0.826736\pi\)
\(602\) 0 0
\(603\) −26.5316 −1.08045
\(604\) −38.3125 −1.55891
\(605\) 4.27457 0.173786
\(606\) 10.3085 0.418753
\(607\) −17.1819 −0.697393 −0.348696 0.937236i \(-0.613376\pi\)
−0.348696 + 0.937236i \(0.613376\pi\)
\(608\) −63.5973 −2.57921
\(609\) 0 0
\(610\) 5.80852 0.235180
\(611\) 21.0802 0.852812
\(612\) −9.09782 −0.367758
\(613\) −27.2893 −1.10221 −0.551103 0.834437i \(-0.685793\pi\)
−0.551103 + 0.834437i \(0.685793\pi\)
\(614\) −29.6200 −1.19536
\(615\) 1.67439 0.0675180
\(616\) 0 0
\(617\) 28.5612 1.14983 0.574915 0.818213i \(-0.305035\pi\)
0.574915 + 0.818213i \(0.305035\pi\)
\(618\) 9.40461 0.378309
\(619\) 23.3187 0.937258 0.468629 0.883395i \(-0.344748\pi\)
0.468629 + 0.883395i \(0.344748\pi\)
\(620\) −0.323023 −0.0129729
\(621\) −4.62128 −0.185446
\(622\) 26.7992 1.07455
\(623\) 0 0
\(624\) −11.0477 −0.442262
\(625\) −4.09618 −0.163847
\(626\) −31.3467 −1.25286
\(627\) 25.8330 1.03167
\(628\) −48.0949 −1.91920
\(629\) −15.0408 −0.599716
\(630\) 0 0
\(631\) −8.32633 −0.331466 −0.165733 0.986171i \(-0.552999\pi\)
−0.165733 + 0.986171i \(0.552999\pi\)
\(632\) 1.14309 0.0454697
\(633\) 2.29131 0.0910713
\(634\) −66.9544 −2.65910
\(635\) 0.630350 0.0250147
\(636\) −2.38177 −0.0944435
\(637\) 0 0
\(638\) −68.3043 −2.70419
\(639\) −0.352002 −0.0139250
\(640\) 4.48693 0.177361
\(641\) −12.7773 −0.504675 −0.252337 0.967639i \(-0.581199\pi\)
−0.252337 + 0.967639i \(0.581199\pi\)
\(642\) −10.4647 −0.413007
\(643\) 44.8214 1.76759 0.883793 0.467879i \(-0.154982\pi\)
0.883793 + 0.467879i \(0.154982\pi\)
\(644\) 0 0
\(645\) 4.45915 0.175579
\(646\) 30.1834 1.18755
\(647\) 9.13291 0.359052 0.179526 0.983753i \(-0.442544\pi\)
0.179526 + 0.983753i \(0.442544\pi\)
\(648\) −0.948645 −0.0372663
\(649\) 0.116575 0.00457596
\(650\) 19.1824 0.752397
\(651\) 0 0
\(652\) 35.3869 1.38586
\(653\) −11.4982 −0.449961 −0.224980 0.974363i \(-0.572232\pi\)
−0.224980 + 0.974363i \(0.572232\pi\)
\(654\) 10.9216 0.427068
\(655\) 22.8102 0.891268
\(656\) −4.49914 −0.175662
\(657\) 30.9291 1.20666
\(658\) 0 0
\(659\) −32.6074 −1.27021 −0.635103 0.772428i \(-0.719042\pi\)
−0.635103 + 0.772428i \(0.719042\pi\)
\(660\) −10.8784 −0.423442
\(661\) 2.19097 0.0852189 0.0426095 0.999092i \(-0.486433\pi\)
0.0426095 + 0.999092i \(0.486433\pi\)
\(662\) −65.0927 −2.52990
\(663\) 5.77308 0.224208
\(664\) −4.57824 −0.177670
\(665\) 0 0
