Properties

Label 161.2.g.a.45.6
Level $161$
Weight $2$
Character 161.45
Analytic conductor $1.286$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,2,Mod(45,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.g (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28559147254\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 45.6
Character \(\chi\) \(=\) 161.45
Dual form 161.2.g.a.68.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.559952 - 0.969865i) q^{2} +(2.13402 + 1.23207i) q^{3} +(0.372908 - 0.645896i) q^{4} +(0.871219 + 1.50900i) q^{5} -2.75961i q^{6} +(0.785854 + 2.52635i) q^{7} -3.07505 q^{8} +(1.53601 + 2.66045i) q^{9} +(0.975681 - 1.68993i) q^{10} +(-4.42148 - 2.55274i) q^{11} +(1.59158 - 0.918902i) q^{12} +1.11431i q^{13} +(2.01018 - 2.17680i) q^{14} +4.29363i q^{15} +(0.976062 + 1.69059i) q^{16} +(1.62545 - 2.81536i) q^{17} +(1.72019 - 2.97945i) q^{18} +(-2.74008 - 4.74595i) q^{19} +1.29954 q^{20} +(-1.43562 + 6.35949i) q^{21} +5.71765i q^{22} +(2.81760 - 3.88086i) q^{23} +(-6.56220 - 3.78869i) q^{24} +(0.981954 - 1.70079i) q^{25} +(1.08073 - 0.623958i) q^{26} +0.177486i q^{27} +(1.92481 + 0.434516i) q^{28} -6.58548 q^{29} +(4.16424 - 2.40422i) q^{30} +(4.15841 + 2.40086i) q^{31} +(-1.98195 + 3.43285i) q^{32} +(-6.29034 - 10.8952i) q^{33} -3.64070 q^{34} +(-3.12760 + 3.38685i) q^{35} +2.29117 q^{36} +(-1.07366 + 0.619878i) q^{37} +(-3.06862 + 5.31501i) q^{38} +(-1.37291 + 2.37795i) q^{39} +(-2.67904 - 4.64024i) q^{40} +10.3638i q^{41} +(6.97173 - 2.16865i) q^{42} +7.76041i q^{43} +(-3.29761 + 1.90388i) q^{44} +(-2.67641 + 4.63568i) q^{45} +(-5.34163 - 0.559600i) q^{46} +(1.68406 - 0.972293i) q^{47} +4.81032i q^{48} +(-5.76487 + 3.97068i) q^{49} -2.19939 q^{50} +(6.93747 - 4.00535i) q^{51} +(0.719726 + 0.415534i) q^{52} +(-0.912184 - 0.526650i) q^{53} +(0.172137 - 0.0993835i) q^{54} -8.89600i q^{55} +(-2.41654 - 7.76864i) q^{56} -13.5039i q^{57} +(3.68755 + 6.38702i) q^{58} +(-6.93249 - 4.00248i) q^{59} +(2.77324 + 1.60113i) q^{60} +(3.59197 + 6.22148i) q^{61} -5.37746i q^{62} +(-5.51415 + 5.97123i) q^{63} +8.34344 q^{64} +(-1.68148 + 0.970805i) q^{65} +(-7.04457 + 12.2016i) q^{66} +(7.28297 + 4.20483i) q^{67} +(-1.21229 - 2.09975i) q^{68} +(10.7943 - 4.81032i) q^{69} +(5.03609 + 1.13687i) q^{70} +1.68123 q^{71} +(-4.72332 - 8.18103i) q^{72} +(5.01153 + 2.89341i) q^{73} +(1.20240 + 0.694204i) q^{74} +(4.19101 - 2.41968i) q^{75} -4.08719 q^{76} +(2.97448 - 13.1763i) q^{77} +3.07505 q^{78} +(9.52692 - 5.50037i) q^{79} +(-1.70073 + 2.94575i) q^{80} +(4.38937 - 7.60260i) q^{81} +(10.0515 - 5.80323i) q^{82} -11.4081 q^{83} +(3.57222 + 3.29877i) q^{84} +5.66450 q^{85} +(7.52655 - 4.34545i) q^{86} +(-14.0535 - 8.11380i) q^{87} +(13.5963 + 7.84981i) q^{88} +(5.34121 + 9.25124i) q^{89} +5.99464 q^{90} +(-2.81513 + 0.875682i) q^{91} +(-1.45593 - 3.26709i) q^{92} +(5.91608 + 10.2469i) q^{93} +(-1.88599 - 1.08887i) q^{94} +(4.77441 - 8.26953i) q^{95} +(-8.45904 + 4.88383i) q^{96} -12.4301 q^{97} +(7.07907 + 3.36775i) q^{98} -15.6842i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{2} - 6 q^{3} - 12 q^{4} + 12 q^{8} + 4 q^{9} + 6 q^{12} + 22 q^{18} - 36 q^{24} - 22 q^{25} - 12 q^{26} - 44 q^{29} - 6 q^{32} - 10 q^{35} - 16 q^{39} + 18 q^{46} - 36 q^{47} + 28 q^{49} + 84 q^{50}+ \cdots - 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.559952 0.969865i −0.395946 0.685798i 0.597276 0.802036i \(-0.296250\pi\)
−0.993221 + 0.116238i \(0.962916\pi\)
\(3\) 2.13402 + 1.23207i 1.23207 + 0.711338i 0.967462 0.253017i \(-0.0814227\pi\)
0.264612 + 0.964355i \(0.414756\pi\)
\(4\) 0.372908 0.645896i 0.186454 0.322948i
\(5\) 0.871219 + 1.50900i 0.389621 + 0.674844i 0.992399 0.123066i \(-0.0392726\pi\)
−0.602777 + 0.797909i \(0.705939\pi\)
\(6\) 2.75961i 1.12661i
\(7\) 0.785854 + 2.52635i 0.297025 + 0.954870i
\(8\) −3.07505 −1.08719
\(9\) 1.53601 + 2.66045i 0.512005 + 0.886818i
\(10\) 0.975681 1.68993i 0.308538 0.534403i
\(11\) −4.42148 2.55274i −1.33313 0.769681i −0.347349 0.937736i \(-0.612918\pi\)
−0.985778 + 0.168055i \(0.946251\pi\)
\(12\) 1.59158 0.918902i 0.459451 0.265264i
\(13\) 1.11431i 0.309053i 0.987989 + 0.154527i \(0.0493852\pi\)
−0.987989 + 0.154527i \(0.950615\pi\)
\(14\) 2.01018 2.17680i 0.537242 0.581775i
\(15\) 4.29363i 1.10861i
\(16\) 0.976062 + 1.69059i 0.244016 + 0.422647i
\(17\) 1.62545 2.81536i 0.394230 0.682826i −0.598773 0.800919i \(-0.704345\pi\)
0.993003 + 0.118093i \(0.0376781\pi\)
\(18\) 1.72019 2.97945i 0.405452 0.702263i
\(19\) −2.74008 4.74595i −0.628617 1.08880i −0.987830 0.155540i \(-0.950288\pi\)
0.359213 0.933256i \(-0.383045\pi\)
\(20\) 1.29954 0.290586
\(21\) −1.43562 + 6.35949i −0.313279 + 1.38776i
\(22\) 5.71765i 1.21901i
\(23\) 2.81760 3.88086i 0.587511 0.809216i
\(24\) −6.56220 3.78869i −1.33950 0.773363i
\(25\) 0.981954 1.70079i 0.196391 0.340159i
\(26\) 1.08073 0.623958i 0.211948 0.122368i
\(27\) 0.177486i 0.0341572i
\(28\) 1.92481 + 0.434516i 0.363755 + 0.0821158i
\(29\) −6.58548 −1.22289 −0.611446 0.791286i \(-0.709412\pi\)
−0.611446 + 0.791286i \(0.709412\pi\)
\(30\) 4.16424 2.40422i 0.760282 0.438949i
\(31\) 4.15841 + 2.40086i 0.746873 + 0.431207i 0.824563 0.565770i \(-0.191421\pi\)
−0.0776899 + 0.996978i \(0.524754\pi\)
\(32\) −1.98195 + 3.43285i −0.350363 + 0.606847i
\(33\) −6.29034 10.8952i −1.09501 1.89661i
\(34\) −3.64070 −0.624374
\(35\) −3.12760 + 3.38685i −0.528661 + 0.572483i
\(36\) 2.29117 0.381862
\(37\) −1.07366 + 0.619878i −0.176509 + 0.101907i −0.585651 0.810563i \(-0.699161\pi\)
0.409143 + 0.912470i \(0.365828\pi\)
\(38\) −3.06862 + 5.31501i −0.497796 + 0.862208i
\(39\) −1.37291 + 2.37795i −0.219841 + 0.380776i
\(40\) −2.67904 4.64024i −0.423594 0.733686i
\(41\) 10.3638i 1.61856i 0.587426 + 0.809278i \(0.300141\pi\)
−0.587426 + 0.809278i \(0.699859\pi\)
\(42\) 6.97173 2.16865i 1.07576 0.334630i
\(43\) 7.76041i 1.18345i 0.806139 + 0.591726i \(0.201553\pi\)
−0.806139 + 0.591726i \(0.798447\pi\)
\(44\) −3.29761 + 1.90388i −0.497134 + 0.287020i
\(45\) −2.67641 + 4.63568i −0.398976 + 0.691046i
\(46\) −5.34163 0.559600i −0.787581 0.0825085i
\(47\) 1.68406 0.972293i 0.245646 0.141824i −0.372123 0.928183i \(-0.621370\pi\)
0.617769 + 0.786360i \(0.288037\pi\)
\(48\) 4.81032i 0.694310i
\(49\) −5.76487 + 3.97068i −0.823552 + 0.567240i
\(50\) −2.19939 −0.311040
\(51\) 6.93747 4.00535i 0.971441 0.560862i
\(52\) 0.719726 + 0.415534i 0.0998081 + 0.0576242i
\(53\) −0.912184 0.526650i −0.125298 0.0723409i 0.436041 0.899927i \(-0.356380\pi\)
−0.561339 + 0.827586i \(0.689714\pi\)
\(54\) 0.172137 0.0993835i 0.0234249 0.0135244i
\(55\) 8.89600i 1.19954i
\(56\) −2.41654 7.76864i −0.322924 1.03813i
\(57\) 13.5039i 1.78864i
\(58\) 3.68755 + 6.38702i 0.484199 + 0.838657i
\(59\) −6.93249 4.00248i −0.902534 0.521078i −0.0245125 0.999700i \(-0.507803\pi\)
−0.878021 + 0.478621i \(0.841137\pi\)
\(60\) 2.77324 + 1.60113i 0.358023 + 0.206705i
\(61\) 3.59197 + 6.22148i 0.459905 + 0.796579i 0.998955 0.0456948i \(-0.0145502\pi\)
−0.539051 + 0.842273i \(0.681217\pi\)
\(62\) 5.37746i 0.682939i
\(63\) −5.51415 + 5.97123i −0.694717 + 0.752305i
\(64\) 8.34344 1.04293
\(65\) −1.68148 + 0.970805i −0.208562 + 0.120414i
\(66\) −7.04457 + 12.2016i −0.867127 + 1.50191i
\(67\) 7.28297 + 4.20483i 0.889757 + 0.513701i 0.873863 0.486172i \(-0.161607\pi\)
