Properties

Label 161.2.g.a.68.12
Level $161$
Weight $2$
Character 161.68
Analytic conductor $1.286$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,2,Mod(45,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.g (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28559147254\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 68.12
Character \(\chi\) \(=\) 161.68
Dual form 161.2.g.a.45.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.724735 - 1.25528i) q^{2} +(-2.07526 + 1.19815i) q^{3} +(-0.0504829 - 0.0874389i) q^{4} +(1.26781 - 2.19591i) q^{5} +3.47337i q^{6} +(1.91509 - 1.82550i) q^{7} +2.75259 q^{8} +(1.37113 - 2.37487i) q^{9} +(-1.83766 - 3.18291i) q^{10} +(0.954149 - 0.550878i) q^{11} +(0.209530 + 0.120972i) q^{12} +0.792485i q^{13} +(-0.903575 - 3.72697i) q^{14} +6.07612i q^{15} +(2.09587 - 3.63015i) q^{16} +(-1.96566 - 3.40463i) q^{17} +(-1.98742 - 3.44231i) q^{18} +(-3.54203 + 6.13498i) q^{19} -0.256011 q^{20} +(-1.78708 + 6.08294i) q^{21} -1.59696i q^{22} +(-0.0779482 + 4.79520i) q^{23} +(-5.71235 + 3.29803i) q^{24} +(-0.714694 - 1.23789i) q^{25} +(0.994790 + 0.574342i) q^{26} -0.617607i q^{27} +(-0.256299 - 0.0752969i) q^{28} +1.18102 q^{29} +(7.62723 + 4.40358i) q^{30} +(-4.22784 + 2.44094i) q^{31} +(-0.285306 - 0.494164i) q^{32} +(-1.32007 + 2.28643i) q^{33} -5.69834 q^{34} +(-1.58066 - 6.51976i) q^{35} -0.276875 q^{36} +(-9.91723 - 5.72572i) q^{37} +(5.13407 + 8.89247i) q^{38} +(-0.949517 - 1.64461i) q^{39} +(3.48977 - 6.04446i) q^{40} -0.854610i q^{41} +(6.34063 + 6.65181i) q^{42} +4.03573i q^{43} +(-0.0963363 - 0.0556198i) q^{44} +(-3.47668 - 6.02178i) q^{45} +(5.96282 + 3.57310i) q^{46} +(9.87089 + 5.69896i) q^{47} +10.0447i q^{48} +(0.335124 - 6.99197i) q^{49} -2.07186 q^{50} +(8.15852 + 4.71032i) q^{51} +(0.0692940 - 0.0400069i) q^{52} +(3.14173 - 1.81388i) q^{53} +(-0.775269 - 0.447602i) q^{54} -2.79364i q^{55} +(5.27146 - 5.02485i) q^{56} -16.9756i q^{57} +(0.855928 - 1.48251i) q^{58} +(-4.20283 + 2.42650i) q^{59} +(0.531289 - 0.306740i) q^{60} +(-5.00067 + 8.66142i) q^{61} +7.07616i q^{62} +(-1.70948 - 7.05109i) q^{63} +7.55639 q^{64} +(1.74023 + 1.00472i) q^{65} +(1.91340 + 3.31411i) q^{66} +(-4.47989 + 2.58647i) q^{67} +(-0.198465 + 0.343751i) q^{68} +(-5.58361 - 10.0447i) q^{69} +(-9.32967 - 2.74093i) q^{70} -10.5645 q^{71} +(3.77417 - 6.53706i) q^{72} +(8.12777 - 4.69257i) q^{73} +(-14.3747 + 8.29926i) q^{74} +(2.96635 + 1.71262i) q^{75} +0.715248 q^{76} +(0.821653 - 2.79677i) q^{77} -2.75259 q^{78} +(-5.61540 - 3.24205i) q^{79} +(-5.31433 - 9.20470i) q^{80} +(4.85339 + 8.40631i) q^{81} +(-1.07277 - 0.619366i) q^{82} -5.50430 q^{83} +(0.622103 - 