\(666\) −36.1815 −1.40201
\(667\) −8.98292 −0.347820
\(668\) −36.3543 −1.40659
\(669\) −5.01475 −0.193882
\(670\) −37.0669 −1.43202
\(671\) 6.98040 0.269475
\(672\) 0 0
\(673\) −3.08634 −0.118969 −0.0594847 0.998229i \(-0.518946\pi\)
−0.0594847 + 0.998229i \(0.518946\pi\)
\(674\) −62.6495 −2.41317
\(675\) 12.5280 0.482202
\(676\) −2.24217 −0.0862374
\(677\) 11.8218 0.454348 0.227174 0.973854i \(-0.427051\pi\)
0.227174 + 0.973854i \(0.427051\pi\)
\(678\) −15.3066 −0.587845
\(679\) 0 0
\(680\) −1.06033 −0.0406616
\(681\) 9.35776 0.358590
\(682\) −0.744003 −0.0284894
\(683\) −15.7473 −0.602554 −0.301277 0.953537i \(-0.597413\pi\)
−0.301277 + 0.953537i \(0.597413\pi\)
\(684\) 37.8842 1.44854
\(685\) −0.225682 −0.00862288
\(686\) 0 0
\(687\) 10.2558 0.391285
\(688\) −11.9819 −0.456805
\(689\) −4.26179 −0.162361
\(690\) −2.74197 −0.104385
\(691\) 22.0929 0.840455 0.420227 0.907419i \(-0.361950\pi\)
0.420227 + 0.907419i \(0.361950\pi\)
\(692\) −8.12549 −0.308885
\(693\) 0 0
\(694\) 28.3378 1.07569
\(695\) −29.6820 −1.12590
\(696\) 2.96339 0.112327
\(697\) 2.35107 0.0890532
\(698\) 46.7528 1.76962
\(699\) −9.66952 −0.365735
\(700\) 0 0
\(701\) 2.71631 0.102594 0.0512969 0.998683i \(-0.483665\pi\)
0.0512969 + 0.998683i \(0.483665\pi\)
\(702\) 32.6999 1.23418
\(703\) 62.6314 2.36219
\(704\) 34.8917 1.31503
\(705\) 8.16866 0.307650
\(706\) 16.9666 0.638545
\(707\) 0 0
\(708\) −0.0606272 −0.00227851
\(709\) 19.2639 0.723471 0.361735 0.932281i \(-0.382184\pi\)
0.361735 + 0.932281i \(0.382184\pi\)
\(710\) −0.491777 −0.0184561
\(711\) 6.80061 0.255043
\(712\) 5.30437 0.198790
\(713\) −0.0978463 −0.00366437
\(714\) 0 0
\(715\) −19.4651 −0.727955
\(716\) −39.6599 −1.48216
\(717\) −15.8555 −0.592134
\(718\) −52.6289 −1.96409
\(719\) −5.01738 −0.187117 −0.0935583 0.995614i \(-0.529824\pi\)
−0.0935583 + 0.995614i \(0.529824\pi\)
\(720\) 12.0717 0.449888
\(721\) 0 0
\(722\) −86.8317 −3.23154
\(723\) −2.96472 −0.110259
\(724\) 21.0249 0.781384
\(725\) 24.3521 0.904414
\(726\) −5.12030 −0.190032
\(727\) −16.1209 −0.597892 −0.298946 0.954270i \(-0.596635\pi\)
−0.298946 + 0.954270i \(0.596635\pi\)
\(728\) 0 0
\(729\) 6.64255 0.246021
\(730\) 43.2106 1.59930
\(731\) 6.26125 0.231581
\(732\) −3.63030 −0.134180
\(733\) −7.74265 −0.285981 −0.142991 0.989724i \(-0.545672\pi\)
−0.142991 + 0.989724i \(0.545672\pi\)
\(734\) 2.52316 0.0931317
\(735\) 0 0