0.0158939 + 0.999874i \(0.494941\pi\)
\(68\) −1.21229 2.09975i −0.147012 0.254632i
\(69\) 10.7943 4.81032i 1.29948 0.579095i
\(70\) 5.03609 + 1.13687i 0.601928 + 0.135882i
\(71\) 1.68123 0.199525 0.0997627 0.995011i \(-0.468192\pi\)
0.0997627 + 0.995011i \(0.468192\pi\)
\(72\) −4.72332 8.18103i −0.556648 0.964143i
\(73\) 5.01153 + 2.89341i 0.586555 + 0.338648i 0.763734 0.645531i \(-0.223364\pi\)
−0.177179 + 0.984179i \(0.556697\pi\)
\(74\) 1.20240 + 0.694204i 0.139776 + 0.0806995i
\(75\) 4.19101 2.41968i 0.483936 0.279401i
\(76\) −4.08719 −0.468833
\(77\) 2.97448 13.1763i 0.338973 1.50158i
\(78\) 3.07505 0.348181
\(79\) 9.52692 5.50037i 1.07186 0.618840i 0.143172 0.989698i \(-0.454270\pi\)
0.928690 + 0.370858i \(0.120936\pi\)
\(80\) −1.70073 + 2.94575i −0.190147 + 0.329345i
\(81\) 4.38937 7.60260i 0.487707 0.844734i
\(82\) 10.0515 5.80323i 1.11000 0.640860i
\(83\) −11.4081 −1.25220 −0.626102 0.779741i \(-0.715351\pi\)
−0.626102 + 0.779741i \(0.715351\pi\)
\(84\) 3.57222 + 3.29877i 0.389761 + 0.359926i
\(85\) 5.66450 0.614401
\(86\) 7.52655 4.34545i 0.811608 0.468582i
\(87\) −14.0535 8.11380i −1.50669 0.869890i
\(88\) 13.5963 + 7.84981i 1.44937 + 0.836793i
\(89\) 5.34121 + 9.25124i 0.566167 + 0.980630i 0.996940 + 0.0781697i \(0.0249076\pi\)
−0.430773 + 0.902460i \(0.641759\pi\)
\(90\) 5.99464 0.631890
\(91\) −2.81513 + 0.875682i −0.295105 + 0.0917964i
\(92\) −1.45593 3.26709i −0.151791 0.340617i
\(93\) 5.91608 + 10.2469i 0.613469 + 1.06256i
\(94\) −1.88599 1.08887i −0.194525 0.112309i
\(95\) 4.77441 8.26953i 0.489845 0.848436i
\(96\) −8.45904 + 4.88383i −0.863347 + 0.498454i
\(97\) −12.4301 −1.26209 −0.631044 0.775747i \(-0.717373\pi\)
−0.631044 + 0.775747i \(0.717373\pi\)
\(98\) 7.07907 + 3.36775i 0.715094 + 0.340194i
\(99\) 15.6842i 1.57632i
\(100\) −0.732358 1.26848i −0.0732358 0.126848i
\(101\) 4.50785 + 2.60261i 0.448547 + 0.258969i 0.707217 0.706997i \(-0.249951\pi\)
−0.258669 + 0.965966i \(0.583284\pi\)
\(102\) −7.76930 4.48561i −0.769275 0.444141i
\(103\) −1.32618 2.29701i −0.130673 0.226332i 0.793263 0.608879i \(-0.208380\pi\)
−0.923936 + 0.382547i \(0.875047\pi\)
\(104\) 3.42655i 0.336001i
\(105\) −10.8472 + 3.37416i −1.05858 + 0.329285i
\(106\) 1.17959i 0.114572i
\(107\) 4.81118 2.77774i 0.465115 0.268534i −0.249078 0.968484i \(-0.580127\pi\)
0.714192 + 0.699949i \(0.246794\pi\)
\(108\) 0.114637 + 0.0661860i 0.0110310 + 0.00636875i
\(109\) −6.72175 3.88081i −0.643827 0.371714i 0.142260 0.989829i \(-0.454563\pi\)
−0.786087 + 0.618116i \(0.787896\pi\)
\(110\) −8.62791 + 4.98133i −0.822639 + 0.474951i
\(111\) −3.05494 −0.289962
\(112\) −3.50397 + 3.79443i −0.331094 + 0.358540i
\(113\) 16.8846i 1.58837i 0.607678 + 0.794184i \(0.292101\pi\)
−0.607678 + 0.794184i \(0.707899\pi\)
\(114\) −13.0970 + 7.56154i −1.22664 + 0.708203i
\(115\) 8.31096 + 0.870671i 0.775001 + 0.0811905i
\(116\) −2.45578 + 4.25354i −0.228013 + 0.394931i
\(117\) −2.96456 + 1.71159i −0.274074 + 0.158237i
\(118\) 8.96478i 0.825274i
\(119\) 8.38996 + 1.89399i 0.769106 + 0.173622i
\(120\) 13.2031i 1.20527i
\(121\) 7.53299 + 13.0475i 0.684818 + 1.18614i
\(122\) 4.02266 6.96745i 0.364195 0.630804i
\(123\) −12.7690 + 22.1165i −1.15134 + 1.99418i
\(124\) 3.10141 1.79060i 0.278515 0.160801i
\(125\) 12.1342 1.08531
\(126\) 8.87894 + 2.00438i 0.790999 + 0.178564i
\(127\) −15.5472 −1.37959 −0.689794 0.724006i \(-0.742299\pi\)
−0.689794 + 0.724006i \(0.742299\pi\)
\(128\) −0.708016 1.22632i −0.0625803 0.108392i
\(129\) −9.56140 + 16.5608i −0.841834 + 1.45810i
\(130\) 1.88310 + 1.08721i 0.165159 + 0.0953545i
\(131\) 1.30919 0.755860i 0.114384 0.0660398i −0.441716 0.897155i \(-0.645630\pi\)
0.556101 + 0.831115i \(0.312297\pi\)
\(132\) −9.38288 −0.816675
\(133\) 9.83662 10.6520i 0.852943 0.923646i
\(134\) 9.41800i 0.813591i
\(135\) −0.267825 + 0.154629i −0.0230507 + 0.0133084i
\(136\) −4.99834 + 8.65738i −0.428604 + 0.742364i
\(137\) 2.70304 + 1.56060i 0.230936 + 0.133331i 0.611004 0.791628i \(-0.290766\pi\)
−0.380068 + 0.924959i \(0.624099\pi\)
\(138\) −10.7097 7.77548i −0.911667 0.661893i
\(139\) 6.54112i 0.554810i −0.960753 0.277405i \(-0.910526\pi\)
0.960753 0.277405i \(-0.0894744\pi\)
\(140\) 1.02125 + 3.28309i 0.0863112 + 0.277472i
\(141\) 4.79175 0.403538
\(142\) −0.941408 1.63057i −0.0790012 0.136834i
\(143\) 2.84454 4.92688i 0.237872 0.412007i
\(144\) −2.99849 + 5.19354i −0.249874 + 0.432795i
\(145\) −5.73740 9.93746i −0.476465 0.825261i
\(146\) 6.48068i 0.536345i
\(147\) −17.1945 + 1.37075i −1.41818 + 0.113057i
\(148\) 0.924631i 0.0760042i
\(149\) −7.14812 + 4.12697i −0.585596 + 0.338094i −0.763354 0.645980i \(-0.776449\pi\)
0.177758 + 0.984074i \(0.443116\pi\)
\(150\) −4.69353 2.70981i −0.383225 0.221255i
\(151\) −2.81705 + 4.87927i −0.229248 + 0.397069i −0.957585 0.288150i \(-0.906960\pi\)
0.728338 + 0.685219i \(0.240293\pi\)
\(152\) 8.42587 + 14.5940i 0.683428 + 1.18373i
\(153\) 9.98686 0.807390
\(154\) −14.4448 + 4.49324i −1.16399 + 0.362075i
\(155\) 8.36671i 0.672030i
\(156\) 1.02394 + 1.77351i 0.0819807 + 0.141995i
\(157\) 8.67502 15.0256i 0.692342 1.19917i −0.278726 0.960371i \(-0.589912\pi\)
0.971068 0.238801i \(-0.0767544\pi\)
\(158\) −10.6692 6.15988i −0.848798 0.490054i
\(159\) −1.29774 2.24776i −0.102918 0.178259i
\(160\) −6.90687 −0.546036
\(161\) 12.0186 + 4.06846i 0.947201 + 0.320639i
\(162\) −9.83133 −0.772422
\(163\) −11.4852 19.8929i −0.899587 1.55813i −0.828022 0.560695i \(-0.810534\pi\)
−0.0715650 0.997436i \(-0.522799\pi\)
\(164\) 6.69395 + 3.86475i 0.522709 + 0.301786i
\(165\) 10.9605 18.9842i 0.853276 1.47792i
\(166\) 6.38800 + 11.0643i 0.495805 + 0.858760i
\(167\) 16.1670i 1.25104i −0.780207 0.625521i \(-0.784886\pi\)
0.780207 0.625521i \(-0.215114\pi\)
\(168\) 4.41461 19.5558i 0.340595 1.50876i
\(169\) 11.7583 0.904486
\(170\) −3.17184 5.49380i −0.243269 0.421355i
\(171\) 8.41759 14.5797i 0.643709 1.11494i
\(172\) 5.01242 + 2.89392i 0.382193 + 0.220659i
\(173\) 8.90587 5.14180i 0.677101 0.390924i −0.121661 0.992572i \(-0.538822\pi\)
0.798762 + 0.601648i \(0.205489\pi\)
\(174\) 18.1733i 1.37772i
\(175\) 5.06847 + 1.14418i 0.383140 + 0.0864920i
\(176\) 9.96654i 0.751256i
\(177\) −9.86270 17.0827i −0.741326 1.28401i
\(178\) 5.98164 10.3605i 0.448343 0.776552i
\(179\) 0.227097 0.393343i 0.0169740 0.0293998i −0.857414 0.514628i \(-0.827930\pi\)
0.874388 + 0.485228i \(0.161263\pi\)
\(180\) 1.99611 + 3.45737i 0.148781 + 0.257697i
\(181\) −6.05005 −0.449696 −0.224848 0.974394i \(-0.572189\pi\)
−0.224848 + 0.974394i \(0.572189\pi\)
\(182\) 2.42563 + 2.23995i 0.179799 + 0.166036i
\(183\) 17.7023i 1.30859i
\(184\) −8.66427 + 11.9338i −0.638739 + 0.879775i
\(185\) −1.87079 1.08010i −0.137543 0.0794105i
\(186\) 6.62543 11.4756i 0.485800 0.841431i
\(187\) −14.3738 + 8.29872i −1.05112 + 0.606862i
\(188\) 1.45031i 0.105774i
\(189\) −0.448391 + 0.139478i −0.0326157 + 0.0101455i
\(190\) −10.6938 −0.775807
\(191\) −11.7229 + 6.76822i −0.848239 + 0.489731i −0.860056 0.510199i \(-0.829572\pi\)
0.0118173 + 0.999930i \(0.496238\pi\)
\(192\) 17.8050 + 10.2797i 1.28497 + 0.741876i
\(193\) −4.28615 + 7.42383i −0.308524 + 0.534379i −0.978040 0.208419i \(-0.933168\pi\)
0.669516 + 0.742798i \(0.266502\pi\)
\(194\) 6.96027 + 12.0555i 0.499718 + 0.865537i
\(195\) −4.78442 −0.342619