0.150824i) q^{84} -9.96836 q^{85} +(5.06597 + 2.92484i) q^{86} +(-2.45092 + 1.41504i) q^{87} +(2.62638 - 1.51634i) q^{88} +(-0.261287 + 0.452563i) q^{89} -10.0787 q^{90} +(1.44668 + 1.51768i) q^{91} +(0.423222 - 0.235260i) q^{92} +(5.84924 - 10.1312i) q^{93} +(14.3076 - 8.26048i) q^{94} +(8.98126 + 15.5560i) q^{95} +(1.18417 + 0.683679i) q^{96} +11.9199 q^{97} +(-8.53400 - 5.48801i) q^{98} -3.02131i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{2} - 6 q^{3} - 12 q^{4} + 12 q^{8} + 4 q^{9} + 6 q^{12} + 22 q^{18} - 36 q^{24} - 22 q^{25} - 12 q^{26} - 44 q^{29} - 6 q^{32} - 10 q^{35} - 16 q^{39} + 18 q^{46} - 36 q^{47} + 28 q^{49} + 84 q^{50}+ \cdots - 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.724735 1.25528i 0.512465 0.887616i −0.487430 0.873162i \(-0.662066\pi\)
0.999896 0.0144540i \(-0.00460102\pi\)
\(3\) −2.07526 + 1.19815i −1.19815 + 0.691753i −0.960143 0.279510i \(-0.909828\pi\)
−0.238009 + 0.971263i \(0.576495\pi\)
\(4\) −0.0504829 0.0874389i −0.0252414 0.0437195i
\(5\) 1.26781 2.19591i 0.566983 0.982043i −0.429879 0.902886i \(-0.641444\pi\)
0.996862 0.0791566i \(-0.0252227\pi\)
\(6\) 3.47337i 1.41800i
\(7\) 1.91509 1.82550i 0.723835 0.689973i
\(8\) 2.75259 0.973189
\(9\) 1.37113 2.37487i 0.457044 0.791624i
\(10\) −1.83766 3.18291i −0.581118 1.00653i
\(11\) 0.954149 0.550878i 0.287687 0.166096i −0.349211 0.937044i \(-0.613551\pi\)
0.636898 + 0.770948i \(0.280217\pi\)
\(12\) 0.209530 + 0.120972i 0.0604861 + 0.0349217i
\(13\) 0.792485i 0.219796i 0.993943 + 0.109898i \(0.0350524\pi\)
−0.993943 + 0.109898i \(0.964948\pi\)
\(14\) −0.903575 3.72697i −0.241490 0.996075i
\(15\) 6.07612i 1.56885i
\(16\) 2.09587 3.63015i 0.523967 0.907538i
\(17\) −1.96566 3.40463i −0.476743 0.825743i 0.522902 0.852393i \(-0.324849\pi\)
−0.999645 + 0.0266497i \(0.991516\pi\)
\(18\) −1.98742 3.44231i −0.468439 0.811360i
\(19\) −3.54203 + 6.13498i −0.812598 + 1.40746i 0.0984425 + 0.995143i \(0.468614\pi\)
−0.911040 + 0.412318i \(0.864719\pi\)
\(20\) −0.256011 −0.0572458
\(21\) −1.78708 + 6.08294i −0.389973 + 1.32741i
\(22\) 1.59696i 0.340474i
\(23\) −0.0779482 + 4.79520i −0.0162533 + 0.999868i
\(24\) −5.71235 + 3.29803i −1.16603 + 0.673207i
\(25\) −0.714694 1.23789i −0.142939 0.247577i
\(26\) 0.994790 + 0.574342i 0.195094 + 0.112638i
\(27\) 0.617607i 0.118859i
\(28\) −0.256299 0.0752969i −0.0484359 0.0142298i
\(29\) 1.18102 0.219310 0.109655 0.993970i \(-0.465025\pi\)
0.109655 + 0.993970i \(0.465025\pi\)
\(30\) 7.62723 + 4.40358i 1.39253 + 0.803980i
\(31\) −4.22784 + 2.44094i −0.759342 + 0.438407i −0.829060 0.559160i \(-0.811124\pi\)
0.0697172 + 0.997567i \(0.477790\pi\)