\(736\) 8.11224 0.299021
\(737\) −44.5451 −1.64084
\(738\) 5.65564 0.208187
\(739\) 8.40107 0.309038 0.154519 0.987990i \(-0.450617\pi\)
0.154519 + 0.987990i \(0.450617\pi\)
\(740\) −26.3745 −0.969544
\(741\) −24.0397 −0.883119
\(742\) 0 0
\(743\) −32.4828 −1.19168 −0.595839 0.803104i \(-0.703180\pi\)
−0.595839 + 0.803104i \(0.703180\pi\)
\(744\) 0.0322787 0.00118339
\(745\) 14.5807 0.534194
\(746\) 69.4375 2.54229
\(747\) −27.2374 −0.996564
\(748\) −15.2748 −0.558501
\(749\) 0 0
\(750\) 21.1431 0.772037
\(751\) −3.43943 −0.125506 −0.0627532 0.998029i \(-0.519988\pi\)
−0.0627532 + 0.998029i \(0.519988\pi\)
\(752\) −21.9495 −0.800414
\(753\) 17.0407 0.620998
\(754\) 63.5627 2.31482
\(755\) −26.5650 −0.966799
\(756\) 0 0
\(757\) 49.6866 1.80589 0.902946 0.429755i \(-0.141400\pi\)
0.902946 + 0.429755i \(0.141400\pi\)
\(758\) 51.7026 1.87792
\(759\) −3.29516 −0.119607
\(760\) 4.41530 0.160160
\(761\) −48.9256 −1.77355 −0.886776 0.462199i \(-0.847061\pi\)
−0.886776 + 0.462199i \(0.847061\pi\)
\(762\) −0.755067 −0.0273532
\(763\) 0 0
\(764\) 31.3601 1.13457
\(765\) −6.30821 −0.228074
\(766\) −61.3273 −2.21584
\(767\) −0.108482 −0.00391707
\(768\) 11.2577 0.406226
\(769\) 34.2752 1.23600 0.617998 0.786179i \(-0.287944\pi\)
0.617998 + 0.786179i \(0.287944\pi\)
\(770\) 0 0
\(771\) −7.79340 −0.280673
\(772\) 23.9396 0.861606
\(773\) −13.8297 −0.497421 −0.248710 0.968578i \(-0.580007\pi\)
−0.248710 + 0.968578i \(0.580007\pi\)
\(774\) 15.0618 0.541385
\(775\) 0.265255 0.00952823
\(776\) 4.82933 0.173363
\(777\) 0 0
\(778\) 45.0803 1.61621
\(779\) −9.79008 −0.350766
\(780\) 10.1233 0.362471
\(781\) −0.590993 −0.0211474
\(782\) −3.85009 −0.137679
\(783\) 41.5126 1.48354
\(784\) 0 0
\(785\) −33.3479 −1.19024
\(786\) −27.3232 −0.974588
\(787\) −17.6159 −0.627939 −0.313969 0.949433i \(-0.601659\pi\)
−0.313969 + 0.949433i \(0.601659\pi\)
\(788\) 11.1468 0.397089
\(789\) 9.36813 0.333514
\(790\) 9.50103 0.338031
\(791\) 0 0
\(792\) −3.06527 −0.108920
\(793\) −6.49582 −0.230673
\(794\) 28.0755 0.996362
\(795\) −1.65147 −0.0585714
\(796\) 9.81006 0.347708
\(797\) 32.3522 1.14598 0.572988 0.819564i \(-0.305784\pi\)
0.572988 + 0.819564i \(0.305784\pi\)
\(798\) 0 0
\(799\) 11.4699 0.405776
\(800\) −21.9917 −0.777526
\(801\) 31.5574 1.11503
\(802\) 11.8875 0.419764
\(803\) 51.9284 1.83251
\(804\) 23.1666 0.817024
\(805\) 0 0
\(806\) 0.692355 0.0243872