\(196\) 0.414881 + 5.20421i 0.0296343 + 0.371729i
\(197\) 18.8569 1.34349 0.671747 0.740780i \(-0.265544\pi\)
0.671747 + 0.740780i \(0.265544\pi\)
\(198\) −15.2115 + 8.78239i −1.08104 + 0.624137i
\(199\) 7.08374 12.2694i 0.502153 0.869754i −0.497844 0.867267i \(-0.665875\pi\)
0.999997 0.00248759i \(-0.000791825\pi\)
\(200\) −3.01956 + 5.23003i −0.213515 + 0.369819i
\(201\) 10.3613 + 17.9463i 0.730831 + 1.26584i
\(202\) 5.82933i 0.410151i
\(203\) −5.17522 16.6372i −0.363230 1.16770i
\(204\) 5.97452i 0.418300i
\(205\) −15.6389 + 9.02915i −1.09227 + 0.630623i
\(206\) −1.48520 + 2.57243i −0.103478 + 0.179230i
\(207\) 14.6527 + 1.53505i 1.01844 + 0.106693i
\(208\) −1.88383 + 1.08763i −0.130620 + 0.0754137i
\(209\) 27.9788i 1.93534i
\(210\) 9.34639 + 8.63094i 0.644962 + 0.595592i
\(211\) −28.9365 −1.99207 −0.996035 0.0889590i \(-0.971646\pi\)
−0.996035 + 0.0889590i \(0.971646\pi\)
\(212\) −0.680322 + 0.392784i −0.0467247 + 0.0269765i
\(213\) 3.58777 + 2.07140i 0.245830 + 0.141930i
\(214\) −5.38806 3.11080i −0.368320 0.212650i
\(215\) −11.7104 + 6.76102i −0.798644 + 0.461098i
\(216\) 0.545778i 0.0371355i
\(217\) −2.79750 + 12.3923i −0.189907 + 0.841246i
\(218\) 8.69225i 0.588714i
\(219\) 7.12979 + 12.3492i 0.481787 + 0.834479i
\(220\) −5.74589 3.31739i −0.387388 0.223658i
\(221\) 3.13718 + 1.81125i 0.211029 + 0.121838i
\(222\) 1.71062 + 2.96288i 0.114809 + 0.198856i
\(223\) 12.3905i 0.829731i 0.909883 + 0.414865i \(0.136171\pi\)
−0.909883 + 0.414865i \(0.863829\pi\)
\(224\) −10.2301 2.30939i −0.683526 0.154303i
\(225\) 6.03318 0.402212
\(226\) 16.3758 9.45455i 1.08930 0.628907i
\(227\) 14.4100 24.9589i 0.956429 1.65658i 0.225364 0.974275i \(-0.427643\pi\)
0.731065 0.682308i \(-0.239024\pi\)
\(228\) −8.72212 5.03572i −0.577637 0.333499i
\(229\) −4.19814 7.27140i −0.277421 0.480508i 0.693322 0.720628i \(-0.256146\pi\)
−0.970743 + 0.240120i \(0.922813\pi\)
\(230\) −3.80930 8.54804i −0.251178 0.563641i
\(231\) 22.5817 24.4536i 1.48577 1.60893i
\(232\) 20.2507 1.32952
\(233\) −9.57955 16.5923i −0.627577 1.08700i −0.988036 0.154221i \(-0.950713\pi\)
0.360459 0.932775i \(-0.382620\pi\)
\(234\) 3.32002 + 1.91682i 0.217037 + 0.125306i
\(235\) 2.93437 + 1.69416i 0.191417 + 0.110515i
\(236\) −5.17037 + 2.98511i −0.336562 + 0.194314i
\(237\) 27.1074 1.76082
\(238\) −2.86106 9.19766i −0.185455 0.596196i
\(239\) 7.74090 0.500717 0.250359 0.968153i \(-0.419451\pi\)
0.250359 + 0.968153i \(0.419451\pi\)
\(240\) −7.25876 + 4.19085i −0.468551 + 0.270518i
\(241\) −4.55513 + 7.88971i −0.293422 + 0.508221i −0.974616 0.223881i \(-0.928127\pi\)
0.681195 + 0.732102i \(0.261461\pi\)
\(242\) 8.43622 14.6120i 0.542301 0.939293i
\(243\) 19.1951 11.0823i 1.23136 0.710928i
\(244\) 5.35790 0.343005
\(245\) −11.0142 5.23983i −0.703672 0.334760i
\(246\) 28.6001 1.82347
\(247\) 5.28844 3.05328i 0.336496 0.194276i
\(248\) −12.7873 7.38277i −0.811996 0.468806i
\(249\) −24.3451 14.0557i −1.54281 0.890741i
\(250\) −6.79455 11.7685i −0.429725 0.744306i
\(251\) −5.33922 −0.337009 −0.168504 0.985701i \(-0.553894\pi\)
−0.168504 + 0.985701i \(0.553894\pi\)
\(252\) 1.80052 + 5.78829i 0.113422 + 0.364628i
\(253\) −22.3648 + 9.96654i −1.40606 + 0.626591i
\(254\) 8.70566 + 15.0786i 0.546241 + 0.946118i
\(255\) 12.0881 + 6.97908i 0.756988 + 0.437047i
\(256\) 7.55053 13.0779i 0.471908 0.817369i
\(257\) −3.92276 + 2.26480i −0.244695 + 0.141275i −0.617333 0.786702i \(-0.711787\pi\)
0.372638 + 0.927977i \(0.378453\pi\)
\(258\) 21.4157 1.33328
\(259\) −2.40977 2.22531i −0.149736 0.138274i
\(260\) 1.44809i 0.0898065i
\(261\) −10.1154 17.5204i −0.626127 1.08448i
\(262\) −1.46616 0.846490i −0.0905799 0.0522963i
\(263\) 11.3886 + 6.57520i 0.702250 + 0.405444i 0.808185 0.588929i \(-0.200450\pi\)
−0.105935 + 0.994373i \(0.533784\pi\)
\(264\) 19.3431 + 33.5032i 1.19049 + 2.06198i
\(265\) 1.83531i 0.112742i
\(266\) −15.8390 3.57558i −0.971154 0.219233i
\(267\) 26.3231i 1.61095i
\(268\) 5.43176 3.13603i 0.331798 0.191564i
\(269\) 12.1418 + 7.01009i 0.740301 + 0.427413i 0.822179 0.569230i \(-0.192758\pi\)
−0.0818780 + 0.996642i \(0.526092\pi\)
\(270\) 0.299939 + 0.173170i 0.0182537 + 0.0105388i
\(271\) 0.187377 0.108182i 0.0113823 0.00657159i −0.494298 0.869292i \(-0.664575\pi\)
0.505680 + 0.862721i \(0.331242\pi\)
\(272\) 6.34616 0.384793
\(273\) −7.08643 1.59973i −0.428890 0.0968198i
\(274\) 3.49545i 0.211168i
\(275\) −8.68338 + 5.01335i −0.523628 + 0.302317i
\(276\) 0.918324 8.76582i 0.0552766 0.527641i
\(277\) −6.86808 + 11.8959i −0.412663 + 0.714754i −0.995180 0.0980651i \(-0.968735\pi\)
0.582517 + 0.812819i \(0.302068\pi\)
\(278\) −6.34400 + 3.66271i −0.380488 + 0.219675i
\(279\) 14.7510i 0.883121i
\(280\) 9.61752 10.4147i 0.574757 0.622400i
\(281\) 5.16656i 0.308211i 0.988054 + 0.154106i \(0.0492496\pi\)
−0.988054 + 0.154106i \(0.950750\pi\)
\(282\) −2.68315 4.64735i −0.159779 0.276746i
\(283\) 3.44769 5.97157i 0.204944 0.354973i −0.745171 0.666873i \(-0.767632\pi\)
0.950115 + 0.311900i \(0.100966\pi\)
\(284\) 0.626945 1.08590i 0.0372023 0.0644363i
\(285\) 20.3773 11.7649i 1.20705 0.696890i
\(286\) −6.37122 −0.376738
\(287\) −26.1826 + 8.14444i −1.54551 + 0.480751i
\(288\) −12.1772 −0.717550
\(289\) 3.21582 + 5.56996i 0.189166 + 0.327645i
\(290\) −6.42533 + 11.1290i −0.377308 + 0.653517i
\(291\) −26.5261 15.3148i −1.55499 0.897771i
\(292\) 3.73768 2.15795i 0.218731 0.126285i
\(293\) 34.0179 1.98735 0.993674 0.112306i \(-0.0358237\pi\)
0.993674 + 0.112306i \(0.0358237\pi\)
\(294\) 10.9575 + 15.9088i 0.639056 + 0.927818i
\(295\) 13.9481i 0.812092i
\(296\) 3.30156 1.90616i 0.191899 0.110793i
\(297\) 0.453076 0.784750i 0.0262901 0.0455358i
\(298\) 8.00520 + 4.62180i 0.463729 + 0.267734i
\(299\) 4.32447 + 3.13968i 0.250091 + 0.181572i
\(300\) 3.60928i 0.208382i
\(301\) −19.6055 + 6.09855i −1.13004 + 0.351514i
\(302\) 6.30964 0.363079
\(303\) 6.41321 + 11.1080i 0.368429 + 0.638138i
\(304\) 5.34897 9.26469i 0.306784 0.531366i
\(305\) −6.25879 + 10.8405i −0.358377 + 0.620728i
\(306\) −5.59216 9.68590i −0.319682 0.553706i
\(307\) 16.4054i 0.936306i −0.883647 0.468153i \(-0.844920\pi\)
0.883647 0.468153i \(-0.155080\pi\)
\(308\) −7.40130 6.83475i −0.421728 0.389446i
\(309\) 6.53582i 0.371810i
\(310\) 8.11457 4.68495i 0.460877 0.266087i
\(311\) −2.83842 1.63876i −0.160952 0.0929256i 0.417361 0.908741i \(-0.362955\pi\)
−0.578312 + 0.815815i \(0.696289\pi\)
\(312\) 4.22176 7.31230i 0.239010 0.413978i
\(313\) −5.63557 9.76109i −0.318541 0.551729i 0.661643 0.749819i \(-0.269860\pi\)
−0.980184 + 0.198090i \(0.936526\pi\)
\(314\) −19.4304 −1.09652
\(315\) −13.8146 3.11858i −0.778364 0.175712i
\(316\) 8.20453i 0.461541i
\(317\) 5.02084 + 8.69635i 0.281998 + 0.488435i 0.971877 0.235490i \(-0.0756694\pi\)
−0.689878 + 0.723925i \(0.742336\pi\)
\(318\) −1.45335 + 2.51727i −0.0814996 + 0.141161i
\(319\) 29.1176 + 16.8110i 1.63027 + 0.941237i
\(320\) 7.26897 + 12.5902i 0.406348 + 0.703815i
\(321\) 13.6895 0.764075
\(322\) −2.78400 13.9346i −0.155146 0.776544i
\(323\) −17.8154 −0.991278
\(324\) −3.27366 5.67015i −0.181870 0.315008i
\(325\) 1.89521 + 1.09420i 0.105127 + 0.0606952i
\(326\) −12.8623 + 22.2781i −0.712375 + 1.23387i
\(327\) −9.56288 16.5634i −0.528828 0.915958i
\(328\) 31.8692i 1.75968i
\(329\) 3.77978 + 3.49044i 0.208386 + 0.192434i
\(330\) −24.5495 −1.35140