\(32\) −0.285306 0.494164i −0.0504354 0.0873567i
\(33\) −1.32007 + 2.28643i −0.229795 + 0.398016i
\(34\) −5.69834 −0.977257
\(35\) −1.58066 6.51976i −0.267181 1.10204i
\(36\) −0.276875 −0.0461458
\(37\) −9.91723 5.72572i −1.63038 0.941302i −0.983974 0.178311i \(-0.942937\pi\)
−0.646409 0.762991i \(-0.723730\pi\)
\(38\) 5.13407 + 8.89247i 0.832856 + 1.44255i
\(39\) −0.949517 1.64461i −0.152044 0.263349i
\(40\) 3.48977 6.04446i 0.551781 0.955714i
\(41\) 0.854610i 0.133468i −0.997771 0.0667338i \(-0.978742\pi\)
0.997771 0.0667338i \(-0.0212578\pi\)
\(42\) 6.34063 + 6.65181i 0.978380 + 1.02640i
\(43\) 4.03573i 0.615444i 0.951476 + 0.307722i \(0.0995666\pi\)
−0.951476 + 0.307722i \(0.900433\pi\)
\(44\) −0.0963363 0.0556198i −0.0145232 0.00838500i
\(45\) −3.47668 6.02178i −0.518273 0.897674i
\(46\) 5.96282 + 3.57310i 0.879169 + 0.526824i
\(47\) 9.87089 + 5.69896i 1.43982 + 0.831279i 0.997836 0.0657452i \(-0.0209425\pi\)
0.441981 + 0.897024i \(0.354276\pi\)
\(48\) 10.0447i 1.44982i
\(49\) 0.335124 6.99197i 0.0478749 0.998853i
\(50\) −2.07186 −0.293005
\(51\) 8.15852 + 4.71032i 1.14242 + 0.659577i
\(52\) 0.0692940 0.0400069i 0.00960935 0.00554796i
\(53\) 3.14173 1.81388i 0.431550 0.249155i −0.268457 0.963292i \(-0.586514\pi\)
0.700007 + 0.714136i \(0.253180\pi\)
\(54\) −0.775269 0.447602i −0.105501 0.0609109i
\(55\) 2.79364i 0.376694i
\(56\) 5.27146 5.02485i 0.704429 0.671474i
\(57\) 16.9756i 2.24847i
\(58\) 0.855928 1.48251i 0.112389 0.194663i
\(59\) −4.20283 + 2.42650i −0.547162 + 0.315904i −0.747976 0.663725i \(-0.768974\pi\)
0.200815 + 0.979629i \(0.435641\pi\)
\(60\) 0.531289 0.306740i 0.0685892 0.0396000i
\(61\) −5.00067 + 8.66142i −0.640270 + 1.10898i 0.345102 + 0.938565i \(0.387844\pi\)
−0.985372 + 0.170416i \(0.945489\pi\)
\(62\) 7.07616i 0.898673i
\(63\) −1.70948 7.05109i −0.215374 0.888354i
\(64\) 7.55639 0.944549
\(65\) 1.74023 + 1.00472i 0.215849 + 0.124620i
\(66\) 1.91340 + 3.31411i 0.235524 + 0.407939i
\(67\) −4.47989 + 2.58647i −0.547306 + 0.315987i −0.748035 0.663660i \(-0.769002\pi\)
0.200729 + 0.979647i \(0.435669\pi\)
\(68\) −0.198465 + 0.343751i −0.0240674 + 0.0416859i
\(69\) −5.58361 10.0447i −0.672188 1.20924i
\(70\) −9.32967 2.74093i −1.11511 0.327603i
\(71\) −10.5645 −1.25378 −0.626888 0.779110i \(-0.715671\pi\)
−0.626888 + 0.779110i \(0.715671\pi\)
\(72\) 3.77417 6.53706i 0.444791 0.770400i
\(73\) 8.12777 4.69257i 0.951283 0.549224i 0.0578041 0.998328i \(-0.481590\pi\)
0.893479 + 0.449104i \(0.148257\pi\)
\(74\) −14.3747 + 8.29926i −1.67103 + 0.964769i
\(75\) 2.96635 + 1.71262i 0.342525 + 0.197757i
\(76\) 0.715248 0.0820445
\(77\) 0.821653 2.79677i 0.0936360 0.318722i
\(78\) −2.75259 −0.311670