\(807\) 27.3497 0.962755
\(808\) 2.11735 0.0744883
\(809\) 15.0748 0.530003 0.265002 0.964248i \(-0.414627\pi\)
0.265002 + 0.964248i \(0.414627\pi\)
\(810\) −7.88486 −0.277046
\(811\) −36.2016 −1.27121 −0.635605 0.772014i \(-0.719249\pi\)
−0.635605 + 0.772014i \(0.719249\pi\)
\(812\) 0 0
\(813\) 9.14499 0.320729
\(814\) −60.7469 −2.12918
\(815\) 24.5364 0.859473
\(816\) −6.01115 −0.210432
\(817\) −26.0725 −0.912160
\(818\) −60.3877 −2.11141
\(819\) 0 0
\(820\) 4.12267 0.143970
\(821\) −8.73365 −0.304807 −0.152403 0.988318i \(-0.548701\pi\)
−0.152403 + 0.988318i \(0.548701\pi\)
\(822\) 0.270334 0.00942899
\(823\) 49.4933 1.72523 0.862613 0.505864i \(-0.168826\pi\)
0.862613 + 0.505864i \(0.168826\pi\)
\(824\) 1.93170 0.0672941
\(825\) 8.93296 0.311006
\(826\) 0 0
\(827\) 26.4116 0.918423 0.459211 0.888327i \(-0.348132\pi\)
0.459211 + 0.888327i \(0.348132\pi\)
\(828\) −4.83237 −0.167936
\(829\) 39.2206 1.36219 0.681093 0.732197i \(-0.261505\pi\)
0.681093 + 0.732197i \(0.261505\pi\)
\(830\) −38.0530 −1.32084
\(831\) −18.9181 −0.656261
\(832\) −32.4695 −1.12568
\(833\) 0 0
\(834\) 35.5546 1.23116
\(835\) −25.2072 −0.872330
\(836\) 63.6056 2.19985
\(837\) 0.452175 0.0156294
\(838\) 29.9407 1.03428
\(839\) 14.8912 0.514101 0.257050 0.966398i \(-0.417249\pi\)
0.257050 + 0.966398i \(0.417249\pi\)
\(840\) 0 0
\(841\) 51.6929 1.78251
\(842\) 8.70293 0.299923
\(843\) 5.00500 0.172381
\(844\) 5.64163 0.194193
\(845\) −1.55467 −0.0534823
\(846\) 27.5915 0.948616
\(847\) 0 0
\(848\) 4.43754 0.152386
\(849\) −14.6594 −0.503109
\(850\) 10.4373 0.357998
\(851\) −7.98903 −0.273860
\(852\) 0.307358 0.0105299
\(853\) 42.1641 1.44367 0.721836 0.692064i \(-0.243298\pi\)
0.721836 + 0.692064i \(0.243298\pi\)
\(854\) 0 0
\(855\) 26.2680 0.898346
\(856\) −2.14944 −0.0734663
\(857\) −45.4482 −1.55248 −0.776240 0.630438i \(-0.782875\pi\)
−0.776240 + 0.630438i \(0.782875\pi\)
\(858\) 23.3164 0.796008
\(859\) 0.718209 0.0245050 0.0122525 0.999925i \(-0.496100\pi\)
0.0122525 + 0.999925i \(0.496100\pi\)
\(860\) 10.9793 0.374390
\(861\) 0 0
\(862\) 1.33477 0.0454623
\(863\) −24.3255 −0.828050 −0.414025 0.910265i \(-0.635877\pi\)
−0.414025 + 0.910265i \(0.635877\pi\)
\(864\) −37.4889 −1.27540
\(865\) −5.63402 −0.191562
\(866\) −13.4314 −0.456416
\(867\) −11.9245 −0.404976
\(868\) 0 0
\(869\) 11.4179 0.387325
\(870\) 24.6309 0.835064
\(871\) 41.4529 1.40458