\(331\) 4.61568 + 7.99459i 0.253701 + 0.439423i 0.964542 0.263930i \(-0.0850188\pi\)
−0.710841 + 0.703353i \(0.751685\pi\)
\(332\) −4.25419 + 7.36847i −0.233479 + 0.404397i
\(333\) −3.29831 1.90428i −0.180747 0.104354i
\(334\) −15.6798 + 9.05275i −0.857962 + 0.495345i
\(335\) 14.6533i 0.800596i
\(336\) −12.1525 + 3.78021i −0.662976 + 0.206227i
\(337\) 35.0958i 1.91179i −0.293710 0.955895i \(-0.594890\pi\)
0.293710 0.955895i \(-0.405110\pi\)
\(338\) −6.58409 11.4040i −0.358127 0.620295i
\(339\) −20.8031 + 36.0319i −1.12987 + 1.95699i
\(340\) 2.11234 3.65868i 0.114558 0.198420i
\(341\) −12.2576 21.2307i −0.663784 1.14971i
\(342\) −18.8538 −1.01950
\(343\) −14.5617 11.4437i −0.786256 0.617901i
\(344\) 23.8636i 1.28664i
\(345\) 16.6630 + 12.0977i 0.897105 + 0.651321i
\(346\) −9.97371 5.75832i −0.536190 0.309569i
\(347\) 0.869673 1.50632i 0.0466865 0.0808634i −0.841738 0.539886i \(-0.818467\pi\)
0.888424 + 0.459023i \(0.151800\pi\)
\(348\) −10.4813 + 6.05141i −0.561859 + 0.324389i
\(349\) 7.83899i 0.419611i 0.977743 + 0.209806i \(0.0672831\pi\)
−0.977743 + 0.209806i \(0.932717\pi\)
\(350\) −1.72840 5.55642i −0.0923867 0.297003i
\(351\) −0.197774 −0.0105564
\(352\) 17.5263 10.1188i 0.934157 0.539336i
\(353\) 5.91319 + 3.41398i 0.314728 + 0.181708i 0.649040 0.760754i \(-0.275171\pi\)
−0.334312 + 0.942462i \(0.608504\pi\)
\(354\) −11.0453 + 19.1310i −0.587049 + 1.01680i
\(355\) 1.46472 + 2.53697i 0.0777393 + 0.134648i
\(356\) 7.96713 0.422257
\(357\) 15.5708 + 14.3789i 0.824092 + 0.761010i
\(358\) −0.508653 −0.0268831
\(359\) −12.6483 + 7.30252i −0.667554 + 0.385412i −0.795149 0.606414i \(-0.792607\pi\)
0.127595 + 0.991826i \(0.459274\pi\)
\(360\) 8.23009 14.2549i 0.433764 0.751301i
\(361\) −5.51603 + 9.55405i −0.290318 + 0.502845i
\(362\) 3.38773 + 5.86773i 0.178055 + 0.308401i
\(363\) 37.1248i 1.94855i
\(364\) −0.484184 + 2.14483i −0.0253781 + 0.112420i
\(365\) 10.0832i 0.527777i
\(366\) 17.1688 9.91243i 0.897430 0.518131i
\(367\) −9.49996 + 16.4544i −0.495894 + 0.858913i −0.999989 0.00473490i \(-0.998493\pi\)
0.504095 + 0.863648i \(0.331826\pi\)
\(368\) 9.31110 + 0.975448i 0.485375 + 0.0508488i
\(369\) −27.5724 + 15.9190i −1.43536 + 0.828708i
\(370\) 2.41921i 0.125769i
\(371\) 0.613657 2.71836i 0.0318595 0.141130i
\(372\) 8.82462 0.457535
\(373\) −15.2065 + 8.77946i −0.787361 + 0.454583i −0.839033 0.544081i \(-0.816878\pi\)
0.0516718 + 0.998664i \(0.483545\pi\)
\(374\) 16.0973 + 9.29376i 0.832370 + 0.480569i
\(375\) 25.8945 + 14.9502i 1.33719 + 0.772026i
\(376\) −5.17857 + 2.98985i −0.267064 + 0.154190i
\(377\) 7.33824i 0.377939i
\(378\) 0.386352 + 0.356778i 0.0198718 + 0.0183507i
\(379\) 25.6105i 1.31552i 0.753227 + 0.657760i \(0.228496\pi\)
−0.753227 + 0.657760i \(0.771504\pi\)
\(380\) −3.56084 6.16755i −0.182667 0.316389i
\(381\) −33.1779 19.1552i −1.69975 0.981353i
\(382\) 13.1285 + 7.57975i 0.671713 + 0.387814i
\(383\) −9.01017 15.6061i −0.460398 0.797433i 0.538582 0.842573i \(-0.318960\pi\)
−0.998981 + 0.0451395i \(0.985627\pi\)
\(384\) 3.48931i 0.178063i
\(385\) 22.4744 6.99095i 1.14540 0.356292i
\(386\) 9.60014 0.488634
\(387\) −20.6462 + 11.9201i −1.04951 + 0.605932i
\(388\) −4.63530 + 8.02857i −0.235321 + 0.407589i
\(389\) −17.2281 9.94664i −0.873498 0.504314i −0.00498905 0.999988i \(-0.501588\pi\)
−0.868509 + 0.495673i \(0.834921\pi\)
\(390\) 2.67904 + 4.64024i 0.135659 + 0.234968i
\(391\) −6.34616 14.2407i −0.320939 0.720185i
\(392\) 17.7272 12.2100i 0.895361 0.616700i
\(393\) 3.72510 0.187906
\(394\) −10.5589 18.2886i −0.531951 0.921366i
\(395\) 16.6001 + 9.58405i 0.835240 + 0.482226i
\(396\) −10.1304 5.84877i −0.509070 0.293912i
\(397\) 0.754078 0.435367i 0.0378461 0.0218505i −0.480958 0.876744i \(-0.659711\pi\)
0.518804 + 0.854893i \(0.326378\pi\)
\(398\) −15.8662 −0.795301
\(399\) 34.1156 10.6121i 1.70791 0.531269i
\(400\) 3.83379 0.191690
\(401\) 0.154507 0.0892046i 0.00771570 0.00445466i −0.496137 0.868244i \(-0.665249\pi\)
0.503853 + 0.863789i \(0.331915\pi\)
\(402\) 11.6037 20.0982i 0.578739 1.00240i
\(403\) −2.67530 + 4.63375i −0.133266 + 0.230823i
\(404\) 3.36203 1.94107i 0.167267 0.0965717i
\(405\) 15.2964 0.760084
\(406\) −13.2380 + 14.3353i −0.656989 + 0.711449i
\(407\) 6.32956 0.313745
\(408\) −21.3331 + 12.3167i −1.05614 + 0.609765i
\(409\) −25.2313 14.5673i −1.24761 0.720305i −0.276974 0.960877i \(-0.589332\pi\)
−0.970631 + 0.240572i \(0.922665\pi\)
\(410\) 17.5141 + 10.1118i 0.864960 + 0.499385i
\(411\) 3.84555 + 6.66070i 0.189687 + 0.328548i
\(412\) −1.97818 −0.0974578
\(413\) 4.66372 20.6593i 0.229487 1.01658i
\(414\) −6.71604 15.0707i −0.330075 0.740686i
\(415\) −9.93898 17.2148i −0.487885 0.845042i
\(416\) −3.82524 2.20850i −0.187548 0.108281i
\(417\) 8.05914 13.9588i 0.394658 0.683567i
\(418\) 27.1357 15.6668i 1.32725 0.766288i
\(419\) 4.16065 0.203261 0.101630 0.994822i \(-0.467594\pi\)
0.101630 + 0.994822i \(0.467594\pi\)
\(420\) −1.86565 + 8.26442i −0.0910344 + 0.403262i
\(421\) 12.3864i 0.603675i 0.953359 + 0.301838i \(0.0976000\pi\)
−0.953359 + 0.301838i \(0.902400\pi\)
\(422\) 16.2030 + 28.0645i 0.788752 + 1.36616i
\(423\) 5.17348 + 2.98691i 0.251543 + 0.145229i
\(424\) 2.80501 + 1.61947i 0.136223 + 0.0786486i
\(425\) −3.19224 5.52912i −0.154846 0.268202i
\(426\) 4.63954i 0.224786i
\(427\) −12.8949 + 13.9637i −0.624026 + 0.675753i
\(428\) 4.14337i 0.200277i
\(429\) 12.1406 7.00936i 0.586152 0.338415i
\(430\) 13.1145 + 7.57169i 0.632439 + 0.365139i
\(431\) 4.65239 + 2.68606i 0.224098 + 0.129383i 0.607846 0.794055i \(-0.292034\pi\)
−0.383748 + 0.923438i \(0.625367\pi\)
\(432\) −0.300056 + 0.173237i −0.0144364 + 0.00833488i
\(433\) 17.1216 0.822813 0.411406 0.911452i \(-0.365038\pi\)
0.411406 + 0.911452i \(0.365038\pi\)
\(434\) 13.5853 4.22590i 0.652117 0.202850i
\(435\) 28.2756i 1.35571i
\(436\) −5.01320 + 2.89437i −0.240088 + 0.138615i
\(437\) −26.1388 2.73835i −1.25039 0.130993i
\(438\) 7.98467 13.8299i 0.381522 0.660816i
\(439\) 33.1572 19.1433i 1.58251 0.913662i 0.588017 0.808849i \(-0.299909\pi\)
0.994492 0.104813i \(-0.0334245\pi\)
\(440\) 27.3556i 1.30413i
\(441\) −19.4187 9.23814i −0.924701 0.439912i
\(442\) 4.05685i 0.192965i
\(443\) 15.8658 + 27.4804i 0.753809 + 1.30564i 0.945964 + 0.324271i \(0.105119\pi\)
−0.192156 + 0.981364i \(0.561548\pi\)
\(444\) −1.13921 + 1.97318i −0.0540647 + 0.0936428i
\(445\) −9.30673 + 16.1197i −0.441181 + 0.764148i
\(446\) 12.0171 6.93809i 0.569028 0.328528i
\(447\) −20.3389 −0.961998
\(448\) 6.55673 + 21.0784i 0.309776 + 0.995862i
\(449\) −1.56348 −0.0737851 −0.0368925 0.999319i \(-0.511746\pi\)
−0.0368925 + 0.999319i \(0.511746\pi\)
\(450\) −3.37829 5.85137i −0.159254 0.275836i
\(451\) 26.4561 45.8234i 1.24577 2.15774i
\(452\) 10.9057 + 6.29640i 0.512960 + 0.296158i
\(453\) −12.0232 + 6.94162i −0.564901 + 0.326146i
\(454\) −32.2757 −1.51477
\(455\) −3.77399 3.48510i −0.176928 0.163384i
\(456\) 41.5252i 1.94459i
\(457\) −13.4834 + 7.78465i −0.630728 + 0.364151i −0.781034 0.624489i \(-0.785307\pi\)
0.150306 + 0.988639i \(0.451974\pi\)
\(458\) −4.70152 + 8.14326i −0.219687 + 0.380510i
\(459\) 0.499687 + 0.288495i 0.0233234 + 0.0134658i
\(460\) 3.66159 5.04334i 0.170722 0.235147i
\(461\) 10.9673i 0.510796i 0.966836 + 0.255398i \(0.0822065\pi\)
−0.966836 + 0.255398i \(0.917793\pi\)
\(462\) −36.3614 8.20839i −1.69168 0.381889i