\(79\) −5.61540 3.24205i −0.631781 0.364759i 0.149660 0.988737i \(-0.452182\pi\)
−0.781442 + 0.623978i \(0.785515\pi\)
\(80\) −5.31433 9.20470i −0.594161 1.02912i
\(81\) 4.85339 + 8.40631i 0.539265 + 0.934035i
\(82\) −1.07277 0.619366i −0.118468 0.0683975i
\(83\) −5.50430 −0.604175 −0.302087 0.953280i \(-0.597683\pi\)
−0.302087 + 0.953280i \(0.597683\pi\)
\(84\) 0.622103 0.150824i 0.0678770 0.0164562i
\(85\) −9.96836 −1.08122
\(86\) 5.06597 + 2.92484i 0.546278 + 0.315394i
\(87\) −2.45092 + 1.41504i −0.262767 + 0.151708i
\(88\) 2.62638 1.51634i 0.279974 0.161643i
\(89\) −0.261287 + 0.452563i −0.0276964 + 0.0479716i −0.879541 0.475822i \(-0.842151\pi\)
0.851845 + 0.523794i \(0.175484\pi\)
\(90\) −10.0787 −1.06239
\(91\) 1.44668 + 1.51768i 0.151653 + 0.159096i
\(92\) 0.423222 0.235260i 0.0441239 0.0245275i
\(93\) 5.84924 10.1312i 0.606538 1.05055i
\(94\) 14.3076 8.26048i 1.47571 0.852003i
\(95\) 8.98126 + 15.5560i 0.921458 + 1.59601i
\(96\) 1.18417 + 0.683679i 0.120859 + 0.0697777i
\(97\) 11.9199 1.21028 0.605139 0.796120i \(-0.293118\pi\)
0.605139 + 0.796120i \(0.293118\pi\)
\(98\) −8.53400 5.48801i −0.862064 0.554372i
\(99\) 3.02131i 0.303653i
\(100\) −0.0721596 + 0.124984i −0.00721596 + 0.0124984i
\(101\) −2.64903 + 1.52942i −0.263588 + 0.152183i −0.625970 0.779847i \(-0.715297\pi\)
0.362382 + 0.932030i \(0.381963\pi\)
\(102\) 11.8255 6.82747i 1.17090 0.676021i
\(103\) 7.66969 13.2843i 0.755717 1.30894i −0.189299 0.981919i \(-0.560622\pi\)
0.945017 0.327022i \(-0.106045\pi\)
\(104\) 2.18139i 0.213903i
\(105\) 11.0919 + 11.6363i 1.08246 + 1.13559i
\(106\) 5.25833i 0.510734i
\(107\) 12.6702 + 7.31513i 1.22487 + 0.707181i 0.965953 0.258718i \(-0.0833001\pi\)
0.258920 + 0.965899i \(0.416633\pi\)
\(108\) −0.0540029 + 0.0311786i −0.00519643 + 0.00300016i
\(109\) −12.1657 + 7.02387i −1.16526 + 0.672764i −0.952559 0.304353i \(-0.901560\pi\)
−0.212703 + 0.977117i \(0.568227\pi\)
\(110\) −3.50679 2.02465i −0.334360 0.193043i
\(111\) 27.4411 2.60459
\(112\) −2.61306 10.7781i −0.246911 1.01843i
\(113\) 7.95026i 0.747898i −0.927449 0.373949i \(-0.878004\pi\)
0.927449 0.373949i \(-0.121996\pi\)
\(114\) −21.3091 12.3028i −1.99578 1.15226i
\(115\) 10.4310 + 6.25058i 0.972698 + 0.582869i
\(116\) −0.0596213 0.103267i −0.00553570 0.00958812i
\(117\) 1.88205 + 1.08660i 0.173996 + 0.100456i
\(118\) 7.03429i 0.647559i
\(119\) −9.97955 2.93185i −0.914824 0.268762i
\(120\) 16.7251i 1.52679i
\(121\) −4.89307 + 8.47504i −0.444824 + 0.770458i
\(122\) 7.24833 + 12.5545i 0.656233 + 1.13663i
\(123\) 1.02395 + 1.77354i 0.0923267 + 0.159914i
\(124\) 0.426867 + 0.246452i 0.0383338 + 0.0221320i
\(125\) 9.05373 0.809790
