Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [161,2,Mod(45,161)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(161, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("161.45");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.g (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.28559147254\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45.1 | −1.23299 | − | 2.13559i | 0.854402 | + | 0.493289i | −2.04051 | + | 3.53426i | −1.24346 | − | 2.15373i | − | 2.43287i | −2.57635 | + | 0.602017i | 5.13171 | −1.01333 | − | 1.75514i | −3.06632 | + | 5.31103i | |||
45.2 | −1.23299 | − | 2.13559i | 0.854402 | + | 0.493289i | −2.04051 | + | 3.53426i | 1.24346 | + | 2.15373i | − | 2.43287i | 2.57635 | − | 0.602017i | 5.13171 | −1.01333 | − | 1.75514i | 3.06632 | − | 5.31103i | |||
45.3 | −1.06863 | − | 1.85092i | −2.39984 | − | 1.38555i | −1.28394 | + | 2.22386i | −1.92742 | − | 3.33839i | 5.92256i | 2.36835 | − | 1.17938i | 1.21373 | 2.33949 | + | 4.05212i | −4.11940 | + | 7.13501i | ||||
45.4 | −1.06863 | − | 1.85092i | −2.39984 | − | 1.38555i | −1.28394 | + | 2.22386i | 1.92742 | + | 3.33839i | 5.92256i | −2.36835 | + | 1.17938i | 1.21373 | 2.33949 | + | 4.05212i | 4.11940 | − | 7.13501i | ||||
45.5 | −0.559952 | − | 0.969865i | 2.13402 | + | 1.23207i | 0.372908 | − | 0.645896i | −0.871219 | − | 1.50900i | − | 2.75961i | −0.785854 | − | 2.52635i | −3.07505 | 1.53601 | + | 2.66045i | −0.975681 | + | 1.68993i | |||
45.6 | −0.559952 | − | 0.969865i | 2.13402 | + | 1.23207i | 0.372908 | − | 0.645896i | 0.871219 | + | 1.50900i | − | 2.75961i | 0.785854 | + | 2.52635i | −3.07505 | 1.53601 | + | 2.66045i | 0.975681 | − | 1.68993i | |||
45.7 | −0.304604 | − | 0.527589i | −1.12858 | − | 0.651588i | 0.814433 | − | 1.41064i | −0.594638 | − | 1.02994i | 0.793904i | −2.44810 | + | 1.00340i | −2.21073 | −0.650867 | − | 1.12733i | −0.362258 | + | 0.627449i | ||||
45.8 | −0.304604 | − | 0.527589i | −1.12858 | − | 0.651588i | 0.814433 | − | 1.41064i | 0.594638 | + | 1.02994i | 0.793904i | 2.44810 | − | 1.00340i | −2.21073 | −0.650867 | − | 1.12733i | 0.362258 | − | 0.627449i | ||||
45.9 | 0.292153 | + | 0.506024i | 0.510598 | + | 0.294794i | 0.829293 | − | 1.43638i | −1.76663 | − | 3.05989i | 0.344500i | 2.22044 | + | 1.43862i | 2.13773 | −1.32619 | − | 2.29703i | 1.03225 | − | 1.78791i | ||||
45.10 | 0.292153 | + | 0.506024i | 0.510598 | + | 0.294794i | 0.829293 | − | 1.43638i | 1.76663 | + | 3.05989i | 0.344500i | −2.22044 | − | 1.43862i | 2.13773 | −1.32619 | − | 2.29703i | −1.03225 | + | 1.78791i | ||||
45.11 | 0.724735 | + | 1.25528i | −2.07526 | − | 1.19815i | −0.0504829 | + | 0.0874389i | −1.26781 | − | 2.19591i | − | 3.47337i | −1.91509 | − | 1.82550i | 2.75259 | 1.37113 | + | 2.37487i | 1.83766 | − | 3.18291i | |||