\(463\) 35.3939 1.64489 0.822447 0.568841i \(-0.192608\pi\)
0.822447 + 0.568841i \(0.192608\pi\)
\(464\) −6.42784 11.1333i −0.298405 0.516852i
\(465\) −10.3084 + 17.8547i −0.478041 + 0.827991i
\(466\) −10.7282 + 18.5817i −0.496973 + 0.860782i
\(467\) 13.9666 + 24.1908i 0.646296 + 1.11942i 0.984001 + 0.178165i \(0.0570161\pi\)
−0.337705 + 0.941252i \(0.609651\pi\)
\(468\) 2.55306i 0.118015i
\(469\) −4.89950 + 21.7037i −0.226238 + 1.00218i
\(470\) 3.79459i 0.175032i
\(471\) 37.0253 21.3765i 1.70603 0.984979i
\(472\) 21.3178 + 12.3078i 0.981230 + 0.566513i
\(473\) 19.8103 34.3125i 0.910880 1.57769i
\(474\) −15.1789 26.2906i −0.697188 1.20757i
\(475\) −10.7625 −0.493818
\(476\) 4.35201 4.71276i 0.199474 0.216009i
\(477\) 3.23576i 0.148155i
\(478\) −4.33453 7.50763i −0.198257 0.343391i
\(479\) −11.0589 + 19.1545i −0.505292 + 0.875191i 0.494690 + 0.869070i \(0.335282\pi\)
−0.999981 + 0.00612121i \(0.998052\pi\)
\(480\) −14.7394 8.50977i −0.672757 0.388416i
\(481\) −0.690734 1.19639i −0.0314948 0.0545506i
\(482\) 10.2026 0.464716
\(483\) 20.6353 + 23.4900i 0.938939 + 1.06883i
\(484\) 11.2365 0.510748
\(485\) −10.8294 18.7570i −0.491736 0.851712i
\(486\) −21.4966 12.4111i −0.975106 0.562978i
\(487\) −0.453618 + 0.785689i −0.0205554 + 0.0356030i −0.876120 0.482093i \(-0.839877\pi\)
0.855565 + 0.517696i \(0.173210\pi\)
\(488\) −11.0455 19.1313i −0.500006 0.866035i
\(489\) 56.6023i 2.55964i
\(490\) 1.08550 + 13.6163i 0.0490378 + 0.615123i
\(491\) −7.81432 −0.352655 −0.176328 0.984332i \(-0.556422\pi\)
−0.176328 + 0.984332i \(0.556422\pi\)
\(492\) 9.52332 + 16.4949i 0.429344 + 0.743646i
\(493\) −10.7044 + 18.5405i −0.482101 + 0.835023i
\(494\) −5.92255 3.41938i −0.266468 0.153845i
\(495\) 23.6674 13.6644i 1.06377 0.614168i
\(496\) 9.37356i 0.420885i
\(497\) 1.32120 + 4.24737i 0.0592640 + 0.190521i
\(498\) 31.4820i 1.41074i
\(499\) −16.7819 29.0671i −0.751260 1.30122i −0.947212 0.320607i \(-0.896113\pi\)
0.195952 0.980613i \(-0.437220\pi\)
\(500\) 4.52494 7.83742i 0.202361 0.350500i
\(501\) 19.9190 34.5007i 0.889914 1.54138i
\(502\) 2.98971 + 5.17832i 0.133437 + 0.231120i
\(503\) 19.2324 0.857532 0.428766 0.903416i \(-0.358948\pi\)
0.428766 + 0.903416i \(0.358948\pi\)
\(504\) 16.9563 18.3618i 0.755293 0.817901i
\(505\) 9.06976i 0.403599i
\(506\) 22.1894 + 16.1101i 0.986440 + 0.716180i
\(507\) 25.0924 + 14.4871i 1.11439 + 0.643396i
\(508\) −5.79766 + 10.0418i −0.257230 + 0.445535i
\(509\) −22.0512 + 12.7313i −0.977404 + 0.564304i −0.901485 0.432810i \(-0.857522\pi\)
−0.0759185 + 0.997114i \(0.524189\pi\)
\(510\) 15.6318i 0.692187i
\(511\) −3.37143 + 14.9347i −0.149143 + 0.660671i
\(512\) −19.7438 −0.872561
\(513\) 0.842339 0.486325i 0.0371902 0.0214718i
\(514\) 4.39311 + 2.53636i 0.193772 + 0.111874i
\(515\) 2.31079 4.00241i 0.101826 0.176367i
\(516\) 7.13105 + 12.3513i 0.313927 + 0.543738i
\(517\) −9.92806 −0.436636
\(518\) −0.808892 + 3.58321i −0.0355407 + 0.157437i
\(519\) 25.3403 1.11232
\(520\) 5.17065 2.98527i 0.226748 0.130913i
\(521\) −6.47025 + 11.2068i −0.283467 + 0.490979i −0.972236 0.234002i \(-0.924818\pi\)
0.688770 + 0.724980i \(0.258151\pi\)
\(522\) −11.3283 + 19.6211i −0.495824 + 0.858793i
\(523\) −4.17553 7.23223i −0.182583 0.316243i 0.760176 0.649717i \(-0.225113\pi\)
−0.942759 + 0.333473i \(0.891779\pi\)
\(524\) 1.12747i 0.0492536i
\(525\) 9.40648 + 8.68643i 0.410532 + 0.379107i
\(526\) 14.7272i 0.642135i
\(527\) 13.5186 7.80496i 0.588879 0.339990i
\(528\) 12.2795 21.2688i 0.534397 0.925604i
\(529\) −7.12220 21.8695i −0.309661 0.950847i
\(530\) −1.78000 + 1.02768i −0.0773183 + 0.0446397i
\(531\) 24.5914i 1.06718i
\(532\) −3.21193 10.3257i −0.139255 0.447674i
\(533\) −11.5485 −0.500219
\(534\) 25.5298 14.7396i 1.10478 0.637847i
\(535\) 8.38319 + 4.84004i 0.362437 + 0.209253i
\(536\) −22.3955 12.9300i −0.967338 0.558493i
\(537\) 0.969256 0.559600i 0.0418265 0.0241485i
\(538\) 15.7012i 0.676929i
\(539\) 35.6254 2.84006i 1.53449 0.122330i
\(540\) 0.230650i 0.00992559i
\(541\) 2.42578 + 4.20158i 0.104293 + 0.180640i 0.913449 0.406953i \(-0.133409\pi\)
−0.809156 + 0.587593i \(0.800076\pi\)
\(542\) −0.209844 0.121153i −0.00901357 0.00520399i
\(543\) −12.9109 7.45411i −0.554059 0.319886i
\(544\) 6.44314 + 11.1598i 0.276247 + 0.478474i
\(545\) 13.5241i 0.579310i
\(546\) 2.41654 + 7.76864i 0.103418 + 0.332467i
\(547\) 5.70672 0.244002 0.122001 0.992530i \(-0.461069\pi\)
0.122001 + 0.992530i \(0.461069\pi\)
\(548\) 2.01597 1.16392i 0.0861181 0.0497203i
\(549\) −11.0346 + 19.1125i −0.470947 + 0.815704i
\(550\) 9.72455 + 5.61447i 0.414656 + 0.239402i
\(551\) 18.0447 + 31.2544i 0.768731 + 1.33148i
\(552\) −33.1931 + 14.7920i −1.41279 + 0.629588i
\(553\) 21.3826 + 19.7458i 0.909281 + 0.839678i
\(554\) 15.3832 0.653569
\(555\) −2.66153 4.60990i −0.112975 0.195679i
\(556\) −4.22488 2.43924i −0.179175 0.103447i
\(557\) −39.9954 23.0913i −1.69466 0.978411i −0.950662 0.310228i \(-0.899595\pi\)
−0.743996 0.668184i \(-0.767072\pi\)
\(558\) 14.3065 8.25986i 0.605642 0.349668i
\(559\) −8.64747 −0.365749
\(560\) −8.77851 1.98170i −0.370960 0.0837423i
\(561\) −40.8985 −1.72674
\(562\) 5.01086 2.89302i 0.211370 0.122035i
\(563\) −3.93900 + 6.82256i −0.166009 + 0.287536i −0.937013 0.349294i \(-0.886421\pi\)
0.771004 + 0.636830i \(0.219755\pi\)
\(564\) 1.78688 3.09497i 0.0752414 0.130322i
\(565\) −25.4788 + 14.7102i −1.07190 + 0.618861i
\(566\) −7.72215 −0.324586
\(567\) 22.6562 + 5.11453i 0.951472 + 0.214790i
\(568\) −5.16987 −0.216923
\(569\) 20.9228 12.0798i 0.877130 0.506411i 0.00741889 0.999972i \(-0.497638\pi\)
0.869711 + 0.493561i \(0.164305\pi\)
\(570\) −22.8207 13.1755i −0.955852 0.551861i
\(571\) −8.73591 5.04368i −0.365587 0.211071i 0.305942 0.952050i \(-0.401029\pi\)
−0.671529 + 0.740979i \(0.734362\pi\)
\(572\) −2.12150 3.67455i −0.0887045 0.153641i
\(573\) −33.3558 −1.39346
\(574\) 22.5600 + 20.8331i 0.941636 + 0.869556i
\(575\) −3.83379 8.60300i −0.159880 0.358770i
\(576\) 12.8156 + 22.1973i 0.533985 + 0.924889i
\(577\) 9.51957 + 5.49612i 0.396305 + 0.228807i 0.684888 0.728648i \(-0.259851\pi\)
−0.288584 + 0.957455i \(0.593184\pi\)
\(578\) 3.60140 6.23781i 0.149799 0.259459i
\(579\) −18.2934 + 10.5617i −0.760248 + 0.438930i
\(580\) −8.55809 −0.355355
\(581\) −8.96512 28.8209i −0.371936 1.19569i
\(582\) 34.3023i 1.42187i
\(583\) 2.68880 + 4.65714i 0.111359 + 0.192879i
\(584\) −15.4107 8.89737i −0.637700 0.368176i
\(585\) −5.16557 2.98234i −0.213570 0.123305i
\(586\) −19.0484 32.9928i −0.786881 1.36292i
\(587\) 16.5502i 0.683100i 0.939864 + 0.341550i \(0.110952\pi\)
−0.939864 + 0.341550i \(0.889048\pi\)
\(588\) −5.52661 + 11.6170i −0.227913 + 0.479078i
\(589\) 26.3142i 1.08426i
\(590\) −13.5278 + 7.81029i −0.556931 + 0.321544i
\(591\) 40.2408 + 23.2330i 1.65529 + 0.955680i
\(592\) −2.09592 1.21008i −0.0861417 0.0497339i
\(593\) 20.5149 11.8443i 0.842444 0.486385i −0.0156500 0.999878i \(-0.504982\pi\)
0.858094 + 0.513492i \(0.171648\pi\)
\(594\) −1.01480 −0.0416378
\(595\) 4.45147 + 14.3105i 0.182492 + 0.586673i
\(596\) 6.15592i 0.252156i
\(597\) 30.2336 17.4554i 1.23738 0.714401i
\(598\) 0.623565 5.95222i 0.0254995 0.243404i
\(599\) 17.2364 29.8543i 0.704260 1.21981i −0.262698 0.964878i \(-0.584612\pi\)
0.966958 0.254936i \(-0.0820545\pi\)