\(126\) −10.0900 2.96430i −0.898889 0.264081i
\(127\) −6.22806 −0.552651 −0.276325 0.961064i \(-0.589117\pi\)
−0.276325 + 0.961064i \(0.589117\pi\)
\(128\) 6.04700 10.4737i 0.534484 0.925753i
\(129\) −4.83542 8.37519i −0.425735 0.737395i
\(130\) 2.52241 1.45632i 0.221230 0.127727i
\(131\) 13.0632 + 7.54205i 1.14134 + 0.658952i 0.946762 0.321936i \(-0.104334\pi\)
0.194576 + 0.980887i \(0.437667\pi\)
\(132\) 0.266564 0.0232014
\(133\) 4.41608 + 18.2150i 0.382923 + 1.57944i
\(134\) 7.49802i 0.647730i
\(135\) −1.35621 0.783010i −0.116724 0.0673908i
\(136\) −5.41067 9.37156i −0.463961 0.803604i
\(137\) 2.81361 1.62444i 0.240383 0.138785i −0.374970 0.927037i \(-0.622347\pi\)
0.615353 + 0.788252i \(0.289014\pi\)
\(138\) −16.6555 0.270743i −1.41781 0.0230472i
\(139\) 15.7497i 1.33587i −0.744220 0.667934i \(-0.767179\pi\)
0.744220 0.667934i \(-0.232821\pi\)
\(140\) −0.490284 + 0.467348i −0.0414366 + 0.0394981i
\(141\) −27.3129 −2.30016
\(142\) −7.65646 + 13.2614i −0.642516 + 1.11287i
\(143\) 0.436563 + 0.756149i 0.0365072 + 0.0632323i
\(144\) −5.74743 9.95484i −0.478953 0.829570i
\(145\) 1.49731 2.59342i 0.124345 0.215372i
\(146\) 13.6035i 1.12583i
\(147\) 7.68197 + 14.9117i 0.633598 + 1.22990i
\(148\) 1.15620i 0.0950393i
\(149\) 5.41098 + 3.12403i 0.443285 + 0.255931i 0.704990 0.709217i \(-0.250951\pi\)
−0.261705 + 0.965148i \(0.584285\pi\)
\(150\) 4.29964 2.48240i 0.351064 0.202687i
\(151\) −8.61081 14.9144i −0.700738 1.21371i −0.968208 0.250148i \(-0.919521\pi\)
0.267470 0.963566i \(-0.413812\pi\)
\(152\) −9.74978 + 16.8871i −0.790811 + 1.36973i
\(153\) −10.7807 −0.871571
\(154\) −2.91525 3.05833i −0.234918 0.246447i
\(155\) 12.3786i 0.994276i
\(156\) −0.0958687 + 0.166049i −0.00767564 + 0.0132946i
\(157\) 2.92731 + 5.07024i 0.233624 + 0.404649i 0.958872 0.283839i \(-0.0916080\pi\)
−0.725248 + 0.688488i \(0.758275\pi\)
\(158\) −8.13935 + 4.69926i −0.647532 + 0.373853i
\(159\) −4.34660 + 7.52853i −0.344708 + 0.597051i
\(160\) −1.44686 −0.114384
\(161\) 8.60434 + 9.32552i 0.678117 + 0.734954i
\(162\) 14.0697 1.10542
\(163\) −2.38556 + 4.13192i −0.186852 + 0.323637i −0.944199 0.329376i \(-0.893162\pi\)
0.757347 + 0.653012i \(0.226495\pi\)
\(164\) −0.0747262 + 0.0431432i −0.00583513 + 0.00336892i
\(165\) 3.34720 + 5.79752i 0.260579 + 0.451337i
\(166\) −3.98916 + 6.90942i −0.309619 + 0.536275i
\(167\) 17.9409i 1.38831i −0.719824 0.694156i \(-0.755778\pi\)
0.719824 0.694156i \(-0.244222\pi\)
\(168\) −4.91911 + 16.7439i −0.379518 + 1.29182i
\(169\) 12.3720 0.951690
\(170\) −7.22442 + 12.5131i −0.554088 + 0.959708i
\(171\) 9.71319 + 16.8237i 0.742786 + 1.28654i
\(172\) 0.352880 0.203735i 0.0269069 0.0155347i