45.12 | 0.724735 | + | 1.25528i | −2.07526 | − | 1.19815i | −0.0504829 | + | 0.0874389i | 1.26781 | + | 2.19591i | − | 3.47337i | 1.91509 | + | 1.82550i | 2.75259 | 1.37113 | + | 2.37487i | −1.83766 | + | 3.18291i | |||
45.13 | 1.14928 | + | 1.99062i | 0.604669 | + | 0.349106i | −1.64170 | + | 2.84351i | −0.630826 | − | 1.09262i | 1.60489i | −0.738016 | + | 2.54073i | −2.94999 | −1.25625 | − | 2.17589i | 1.44999 | − | 2.51146i | ||||
45.14 | 1.14928 | + | 1.99062i | 0.604669 | + | 0.349106i | −1.64170 | + | 2.84351i | 0.630826 | + | 1.09262i | 1.60489i | 0.738016 | − | 2.54073i | −2.94999 | −1.25625 | − | 2.17589i | −1.44999 | + | 2.51146i | ||||
68.1 | −1.23299 | + | 2.13559i | 0.854402 | − | 0.493289i | −2.04051 | − | 3.53426i | −1.24346 | + | 2.15373i | 2.43287i | −2.57635 | − | 0.602017i | 5.13171 | −1.01333 | + | 1.75514i | −3.06632 | − | 5.31103i | ||||
68.2 | −1.23299 | + | 2.13559i | 0.854402 | − | 0.493289i | −2.04051 | − | 3.53426i | 1.24346 | − | 2.15373i | 2.43287i | 2.57635 | + | 0.602017i | 5.13171 | −1.01333 | + | 1.75514i | 3.06632 | + | 5.31103i | ||||
68.3 | −1.06863 | + | 1.85092i | −2.39984 | + | 1.38555i | −1.28394 | − | 2.22386i | −1.92742 | + | 3.33839i | − | 5.92256i | 2.36835 | + | 1.17938i | 1.21373 | 2.33949 | − | 4.05212i | −4.11940 | − | 7.13501i | |||
68.4 | −1.06863 | + | 1.85092i | −2.39984 | + | 1.38555i | −1.28394 | − | 2.22386i | 1.92742 | − | 3.33839i | − | 5.92256i | −2.36835 | − | 1.17938i | 1.21373 | 2.33949 | − | 4.05212i | 4.11940 | + | 7.13501i | |||
68.5 | −0.559952 | + | 0.969865i | 2.13402 | − | 1.23207i | 0.372908 | + | 0.645896i | −0.871219 | + | 1.50900i | 2.75961i | −0.785854 | + | 2.52635i | −3.07505 | 1.53601 | − | 2.66045i | −0.975681 | − | 1.68993i | ||||
68.6 | −0.559952 | + | 0.969865i | 2.13402 | − | 1.23207i | 0.372908 | + | 0.645896i | 0.871219 | − | 1.50900i | 2.75961i | 0.785854 | − | 2.52635i | −3.07505 | 1.53601 | − | 2.66045i | 0.975681 | + | 1.68993i | ||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
23.b | odd | 2 | 1 | inner |
161.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 161.2.g.a | ✓ | 28 |
7.c | even | 3 | 1 | 1127.2.c.c | 28 | ||
7.d | odd | 6 | 1 | inner | 161.2.g.a | ✓ | 28 |
7.d | odd | 6 | 1 | 1127.2.c.c | 28 | ||
23.b | odd | 2 | 1 | inner | 161.2.g.a | ✓ | 28 |
161.f | odd | 6 | 1 | 1127.2.c.c | 28 | ||
161.g | even | 6 | 1 | inner | 161.2.g.a | ✓ | 28 |
161.g | even | 6 | 1 | 1127.2.c.c | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
161.2.g.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
161.2.g.a | ✓ | 28 | 7.d | odd | 6 | 1 | inner |
161.2.g.a | ✓ | 28 | 23.b | odd | 2 | 1 | inner |
161.2.g.a | ✓ | 28 | 161.g | even | 6 | 1 | inner |
1127.2.c.c | 28 | 7.c | even | 3 | 1 | ||
1127.2.c.c | 28 | 7.d | odd | 6 | 1 | ||
1127.2.c.c | 28 | 161.f | odd | 6 | 1 | ||
1127.2.c.c | 28 | 161.g | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(161, [\chi])\).