\(600\) −12.8876 + 7.44064i −0.526132 + 0.303763i
\(601\) 46.8012i 1.90906i 0.298112 + 0.954531i \(0.403643\pi\)
−0.298112 + 0.954531i \(0.596357\pi\)
\(602\) 16.8929 + 15.5998i 0.688503 + 0.635800i
\(603\) 25.8347i 1.05207i
\(604\) 2.10100 + 3.63904i 0.0854884 + 0.148070i
\(605\) −13.1258 + 22.7345i −0.533639 + 0.924289i
\(606\) 7.18217 12.4399i 0.291756 0.505336i
\(607\) 6.92224 3.99656i 0.280965 0.162215i −0.352895 0.935663i \(-0.614803\pi\)
0.633860 + 0.773448i \(0.281469\pi\)
\(608\) 21.7228 0.880977
\(609\) 9.45427 41.8803i 0.383106 1.69708i
\(610\) 14.0185 0.567592
\(611\) 1.08343 + 1.87656i 0.0438310 + 0.0759175i
\(612\) 3.72418 6.45048i 0.150541 0.260745i
\(613\) 19.7930 + 11.4275i 0.799430 + 0.461551i 0.843272 0.537487i \(-0.180626\pi\)
−0.0438419 + 0.999038i \(0.513960\pi\)
\(614\) −15.9110 + 9.18624i −0.642117 + 0.370726i
\(615\) −44.4983 −1.79435
\(616\) −9.14667 + 40.5177i −0.368530 + 1.63251i
\(617\) 2.64708i 0.106568i −0.998579 0.0532838i \(-0.983031\pi\)
0.998579 0.0532838i \(-0.0169688\pi\)
\(618\) −6.33886 + 3.65974i −0.254986 + 0.147216i
\(619\) 13.7975 23.8979i 0.554568 0.960539i −0.443370 0.896339i \(-0.646217\pi\)
0.997937 0.0642002i \(-0.0204496\pi\)
\(620\) 5.40402 + 3.12001i 0.217031 + 0.125303i
\(621\) 0.688798 + 0.500085i 0.0276405 + 0.0200677i
\(622\) 3.67051i 0.147174i
\(623\) −19.1745 + 20.7639i −0.768208 + 0.831887i
\(624\) −5.36017 −0.214579
\(625\) 5.66176 + 9.80646i 0.226470 + 0.392258i
\(626\) −6.31129 + 10.9315i −0.252250 + 0.436910i
\(627\) −34.4720 + 59.7073i −1.37668 + 2.38448i
\(628\) −6.46998 11.2063i −0.258180 0.447181i
\(629\) 4.03033i 0.160700i
\(630\) 4.71091 + 15.1445i 0.187687 + 0.603373i
\(631\) 31.7357i 1.26338i −0.775222 0.631689i \(-0.782362\pi\)
0.775222 0.631689i \(-0.217638\pi\)
\(632\) −29.2957 + 16.9139i −1.16532 + 0.672799i
\(633\) −61.7509 35.6519i −2.45438 1.41704i
\(634\) 5.62285 9.73907i 0.223312 0.386788i
\(635\) −13.5450 23.4606i −0.537516 0.931005i
\(636\) −1.93576 −0.0767577
\(637\) −4.42456 6.42383i −0.175307 0.254521i
\(638\) 37.6535i 1.49071i
\(639\) 2.58239 + 4.47284i 0.102158 + 0.176943i
\(640\) 1.23367 2.13679i 0.0487652 0.0844639i
\(641\) −20.5145 11.8441i −0.810276 0.467813i 0.0367759 0.999324i \(-0.488291\pi\)
−0.847052 + 0.531511i \(0.821625\pi\)
\(642\) −7.66547 13.2770i −0.302532 0.524001i
\(643\) −31.2981 −1.23428 −0.617139 0.786854i \(-0.711708\pi\)
−0.617139 + 0.786854i \(0.711708\pi\)
\(644\) 7.10965 6.24563i 0.280160 0.246112i
\(645\) −33.3203 −1.31199
\(646\) 9.97578 + 17.2786i 0.392492 + 0.679816i
\(647\) −34.5148 19.9271i −1.35692 0.783417i −0.367710 0.929940i \(-0.619858\pi\)
−0.989207 + 0.146524i \(0.953192\pi\)
\(648\) −13.4975 + 23.3784i −0.530232 + 0.918389i
\(649\) 20.4346 + 35.3938i 0.802128 + 1.38933i
\(650\) 2.45079i 0.0961279i
\(651\) −21.2382 + 22.9987i −0.832390 + 0.901389i
\(652\) −17.1317 −0.670927
\(653\) 5.56523 + 9.63926i 0.217784 + 0.377213i 0.954130 0.299392i \(-0.0967838\pi\)
−0.736346 + 0.676605i \(0.763450\pi\)
\(654\) −10.7095 + 18.5494i −0.418775 + 0.725339i
\(655\) 2.28118 + 1.31704i 0.0891330 + 0.0514610i
\(656\) −17.5209 + 10.1157i −0.684078 + 0.394953i
\(657\) 17.7773i 0.693557i
\(658\) 1.26877 5.62035i 0.0494617 0.219104i
\(659\) 38.9094i 1.51569i 0.652432 + 0.757847i \(0.273749\pi\)
−0.652432 + 0.757847i \(0.726251\pi\)
\(660\) −8.17454 14.1587i −0.318194 0.551128i
\(661\) 18.7348 32.4496i 0.728699 1.26214i −0.228735 0.973489i \(-0.573459\pi\)
0.957433 0.288654i \(-0.0932078\pi\)
\(662\) 5.16912 8.95317i 0.200903 0.347975i
\(663\) 4.46319 + 7.73047i 0.173336 + 0.300227i
\(664\) 35.0806 1.36139
\(665\) 24.6437 + 5.56319i 0.955642 + 0.215731i
\(666\) 4.26522i 0.165274i
\(667\) −18.5553 + 25.5573i −0.718463 + 0.989584i
\(668\) −10.4422 6.02882i −0.404022 0.233262i
\(669\) −15.2660 + 26.4416i −0.590219 + 1.02229i
\(670\) 14.2117 8.20514i 0.549047 0.316992i
\(671\) 36.6775i 1.41592i
\(672\) −18.9858 17.5325i −0.732394 0.676331i
\(673\) 2.15130 0.0829266 0.0414633 0.999140i \(-0.486798\pi\)
0.0414633 + 0.999140i \(0.486798\pi\)
\(674\) −34.0382 + 19.6519i −1.31110 + 0.756964i
\(675\) 0.301867 + 0.174283i 0.0116189 + 0.00670815i
\(676\) 4.38478 7.59465i 0.168645 0.292102i
\(677\) −8.63767 14.9609i −0.331973 0.574994i 0.650926 0.759141i \(-0.274381\pi\)
−0.982899 + 0.184148i \(0.941048\pi\)
\(678\) 46.5948 1.78946
\(679\) −9.76826 31.4028i −0.374871 1.20513i
\(680\) −17.4186 −0.667973
\(681\) 61.5025 35.5085i 2.35678 1.36069i
\(682\) −13.7273 + 23.7764i −0.525645 + 0.910444i
\(683\) −5.83323 + 10.1034i −0.223202 + 0.386598i −0.955779 0.294087i \(-0.904984\pi\)
0.732576 + 0.680685i \(0.238318\pi\)
\(684\) −6.27798 10.8738i −0.240044 0.415769i
\(685\) 5.43851i 0.207795i
\(686\) −2.94500 + 20.5308i −0.112441 + 0.783868i
\(687\) 20.6897i 0.789361i
\(688\) −13.1197 + 7.57464i −0.500182 + 0.288780i
\(689\) 0.586849 1.01645i 0.0223572 0.0387237i
\(690\) 2.40271 22.9350i 0.0914697 0.873120i
\(691\) −34.2139 + 19.7534i −1.30156 + 0.751454i −0.980671 0.195664i \(-0.937314\pi\)
−0.320886 + 0.947118i \(0.603981\pi\)
\(692\) 7.66969i 0.291558i
\(693\) 39.6237 12.3255i 1.50518 0.468206i
\(694\) −1.94790 −0.0739412
\(695\) 9.87052 5.69875i 0.374410 0.216166i
\(696\) 43.2152 + 24.9503i 1.63807 + 0.945740i
\(697\) 29.1779 + 16.8459i 1.10519 + 0.638083i
\(698\) 7.60276 4.38945i 0.287769 0.166143i
\(699\) 47.2109i 1.78568i
\(700\) 2.62910 2.84703i 0.0993705 0.107608i
\(701\) 2.90811i 0.109838i −0.998491 0.0549190i \(-0.982510\pi\)
0.998491 0.0549190i \(-0.0174901\pi\)
\(702\) 0.110744 + 0.191814i 0.00417975 + 0.00723954i
\(703\) 5.88382 + 3.39703i 0.221913 + 0.128121i
\(704\) −36.8904 21.2987i −1.39036 0.802724i
\(705\) 4.17466 + 7.23073i 0.157227 + 0.272325i
\(706\) 7.64666i 0.287786i
\(707\) −3.03258 + 13.4337i −0.114052 + 0.505225i
\(708\) −14.7115 −0.552893
\(709\) −3.47529 + 2.00646i −0.130517 + 0.0753543i −0.563837 0.825886i \(-0.690675\pi\)
0.433320 + 0.901240i \(0.357342\pi\)
\(710\) 1.64035 2.84116i 0.0615611 0.106627i
\(711\) 29.2669 + 16.8973i 1.09760 + 0.633698i
\(712\) −16.4245 28.4480i −0.615533 1.06614i
\(713\) 21.0342 9.37356i 0.787736 0.351042i
\(714\) 5.22667 23.1530i 0.195603 0.866479i
\(715\) 9.91287 0.370720
\(716\) −0.169373 0.293362i −0.00632975 0.0109634i
\(717\) 16.5192 + 9.53737i 0.616921 + 0.356180i
\(718\) 14.1649 + 8.17812i 0.528630 + 0.305205i
\(719\) 15.6262 9.02176i 0.582757 0.336455i −0.179471 0.983763i \(-0.557439\pi\)
0.762228 + 0.647308i \(0.224105\pi\)
\(720\) −10.4494 −0.389425
\(721\) 4.76087 5.15551i 0.177304 0.192001i
\(722\) 12.3549 0.459800
\(723\) −19.4414 + 11.2245i −0.723034 + 0.417444i
\(724\) −2.25611 + 3.90770i −0.0838478 + 0.145229i
\(725\) −6.46664 + 11.2005i −0.240165 + 0.415978i
\(726\) 36.0061 20.7881i 1.33631 0.771519i
\(727\) 30.0373 1.11402 0.557011 0.830505i \(-0.311948\pi\)
0.557011 + 0.830505i \(0.311948\pi\)
\(728\) 8.65665 2.69277i 0.320837 0.0998005i
\(729\) 28.2806 1.04743
\(730\) 9.77932 5.64609i 0.361949 0.208971i
\(731\) 21.8484 + 12.6142i 0.808091 + 0.466552i
\(732\) 11.4339 + 6.60134i 0.422607 + 0.243992i
\(733\) 4.26776 + 7.39198i 0.157633 + 0.273029i 0.934015 0.357234i \(-0.116280\pi\)
−0.776381 + 0.630263i \(0.782947\pi\)
\(734\) 21.2781 0.785388
\(735\) −17.0486 24.7522i −0.628848 0.912998i
\(736\) 7.73804 + 17.3641i 0.285228 + 0.640049i