\(173\) −3.83381 2.21345i −0.291479 0.168286i 0.347130 0.937817i \(-0.387156\pi\)
−0.638609 + 0.769532i \(0.720490\pi\)
\(174\) 4.10212i 0.310981i
\(175\) −3.62846 1.06599i −0.274286 0.0805813i
\(176\) 4.61827i 0.348115i
\(177\) 5.81464 10.0712i 0.437055 0.757001i
\(178\) 0.378729 + 0.655977i 0.0283869 + 0.0491676i
\(179\) −6.72869 11.6544i −0.502926 0.871093i −0.999994 0.00338176i \(-0.998924\pi\)
0.497068 0.867711i \(-0.334410\pi\)
\(180\) −0.351025 + 0.607994i −0.0261639 + 0.0453172i
\(181\) −12.4838 −0.927917 −0.463958 0.885857i \(-0.653571\pi\)
−0.463958 + 0.885857i \(0.653571\pi\)
\(182\) 2.95357 0.716069i 0.218933 0.0530786i
\(183\) 23.9662i 1.77164i
\(184\) −0.214560 + 13.1992i −0.0158176 + 0.973061i
\(185\) −25.1464 + 14.5183i −1.84880 + 1.06740i
\(186\) −8.47830 14.6849i −0.621659 1.07675i
\(187\) −3.75107 2.16568i −0.274305 0.158370i
\(188\) 1.15080i 0.0839307i
\(189\) −1.12744 1.18277i −0.0820092 0.0860340i
\(190\) 26.0361 1.88886
\(191\) −9.37119 5.41046i −0.678076 0.391487i 0.121054 0.992646i \(-0.461373\pi\)
−0.799130 + 0.601159i \(0.794706\pi\)
\(192\) −15.6815 + 9.05370i −1.13171 + 0.653394i
\(193\) −3.58582 6.21083i −0.258113 0.447065i 0.707623 0.706590i \(-0.249767\pi\)
−0.965736 + 0.259525i \(0.916434\pi\)
\(194\) 8.63874 14.9627i 0.620225 1.07426i
\(195\) −4.81524 −0.344826
\(196\) −0.628289 + 0.323672i −0.0448778 + 0.0231194i
\(197\) −4.56103 −0.324960 −0.162480 0.986712i \(-0.551949\pi\)
−0.162480 + 0.986712i \(0.551949\pi\)
\(198\) −3.79258 2.18965i −0.269527 0.155612i
\(199\) −1.72033 2.97970i −0.121951 0.211226i 0.798586 0.601881i \(-0.205582\pi\)
−0.920537 + 0.390655i \(0.872248\pi\)
\(200\) −1.96726 3.40740i −0.139107 0.240940i
\(201\) 6.19796 10.7352i 0.437170 0.757201i
\(202\) 4.43369i 0.311953i
\(203\) 2.26176 2.15595i 0.158744 0.151318i
\(204\) 0.951162i 0.0665947i
\(205\) −1.87665 1.08348i −0.131071 0.0756739i
\(206\) −11.1170 19.2552i −0.774558 1.34157i
\(207\) 11.2811 + 6.75997i 0.784091 + 0.469851i
\(208\) 2.87684 + 1.66094i 0.199473 + 0.115166i
\(209\) 7.80491i 0.539877i
\(210\) 22.6455 5.49023i 1.56269 0.378862i
\(211\) 9.49610 0.653739 0.326869 0.945070i \(-0.394006\pi\)
0.326869 + 0.945070i \(0.394006\pi\)
\(212\) −0.317207 0.183140i −0.0217859 0.0125781i
\(213\) 21.9241 12.6579i 1.50221 0.867303i
\(214\) 18.3651 10.6031i 1.25541 0.724811i
\(215\) 8.86213 + 5.11655i 0.604392 + 0.348946i
\(216\) 1.70002i 0.115672i
\(217\) −3.64075 + 12.3925i −0.247150 + 0.841260i
\(218\) 20.3618i 1.37907i
\(219\) −11.2448 + 19.4766i −0.759854 + 1.31611i
\(220\) −0.244273 + 0.141031i −0.0164689 + 0.00950830i
\(221\) 2.69812 1.55776i 0.181495 0.104786i