\(872\) 2.24329 0.0759674
\(873\) 28.7312 0.972404
\(874\) 16.0321 0.542295
\(875\) 0 0
\(876\) −27.0064 −0.912463
\(877\) 40.0789 1.35337 0.676684 0.736274i \(-0.263416\pi\)
0.676684 + 0.736274i \(0.263416\pi\)
\(878\) −28.6566 −0.967115
\(879\) 14.0735 0.474686
\(880\) 20.2678 0.683229
\(881\) −35.8620 −1.20822 −0.604111 0.796901i \(-0.706471\pi\)
−0.604111 + 0.796901i \(0.706471\pi\)
\(882\) 0 0
\(883\) 27.0684 0.910925 0.455463 0.890255i \(-0.349474\pi\)
0.455463 + 0.890255i \(0.349474\pi\)
\(884\) 14.2144 0.478083
\(885\) −0.0420374 −0.00141307
\(886\) −75.8704 −2.54892
\(887\) −57.1807 −1.91994 −0.959970 0.280102i \(-0.909632\pi\)
−0.959970 + 0.280102i \(0.909632\pi\)
\(888\) 2.63552 0.0884421
\(889\) 0 0
\(890\) 44.0884 1.47785
\(891\) −9.47563 −0.317446
\(892\) −12.3473 −0.413417
\(893\) −47.7618 −1.59829
\(894\) −17.4655 −0.584133
\(895\) −27.4993 −0.919199
\(896\) 0 0
\(897\) 3.06641 0.102385
\(898\) −9.34964 −0.312002
\(899\) 0.878945 0.0293145
\(900\) 13.1002 0.436674
\(901\) −2.31888 −0.0772531
\(902\) 9.49553 0.316166
\(903\) 0 0
\(904\) −3.14397 −0.104567
\(905\) 14.5782 0.484595
\(906\) 31.8209 1.05718
\(907\) 15.9753 0.530451 0.265225 0.964186i \(-0.414554\pi\)
0.265225 + 0.964186i \(0.414554\pi\)
\(908\) 23.0406 0.764628
\(909\) 12.5968 0.417810
\(910\) 0 0
\(911\) −12.2417 −0.405587 −0.202793 0.979222i \(-0.565002\pi\)
−0.202793 + 0.979222i \(0.565002\pi\)
\(912\) 25.0310 0.828860
\(913\) −45.7302 −1.51345
\(914\) 47.2992 1.56452
\(915\) −2.51716 −0.0832149
\(916\) 25.2518 0.834344
\(917\) 0 0
\(918\) 17.7923 0.587235
\(919\) 13.0071 0.429064 0.214532 0.976717i \(-0.431177\pi\)
0.214532 + 0.976717i \(0.431177\pi\)
\(920\) −0.563199 −0.0185681
\(921\) 12.8360 0.422961
\(922\) 44.0162 1.44960
\(923\) 0.549967 0.0181024
\(924\) 0 0
\(925\) 21.6577 0.712101
\(926\) −7.55758 −0.248358
\(927\) 11.4923 0.377457
\(928\) −72.8717 −2.39213
\(929\) −44.7855 −1.46936 −0.734682 0.678412i \(-0.762668\pi\)
−0.734682 + 0.678412i \(0.762668\pi\)
\(930\) 0.268291 0.00879761
\(931\) 0 0
\(932\) −23.8082 −0.779863
\(933\) −11.6136 −0.380212
\(934\) 40.3770 1.32117
\(935\) −10.5912 −0.346368
\(936\) 2.85249 0.0932364
\(937\) −31.7090 −1.03589 −0.517943 0.855415i \(-0.673302\pi\)
−0.517943 + 0.855415i \(0.673302\pi\)
\(938\) 0 0
\(939\) 13.5843 0.443307
\(940\) 20.1128 0.656007
\(941\) −15.0224 −0.489717 −0.244858 0.969559i \(-0.578741\pi\)