\(737\) −21.4677 37.1831i −0.790772 1.36966i
\(738\) 30.8785 + 17.8277i 1.13665 + 0.656246i
\(739\) 21.3906 37.0496i 0.786866 1.36289i −0.141013 0.990008i \(-0.545036\pi\)
0.927878 0.372883i \(-0.121631\pi\)
\(740\) −1.39526 + 0.805556i −0.0512909 + 0.0296128i
\(741\) 15.0475 0.552783
\(742\) −2.98006 + 0.926988i −0.109402 + 0.0340308i
\(743\) 25.3826i 0.931198i 0.884996 + 0.465599i \(0.154161\pi\)
−0.884996 + 0.465599i \(0.845839\pi\)
\(744\) −18.1922 31.5099i −0.666960 1.15521i
\(745\) −12.4552 7.19099i −0.456321 0.263457i
\(746\) 17.0298 + 9.83214i 0.623504 + 0.359980i
\(747\) −17.5230 30.3508i −0.641135 1.11048i
\(748\) 12.3786i 0.452608i
\(749\) 10.7984 + 9.97183i 0.394566 + 0.364363i
\(750\) 33.4856i 1.22272i
\(751\) −39.2061 + 22.6357i −1.43065 + 0.825987i −0.997170 0.0751749i \(-0.976048\pi\)
−0.433482 + 0.901162i \(0.642715\pi\)
\(752\) 3.28750 + 1.89804i 0.119883 + 0.0692143i
\(753\) −11.3940 6.57832i −0.415220 0.239727i
\(754\) −7.11710 + 4.10906i −0.259190 + 0.149643i
\(755\) −9.81706 −0.357279
\(756\) −0.0771205 + 0.341627i −0.00280484 + 0.0124248i
\(757\) 3.04735i 0.110758i −0.998465 0.0553789i \(-0.982363\pi\)
0.998465 0.0553789i \(-0.0176367\pi\)
\(758\) 24.8387 14.3406i 0.902181 0.520875i
\(759\) −60.0064 6.28638i −2.17809 0.228181i
\(760\) −14.6816 + 25.4292i −0.532556 + 0.922414i
\(761\) 42.0317 24.2670i 1.52365 0.879679i 0.524040 0.851694i \(-0.324424\pi\)
0.999608 0.0279851i \(-0.00890909\pi\)
\(762\) 42.9041i 1.55425i
\(763\) 4.52195 20.0312i 0.163706 0.725179i
\(764\) 10.0957i 0.365250i
\(765\) 8.70075 + 15.0701i 0.314576 + 0.544862i
\(766\) −10.0905 + 17.4773i −0.364585 + 0.631481i
\(767\) 4.45999 7.72492i 0.161041 0.278931i
\(768\) 32.2259 18.6056i 1.16285 0.671373i
\(769\) −49.5965 −1.78850 −0.894248 0.447573i \(-0.852289\pi\)
−0.894248 + 0.447573i \(0.852289\pi\)
\(770\) −19.3648 17.8825i −0.697860 0.644441i
\(771\) −11.1616 −0.401976
\(772\) 3.19668 + 5.53681i 0.115051 + 0.199274i
\(773\) −6.24463 + 10.8160i −0.224604 + 0.389025i −0.956200 0.292713i \(-0.905442\pi\)
0.731597 + 0.681738i \(0.238775\pi\)
\(774\) 23.1218 + 13.3494i 0.831094 + 0.479833i
\(775\) 8.16674 4.71507i 0.293358 0.169370i
\(776\) 38.2232 1.37213
\(777\) −2.40074 7.71785i −0.0861261 0.276876i
\(778\) 22.2785i 0.798724i
\(779\) 49.1861 28.3976i 1.76228 1.01745i
\(780\) −1.78415 + 3.09024i −0.0638828 + 0.110648i
\(781\) −7.43353 4.29175i −0.265993 0.153571i
\(782\) −10.2580 + 14.1290i −0.366827 + 0.505254i
\(783\) 1.16883i 0.0417706i
\(784\) −12.3397 5.87039i −0.440702 0.209657i
\(785\) 30.2314 1.07900
\(786\) −2.08588 3.61284i −0.0744007 0.128866i
\(787\) 5.59584 9.69228i 0.199470 0.345493i −0.748887 0.662698i \(-0.769411\pi\)
0.948357 + 0.317206i \(0.102745\pi\)
\(788\) 7.03188 12.1796i 0.250500 0.433879i
\(789\) 16.2023 + 28.0632i 0.576816 + 0.999075i
\(790\) 21.4664i 0.763741i
\(791\) −42.6563 + 13.2688i −1.51668 + 0.471785i
\(792\) 48.2297i 1.71377i
\(793\) −6.93263 + 4.00256i −0.246185 + 0.142135i
\(794\) −0.844495 0.487569i −0.0299700 0.0173032i
\(795\) 2.26124 3.91658i 0.0801978 0.138907i
\(796\) −5.28317 9.15072i −0.187257 0.324339i
\(797\) 33.4971 1.18653 0.593265 0.805007i \(-0.297839\pi\)
0.593265 + 0.805007i \(0.297839\pi\)
\(798\) −29.3954 27.1452i −1.04058 0.960931i
\(799\) 6.32166i 0.223644i
\(800\) 3.89238 + 6.74179i 0.137616 + 0.238358i
\(801\) −16.4083 + 28.4201i −0.579760 + 1.00417i
\(802\) −0.173033 0.0999005i −0.00611000 0.00352761i
\(803\) −14.7723 25.5863i −0.521302 0.902921i
\(804\) 15.4553 0.545066
\(805\) 4.33158 + 21.6806i 0.152668 + 0.764141i
\(806\) 5.99214 0.211064
\(807\) 17.2739 + 29.9193i 0.608070 + 1.05321i
\(808\) −13.8618 8.00314i −0.487658 0.281550i
\(809\) −4.07155 + 7.05212i −0.143148 + 0.247939i −0.928680 0.370881i \(-0.879056\pi\)
0.785533 + 0.618820i \(0.212389\pi\)
\(810\) −8.56524 14.8354i −0.300952 0.521264i
\(811\) 5.53741i 0.194445i −0.995263 0.0972224i \(-0.969004\pi\)
0.995263 0.0972224i \(-0.0309958\pi\)
\(812\) −12.6758 2.86150i −0.444833 0.100419i
\(813\) 0.533153 0.0186985
\(814\) −3.54425 6.13882i −0.124226 0.215165i
\(815\) 20.0122 34.6621i 0.700996 1.21416i
\(816\) 13.5428 + 7.81895i 0.474093 + 0.273718i
\(817\) 36.8305 21.2641i 1.28854 0.743937i
\(818\) 32.6279i 1.14081i
\(819\) −6.65378 6.14445i −0.232502 0.214705i
\(820\) 13.4682i 0.470329i
\(821\) −15.2878 26.4792i −0.533547 0.924130i −0.999232 0.0391795i \(-0.987526\pi\)
0.465686 0.884950i \(-0.345808\pi\)
\(822\) 4.30665 7.45933i 0.150212 0.260174i
\(823\) −3.87292 + 6.70810i −0.135002 + 0.233830i −0.925598 0.378508i \(-0.876437\pi\)
0.790596 + 0.612337i \(0.209771\pi\)
\(824\) 4.07807 + 7.06343i 0.142066 + 0.246066i
\(825\) −24.7073 −0.860197
\(826\) −22.6481 + 7.04500i −0.788030 + 0.245127i
\(827\) 37.1540i 1.29197i −0.763349 0.645986i \(-0.776446\pi\)
0.763349 0.645986i \(-0.223554\pi\)
\(828\) 6.45561 8.89172i 0.224348 0.309008i
\(829\) 31.4232 + 18.1422i 1.09137 + 0.630104i 0.933941 0.357426i \(-0.116346\pi\)
0.157430 + 0.987530i \(0.449679\pi\)
\(830\) −11.1307 + 19.2789i −0.386352 + 0.669182i
\(831\) −29.3132 + 16.9240i −1.01686 + 0.587086i
\(832\) 9.29715i 0.322321i
\(833\) 1.80840 + 22.6843i 0.0626574 + 0.785966i
\(834\) −18.0509 −0.625052
\(835\) 24.3960 14.0850i 0.844258 0.487432i
\(836\) 18.0714 + 10.4335i 0.625013 + 0.360852i
\(837\) −0.426119 + 0.738060i −0.0147288 + 0.0255111i
\(838\) −2.32976 4.03527i −0.0804803 0.139396i
\(839\) −9.74112 −0.336301 −0.168150 0.985761i \(-0.553779\pi\)
−0.168150 + 0.985761i \(0.553779\pi\)
\(840\) 33.3557 10.3757i 1.15088 0.357996i
\(841\) 14.3685 0.495466
\(842\) 12.0131 6.93577i 0.413999 0.239022i
\(843\) −6.36558 + 11.0255i −0.219242 + 0.379739i
\(844\) −10.7907 + 18.6900i −0.371430 + 0.643335i
\(845\) 10.2441 + 17.7433i 0.352407 + 0.610387i
\(846\) 6.69010i 0.230011i
\(847\) −27.0428 + 29.2844i −0.929200 + 1.00622i
\(848\) 2.05617i 0.0706092i
\(849\) 14.7148 8.49561i 0.505012 0.291569i
\(850\) −3.57500 + 6.19208i −0.122621 + 0.212386i
\(851\) −0.619488 + 5.91330i −0.0212358 + 0.202705i
\(852\) 2.67582 1.54489i 0.0916721 0.0529269i
\(853\) 10.0341i 0.343560i −0.985135 0.171780i \(-0.945048\pi\)
0.985135 0.171780i \(-0.0549518\pi\)
\(854\) 20.7634 + 4.68724i 0.710510 + 0.160394i
\(855\) 29.3343 1.00321
\(856\) −14.7946 + 8.54168i −0.505670 + 0.291949i
\(857\) −6.04967 3.49278i −0.206653 0.119311i 0.393102 0.919495i \(-0.371402\pi\)
−0.599755 + 0.800184i \(0.704735\pi\)
\(858\) −13.5963 7.84981i −0.464169 0.267988i
\(859\) −39.3910 + 22.7424i −1.34400 + 0.775962i −0.987393 0.158291i \(-0.949402\pi\)
−0.356612 + 0.934252i \(0.616068\pi\)
\(860\) 10.0850i 0.343894i
\(861\) −65.9086 14.8785i −2.24616 0.507059i
\(862\) 6.01625i 0.204914i
\(863\) 20.7809 + 35.9936i 0.707391 + 1.22524i 0.965822 + 0.259207i \(0.0834612\pi\)
−0.258431 + 0.966030i \(0.583205\pi\)
\(864\) −0.609282 0.351769i −0.0207282 0.0119674i
\(865\) 15.5179 + 8.95928i 0.527625 + 0.304625i
\(866\) −9.58728 16.6057i −0.325789 0.564283i
\(867\) 15.8485i 0.538243i
\(868\) 6.96094 + 6.42810i 0.236270 + 0.218184i
\(869\) −56.1641 −1.90524
\(870\) −27.4235 + 15.8330i −0.929744 + 0.536788i
\(871\) −4.68547 + 8.11547i −0.158761 + 0.274982i
\(872\) 20.6697 + 11.9337i 0.699965 + 0.404125i
\(873\) −19.0928 33.0698i −0.646195 1.11924i