\(222\) 19.8875 34.4462i 1.33476 2.31188i
\(223\) 15.3821i 1.03006i 0.857171 + 0.515032i \(0.172220\pi\)
−0.857171 + 0.515032i \(0.827780\pi\)
\(224\) −1.44848 0.425543i −0.0967807 0.0284328i
\(225\) −3.91976 −0.261318
\(226\) −9.97979 5.76184i −0.663846 0.383272i
\(227\) −12.3428 21.3784i −0.819222 1.41893i −0.906256 0.422729i \(-0.861072\pi\)
0.0870336 0.996205i \(-0.472261\pi\)
\(228\) −1.48432 + 0.856975i −0.0983018 + 0.0567545i
\(229\) −6.24731 + 10.8207i −0.412834 + 0.715050i −0.995198 0.0978783i \(-0.968794\pi\)
0.582364 + 0.812928i \(0.302128\pi\)
\(230\) 15.4059 8.56382i 1.01584 0.564682i
\(231\) 1.64582 + 6.78850i 0.108287 + 0.446650i
\(232\) 3.25087 0.213430
\(233\) 13.0198 22.5509i 0.852954 1.47736i −0.0255758 0.999673i \(-0.508142\pi\)
0.878530 0.477687i \(-0.158525\pi\)
\(234\) 2.72798 1.57500i 0.178334 0.102961i
\(235\) 25.0289 14.4504i 1.63270 0.942642i
\(236\) 0.424342 + 0.244994i 0.0276223 + 0.0159477i
\(237\) 15.5379 1.00929
\(238\) −10.9128 + 10.4023i −0.707373 + 0.674281i
\(239\) 25.2986 1.63643 0.818215 0.574912i \(-0.194964\pi\)
0.818215 + 0.574912i \(0.194964\pi\)
\(240\) 22.0572 + 12.7348i 1.42379 + 0.822025i
\(241\) 14.4451 + 25.0196i 0.930490 + 1.61166i 0.782486 + 0.622668i \(0.213951\pi\)
0.148004 + 0.988987i \(0.452715\pi\)
\(242\) 7.09236 + 12.2843i 0.455914 + 0.789666i
\(243\) −18.5395 10.7038i −1.18931 0.686647i
\(244\) 1.00979 0.0646454
\(245\) −14.9289 9.60041i −0.953773 0.613348i
\(246\) 2.96838 0.189257
\(247\) −4.86188 2.80701i −0.309354 0.178606i
\(248\) −11.6375 + 6.71893i −0.738984 + 0.426653i
\(249\) 11.4228 6.59498i 0.723893 0.417940i
\(250\) 6.56156 11.3650i 0.414989 0.718783i
\(251\) −2.54584 −0.160692 −0.0803459 0.996767i \(-0.525602\pi\)
−0.0803459 + 0.996767i \(0.525602\pi\)
\(252\) −0.530240 + 0.505434i −0.0334020 + 0.0318394i
\(253\) 2.56719 + 4.61827i 0.161398 + 0.290348i
\(254\) −4.51370 + 7.81795i −0.283214 + 0.490542i
\(255\) 20.6869 11.9436i 1.29547 0.747937i
\(256\) −1.20855 2.09328i −0.0755346 0.130830i
\(257\) 0.243730 + 0.140718i 0.0152035 + 0.00877774i 0.507582 0.861603i \(-0.330539\pi\)
−0.492379 + 0.870381i \(0.663873\pi\)
\(258\) −14.0176 −0.872698
\(259\) −29.4447 + 7.13862i −1.82960 + 0.443572i
\(260\) 0.202885i 0.0125824i
\(261\) 1.61934 2.80477i 0.100234 0.173611i
\(262\) 18.9347 10.9320i 1.16979 0.675380i
\(263\) −25.3650 + 14.6445i −1.56407 + 0.903018i −0.567235 + 0.823556i \(0.691987\pi\)
−0.996838 + 0.0794624i \(0.974680\pi\)
\(264\) −3.63362 + 6.29361i −0.223634 + 0.387345i
\(265\) 9.19862i 0.565067i
\(266\) 26.0654 + 7.65764i 1.59817 + 0.469520i
\(267\) 1.25225i 0.0766363i
\(268\) 0.452316 + 0.261145i 0.0276296 + 0.0159519i
