Properties

Label 161.2.g.a
Level $161$
Weight $2$
Character orbit 161.g
Analytic conductor $1.286$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,2,Mod(45,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.g (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28559147254\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 28 q - 4 q^{2} - 6 q^{3} - 12 q^{4} + 12 q^{8} + 4 q^{9} + 6 q^{12} + 22 q^{18} - 36 q^{24} - 22 q^{25} - 12 q^{26} - 44 q^{29} - 6 q^{32} - 10 q^{35} - 16 q^{39} + 18 q^{46} - 36 q^{47} + 28 q^{49} + 84 q^{50}+ \cdots - 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
45.1 −1.23299 2.13559i 0.854402 + 0.493289i −2.04051 + 3.53426i −1.24346 2.15373i 2.43287i −2.57635 + 0.602017i 5.13171 −1.01333 1.75514i −3.06632 + 5.31103i
45.2 −1.23299 2.13559i 0.854402 + 0.493289i −2.04051 + 3.53426i 1.24346 + 2.15373i 2.43287i 2.57635 0.602017i 5.13171 −1.01333 1.75514i 3.06632 5.31103i
45.3 −1.06863 1.85092i −2.39984 1.38555i −1.28394 + 2.22386i −1.92742 3.33839i 5.92256i 2.36835 1.17938i 1.21373 2.33949 + 4.05212i −4.11940 + 7.13501i
45.4 −1.06863 1.85092i −2.39984 1.38555i −1.28394 + 2.22386i 1.92742 + 3.33839i 5.92256i −2.36835 + 1.17938i 1.21373 2.33949 + 4.05212i 4.11940 7.13501i
45.5 −0.559952 0.969865i 2.13402 + 1.23207i 0.372908 0.645896i −0.871219 1.50900i 2.75961i −0.785854 2.52635i −3.07505 1.53601 + 2.66045i −0.975681 + 1.68993i
45.6 −0.559952 0.969865i 2.13402 + 1.23207i 0.372908 0.645896i 0.871219 + 1.50900i 2.75961i 0.785854 + 2.52635i −3.07505 1.53601 + 2.66045i 0.975681 1.68993i
45.7 −0.304604 0.527589i −1.12858 0.651588i 0.814433 1.41064i −0.594638 1.02994i 0.793904i −2.44810 + 1.00340i −2.21073 −0.650867 1.12733i −0.362258 + 0.627449i
45.8 −0.304604 0.527589i −1.12858 0.651588i 0.814433 1.41064i 0.594638 + 1.02994i 0.793904i 2.44810 1.00340i −2.21073 −0.650867 1.12733i 0.362258 0.627449i
45.9 0.292153 + 0.506024i 0.510598 + 0.294794i 0.829293 1.43638i −1.76663 3.05989i 0.344500i 2.22044 + 1.43862i 2.13773 −1.32619 2.29703i 1.03225 1.78791i
45.10 0.292153 + 0.506024i 0.510598 + 0.294794i 0.829293 1.43638i 1.76663 + 3.05989i 0.344500i −2.22044 1.43862i 2.13773 −1.32619 2.29703i −1.03225 + 1.78791i
45.11 0.724735 + 1.25528i −2.07526 1.19815i −0.0504829 + 0.0874389i −1.26781 2.19591i 3.47337i −1.91509 1.82550i 2.75259 1.37113 + 2.37487i 1.83766 3.18291i
45.12 0.724735 + 1.25528i −2.07526 1.19815i −0.0504829 + 0.0874389i 1.26781 + 2.19591i 3.47337i 1.91509 + 1.82550i 2.75259 1.37113 + 2.37487i −1.83766 + 3.18291i
45.13 1.14928 + 1.99062i 0.604669 + 0.349106i −1.64170 + 2.84351i −0.630826 1.09262i 1.60489i −0.738016 + 2.54073i −2.94999 −1.25625 2.17589i 1.44999 2.51146i
45.14 1.14928 + 1.99062i 0.604669 + 0.349106i −1.64170 + 2.84351i 0.630826 + 1.09262i 1.60489i 0.738016 2.54073i −2.94999 −1.25625 2.17589i −1.44999 + 2.51146i
68.1 −1.23299 + 2.13559i 0.854402 0.493289i −2.04051 3.53426i −1.24346 + 2.15373i 2.43287i −2.57635 0.602017i 5.13171 −1.01333 + 1.75514i −3.06632 5.31103i
68.2 −1.23299 + 2.13559i 0.854402 0.493289i −2.04051 3.53426i 1.24346 2.15373i 2.43287i 2.57635 + 0.602017i 5.13171 −1.01333 + 1.75514i 3.06632 + 5.31103i
68.3 −1.06863 + 1.85092i −2.39984 + 1.38555i −1.28394 2.22386i −1.92742 + 3.33839i 5.92256i 2.36835 + 1.17938i 1.21373 2.33949 4.05212i −4.11940 7.13501i
68.4 −1.06863 + 1.85092i −2.39984 + 1.38555i −1.28394 2.22386i 1.92742 3.33839i 5.92256i −2.36835 1.17938i 1.21373 2.33949 4.05212i 4.11940 + 7.13501i
68.5 −0.559952 + 0.969865i 2.13402 1.23207i 0.372908 + 0.645896i −0.871219 + 1.50900i 2.75961i −0.785854 + 2.52635i −3.07505 1.53601 2.66045i −0.975681 1.68993i
68.6 −0.559952 + 0.969865i 2.13402 1.23207i 0.372908 + 0.645896i 0.871219 1.50900i 2.75961i 0.785854 2.52635i −3.07505 1.53601 2.66045i 0.975681 + 1.68993i
See all 28 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 45.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner
23.b odd 2 1 inner
161.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 161.2.g.a 28
7.c even 3 1 1127.2.c.c 28
7.d odd 6 1 inner 161.2.g.a 28
7.d odd 6 1 1127.2.c.c 28
23.b odd 2 1 inner 161.2.g.a 28
161.f odd 6 1 1127.2.c.c 28
161.g even 6 1 inner 161.2.g.a 28
161.g even 6 1 1127.2.c.c 28
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.2.g.a 28 1.a even 1 1 trivial
161.2.g.a 28 7.d odd 6 1 inner
161.2.g.a 28 23.b odd 2 1 inner
161.2.g.a 28 161.g even 6 1 inner
1127.2.c.c 28 7.c even 3 1
1127.2.c.c 28 7.d odd 6 1
1127.2.c.c 28 161.f odd 6 1
1127.2.c.c 28 161.g even 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(161, [\chi])\).