\(874\) 11.9807 + 26.8845i 0.405252 + 0.909381i
\(875\) 9.53569 + 30.6552i 0.322365 + 1.03633i
\(876\) 10.6350 0.359324
\(877\) 17.4333 + 30.1954i 0.588682 + 1.01963i 0.994405 + 0.105631i \(0.0336862\pi\)
−0.405724 + 0.913996i \(0.632980\pi\)
\(878\) −37.1329 21.4387i −1.25317 0.723521i
\(879\) 72.5947 + 41.9126i 2.44856 + 1.41368i
\(880\) 15.0395 8.68304i 0.506980 0.292705i
\(881\) −14.2407 −0.479782 −0.239891 0.970800i \(-0.577112\pi\)
−0.239891 + 0.970800i \(0.577112\pi\)
\(882\) 1.91380 + 24.0064i 0.0644410 + 0.808339i
\(883\) 34.0572 1.14612 0.573058 0.819515i \(-0.305757\pi\)
0.573058 + 0.819515i \(0.305757\pi\)
\(884\) 2.33976 1.35086i 0.0786947 0.0454344i
\(885\) 17.1851 29.7655i 0.577672 1.00056i
\(886\) 17.7682 30.7754i 0.596935 1.03392i
\(887\) −15.1442 + 8.74352i −0.508493 + 0.293579i −0.732214 0.681074i \(-0.761513\pi\)
0.223721 + 0.974653i \(0.428180\pi\)
\(888\) 9.39410 0.315245
\(889\) −12.2178 39.2775i −0.409772 1.31733i
\(890\) 20.8453 0.698735
\(891\) −38.8150 + 22.4098i −1.30035 + 0.750758i
\(892\) 8.00299 + 4.62053i 0.267960 + 0.154707i
\(893\) −9.22891 5.32832i −0.308834 0.178305i
\(894\) 11.3888 + 19.7260i 0.380899 + 0.659736i
\(895\) 0.791404 0.0264537
\(896\) 2.54171 2.75240i 0.0849126 0.0919513i
\(897\) 5.36017 + 12.0282i 0.178971 + 0.401609i
\(898\) 0.875472 + 1.51636i 0.0292149 + 0.0506017i
\(899\) −27.3851 15.8108i −0.913346 0.527320i
\(900\) 2.24982 3.89681i 0.0749941 0.129894i
\(901\) −2.96542 + 1.71209i −0.0987925 + 0.0570379i
\(902\) −59.2566 −1.97303
\(903\) −49.3523 11.1410i −1.64234 0.370750i
\(904\) 51.9209i 1.72686i
\(905\) −5.27092 9.12950i −0.175211 0.303475i
\(906\) 13.4649 + 7.77394i 0.447340 + 0.258272i
\(907\) −40.0995 23.1515i −1.33148 0.768732i −0.345955 0.938251i \(-0.612445\pi\)
−0.985527 + 0.169519i \(0.945778\pi\)
\(908\) −10.7473 18.6148i −0.356660 0.617754i
\(909\) 15.9906i 0.530373i
\(910\) −1.26682 + 5.61175i −0.0419948 + 0.186028i
\(911\) 6.05621i 0.200651i 0.994955 + 0.100326i \(0.0319885\pi\)
−0.994955 + 0.100326i \(0.968012\pi\)
\(912\) 22.8296 13.1807i 0.755962 0.436455i
\(913\) 50.4408 + 29.1220i 1.66935 + 0.963798i
\(914\) 15.1001 + 8.71806i 0.499468 + 0.288368i
\(915\) −26.7127 + 15.4226i −0.883095 + 0.509855i
\(916\) −6.26209 −0.206905
\(917\) 2.93839 + 2.71347i 0.0970343 + 0.0896066i
\(918\) 0.646172i 0.0213269i
\(919\) 1.87384 1.08186i 0.0618121 0.0356873i −0.468775 0.883317i \(-0.655305\pi\)
0.530588 + 0.847630i \(0.321971\pi\)
\(920\) −25.5566 2.67736i −0.842576 0.0882699i
\(921\) 20.2127 35.0094i 0.666031 1.15360i
\(922\) 10.6368 6.14113i 0.350303 0.202247i
\(923\) 1.87341i 0.0616639i
\(924\) −7.37357 23.7044i −0.242573 0.779818i
\(925\) 2.43477i 0.0800547i
\(926\) −19.8189 34.3273i −0.651289 1.12807i
\(927\) 4.07407 7.05649i 0.133810 0.231766i
\(928\) 13.0521 22.6069i 0.428457 0.742109i
\(929\) −4.73396 + 2.73315i −0.155316 + 0.0896718i −0.575644 0.817701i \(-0.695248\pi\)
0.420328 + 0.907372i \(0.361915\pi\)
\(930\) 23.0888 0.757112
\(931\) 34.6408 + 16.4798i 1.13531 + 0.540104i
\(932\) −14.2892 −0.468058
\(933\) −4.03815 6.99428i −0.132203 0.228982i
\(934\) 15.6412 27.0914i 0.511796 0.886457i
\(935\) −25.0455 14.4600i −0.819074 0.472893i
\(936\) 9.11617 5.26322i 0.297971 0.172034i
\(937\) 39.4755 1.28961 0.644805 0.764347i \(-0.276939\pi\)
0.644805 + 0.764347i \(0.276939\pi\)
\(938\) 23.7931 7.40117i 0.776874 0.241657i
\(939\) 27.7737i 0.906362i
\(940\) 2.18850 1.26353i 0.0713812 0.0412119i
\(941\) 11.4184 19.7773i 0.372229 0.644720i −0.617679 0.786431i \(-0.711927\pi\)
0.989908 + 0.141710i \(0.0452601\pi\)
\(942\) −41.4647 23.9397i −1.35099 0.779996i
\(943\) 40.2205 + 29.2011i 1.30976 + 0.950919i
\(944\) 15.6267i 0.508605i
\(945\) −0.601119 0.555104i −0.0195544 0.0180575i
\(946\) −44.3713 −1.44264
\(947\) −9.18510 15.9091i −0.298476 0.516975i 0.677312 0.735696i \(-0.263145\pi\)
−0.975787 + 0.218721i \(0.929812\pi\)
\(948\) 10.1086 17.5086i 0.328312 0.568653i
\(949\) −3.22414 + 5.58438i −0.104660 + 0.181277i
\(950\) 6.02649 + 10.4382i 0.195525 + 0.338659i
\(951\) 24.7442i 0.802385i
\(952\) −25.7995 5.82411i −0.836167 0.188761i
\(953\) 3.41341i 0.110571i 0.998471 + 0.0552856i \(0.0176069\pi\)
−0.998471 + 0.0552856i \(0.982393\pi\)
\(954\) −3.13825 + 1.81187i −0.101605 + 0.0586615i
\(955\) −20.4264 11.7932i −0.660984 0.381619i
\(956\) 2.88665 4.99982i 0.0933609 0.161706i
\(957\) 41.4249 + 71.7500i 1.33908 + 2.31935i
\(958\) 24.7697 0.800272
\(959\) −1.81843 + 8.05523i −0.0587201 + 0.260117i
\(960\) 35.8236i 1.15620i
\(961\) −3.97173 6.87924i −0.128120 0.221911i
\(962\) −0.773556 + 1.33984i −0.0249404 + 0.0431981i
\(963\) 14.7801 + 8.53329i 0.476282 + 0.274981i
\(964\) 3.39729 + 5.88428i 0.109419 + 0.189520i
\(965\) −14.9367 −0.480829
\(966\) 11.2273 33.1667i 0.361234 1.06712i
\(967\) −5.71094 −0.183651 −0.0918257 0.995775i \(-0.529270\pi\)
−0.0918257 + 0.995775i \(0.529270\pi\)
\(968\) −23.1643 40.1218i −0.744530 1.28956i
\(969\) −38.0184 21.9499i −1.22133 0.705134i
\(970\) −12.1278 + 21.0060i −0.389401 + 0.674463i
\(971\) 11.3971 + 19.7403i 0.365750 + 0.633497i 0.988896 0.148608i \(-0.0474793\pi\)
−0.623146 + 0.782105i \(0.714146\pi\)
\(972\) 16.5307i 0.530222i
\(973\) 16.5251 5.14036i 0.529772 0.164792i
\(974\) 1.01602 0.0325553
\(975\) 2.69627 + 4.67007i 0.0863496 + 0.149562i
\(976\) −7.01197 + 12.1451i −0.224448 + 0.388755i
\(977\) −4.00002 2.30941i −0.127972 0.0738847i 0.434647 0.900601i \(-0.356873\pi\)
−0.562619 + 0.826716i \(0.690206\pi\)
\(978\) −54.8966 + 31.6945i −1.75540 + 1.01348i
\(979\) 54.5389i 1.74307i
\(980\) −7.49167 + 5.16006i −0.239313 + 0.164832i
\(981\) 23.8439i 0.761276i
\(982\) 4.37564 + 7.57883i 0.139632 + 0.241850i
\(983\) −17.9493 + 31.0891i −0.572494 + 0.991589i 0.423815 + 0.905749i \(0.360691\pi\)
−0.996309 + 0.0858399i \(0.972643\pi\)
\(984\) 39.2653 68.0094i 1.25173 2.16806i
\(985\) 16.4285 + 28.4549i 0.523454 + 0.906649i
\(986\) 23.9757 0.763543
\(987\) 3.76562 + 12.1056i 0.119861 + 0.385326i
\(988\) 4.55438i 0.144894i
\(989\) 30.1171 + 21.8658i 0.957668 + 0.695291i
\(990\) −26.5052 15.3028i −0.842390 0.486354i
\(991\) −22.6483 + 39.2281i −0.719448 + 1.24612i 0.241770 + 0.970334i \(0.422272\pi\)
−0.961219 + 0.275788i \(0.911061\pi\)
\(992\) −16.4836 + 9.51679i −0.523354 + 0.302158i
\(993\) 22.7474i 0.721868i
\(994\) 3.37957 3.65971i 0.107193 0.116079i
\(995\) 24.6860 0.782597
\(996\) −18.1570 + 10.4829i −0.575327 + 0.332165i
\(997\) 19.7511 + 11.4033i 0.625524 + 0.361146i 0.779016 0.627003i \(-0.215719\pi\)
−0.153493 + 0.988150i \(0.549052\pi\)
\(998\) −18.7941 + 32.5523i −0.594916 + 1.03043i
\(999\) −0.110020 0.190560i −0.00348087 0.00602904i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.2.g.a.45.6 yes 28
7.3 odd 6 1127.2.c.c.1126.17 28
7.4 even 3 1127.2.c.c.1126.18 28
7.5 odd 6 inner 161.2.g.a.68.5 yes 28
23.22 odd 2 inner 161.2.g.a.45.5 28
161.45 even 6 1127.2.c.c.1126.19 28
161.68 even 6 inner 161.2.g.a.68.6 yes 28
161.137 odd 6 1127.2.c.c.1126.20 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.g.a.45.5 28 23.22 odd 2 inner
161.2.g.a.45.6 yes 28 1.1 even 1 trivial
161.2.g.a.68.5 yes 28 7.5 odd 6 inner
161.2.g.a.68.6 yes 28 161.68 even 6 inner
1127.2.c.c.1126.17 28 7.3 odd 6
1127.2.c.c.1126.18 28 7.4 even 3
1127.2.c.c.1126.19 28 161.45 even 6
1127.2.c.c.1126.20 28 161.137 odd 6