−0.244858 + 0.969559i \(0.578741\pi\)
\(942\) 39.9458 1.30151
\(943\) 1.24879 0.0406661
\(944\) 0.112956 0.00367640
\(945\) 0 0
\(946\) 25.2880 0.822184
\(947\) −28.2856 −0.919159 −0.459580 0.888137i \(-0.652000\pi\)
−0.459580 + 0.888137i \(0.652000\pi\)
\(948\) −5.93810 −0.192861
\(949\) −48.3236 −1.56865
\(950\) −43.4621 −1.41010
\(951\) 29.0152 0.940881
\(952\) 0 0
\(953\) −21.1837 −0.686209 −0.343104 0.939297i \(-0.611478\pi\)
−0.343104 + 0.939297i \(0.611478\pi\)
\(954\) −5.57820 −0.180601
\(955\) 21.7443 0.703631
\(956\) −39.0392 −1.26262
\(957\) 29.6002 0.956837
\(958\) 75.4431 2.43746
\(959\) 0 0
\(960\) −12.5821 −0.406086
\(961\) −30.9904 −0.999691
\(962\) 56.5299 1.82260
\(963\) −12.7877 −0.412078
\(964\) −7.29969 −0.235107
\(965\) 16.5992 0.534346
\(966\) 0 0
\(967\) −30.9508 −0.995310 −0.497655 0.867375i \(-0.665805\pi\)
−0.497655 + 0.867375i \(0.665805\pi\)
\(968\) −1.05171 −0.0338032
\(969\) −13.0802 −0.420197
\(970\) 40.1400 1.28882
\(971\) −50.9647 −1.63554 −0.817768 0.575548i \(-0.804789\pi\)
−0.817768 + 0.575548i \(0.804789\pi\)
\(972\) 35.1793 1.12838
\(973\) 0 0
\(974\) −44.1093 −1.41335
\(975\) −8.31284 −0.266224
\(976\) 6.76370 0.216501
\(977\) 0.373632 0.0119535 0.00597677 0.999982i \(-0.498098\pi\)
0.00597677 + 0.999982i \(0.498098\pi\)
\(978\) −29.3910 −0.939821
\(979\) 52.9833 1.69335
\(980\) 0 0
\(981\) 13.3461 0.426107
\(982\) 7.65045 0.244136
\(983\) −16.7820 −0.535262 −0.267631 0.963521i \(-0.586241\pi\)
−0.267631 + 0.963521i \(0.586241\pi\)
\(984\) −0.411965 −0.0131330
\(985\) 7.72895 0.246265
\(986\) 34.5851 1.10141
\(987\) 0 0
\(988\) −59.1902 −1.88309
\(989\) 3.32571 0.105751
\(990\) −25.4777 −0.809733
\(991\) −22.5556 −0.716504 −0.358252 0.933625i \(-0.616627\pi\)
−0.358252 + 0.933625i \(0.616627\pi\)
\(992\) −0.793753 −0.0252017
\(993\) 28.2084 0.895166
\(994\) 0 0
\(995\) 6.80206 0.215640
\(996\) 23.7829 0.753591
\(997\) −27.3439 −0.865990 −0.432995 0.901396i \(-0.642543\pi\)
−0.432995 + 0.901396i \(0.642543\pi\)
\(998\) 56.4982 1.78842
\(999\) 36.9195 1.16808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.2.a.k.1.2 7
7.3 odd 6 161.2.e.a.93.6 14
7.5 odd 6 161.2.e.a.116.6 yes 14
7.6 odd 2 1127.2.a.n.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.e.a.93.6 14 7.3 odd 6
161.2.e.a.116.6 yes 14 7.5 odd 6
1127.2.a.k.1.2 7 1.1 even 1 trivial
1127.2.a.n.1.2 7 7.6 odd 2