\(269\) −1.57794 + 0.911022i −0.0962085 + 0.0555460i −0.547332 0.836915i \(-0.684357\pi\)
0.451124 + 0.892461i \(0.351023\pi\)
\(270\) −1.96579 + 1.13495i −0.119634 + 0.0690709i
\(271\) −2.06198 1.19048i −0.125256 0.0723167i 0.436063 0.899916i \(-0.356373\pi\)
−0.561319 + 0.827600i \(0.689706\pi\)
\(272\) −16.4791 −0.999191
\(273\) −4.82064 1.41624i −0.291759 0.0857145i
\(274\) 4.70916i 0.284491i
\(275\) −1.36385 0.787419i −0.0822432 0.0474831i
\(276\) −0.596418 + 0.995309i −0.0359002 + 0.0599105i
\(277\) −1.93244 3.34708i −0.116109 0.201107i 0.802113 0.597172i \(-0.203709\pi\)
−0.918223 + 0.396065i \(0.870376\pi\)
\(278\) −19.7702 11.4143i −1.18574 0.684586i
\(279\) 13.3874i 0.801485i
\(280\) −4.35093 17.9462i −0.260018 1.07249i
\(281\) 21.8412i 1.30294i −0.758675 0.651470i \(-0.774153\pi\)
0.758675 0.651470i \(-0.225847\pi\)
\(282\) −19.7946 + 34.2853i −1.17875 + 2.04166i
\(283\) −7.71377 13.3606i −0.458536 0.794208i 0.540348 0.841442i \(-0.318293\pi\)
−0.998884 + 0.0472339i \(0.984959\pi\)
\(284\) 0.533326 + 0.923748i 0.0316471 + 0.0548144i
\(285\) −37.2769 21.5218i −2.20809 1.27484i
\(286\) 1.26557 0.0748347
\(287\) −1.56009 1.63665i −0.0920891 0.0966086i
\(288\) −1.56477 −0.0922049
\(289\) 0.772346 1.33774i 0.0454321 0.0786907i
\(290\) −2.17031 3.75909i −0.127445 0.220741i
\(291\) −24.7368 + 14.2818i −1.45010 + 0.837213i
\(292\) −0.820626 0.473789i −0.0480235 0.0277264i
\(293\) 7.77950 0.454484 0.227242 0.973838i \(-0.427029\pi\)
0.227242 + 0.973838i \(0.427029\pi\)
\(294\) 24.2857 + 1.16401i 1.41637 + 0.0678865i
\(295\) 12.3054i 0.716448i
\(296\) −27.2981 15.7606i −1.58667 0.916065i
\(297\) −0.340226 0.589289i −0.0197419 0.0341940i
\(298\) 7.84306 4.52819i 0.454336 0.262311i
\(299\) −3.80012 0.0617728i −0.219767 0.00357241i
\(300\) 0.345833i 0.0199667i
\(301\) 7.36722 + 7.72879i 0.424640 + 0.445480i
\(302\) −24.9622 −1.43642
\(303\) 3.66494 6.34787i 0.210545 0.364675i
\(304\) 14.8473 + 25.7162i 0.851549 + 1.47493i
\(305\) 12.6798 + 21.9621i 0.726044 + 1.25755i
\(306\) −7.81318 + 13.5328i −0.446650 + 0.773620i
\(307\) 4.61716i 0.263515i −0.991282 0.131758i \(-0.957938\pi\)
0.991282 0.131758i \(-0.0420621\pi\)
\(308\) −0.286026 + 0.0693448i −0.0162979 + 0.00395129i
\(309\) 36.7578i 2.09108i
\(310\) 15.5386 + 8.97123i 0.882535 + 0.509532i
\(311\) 20.4727 11.8199i 1.16090 0.670246i 0.209381 0.977834i \(-0.432855\pi\)
0.951520 + 0.307588i \(0.0995217\pi\)
\(312\) −2.61364 4.52695i −0.147968 0.256288i
\(313\) 5.35830 9.28084i 0.302869 0.524584i −0.673916 0.738808i \(-0.735389\pi\)
0.976785 + 0.214224i \(0.0687223\pi\)
\(314\) 8.48609 0.478898
\(315\) −17.6509 5.18558i −0.994515 0.292174i
\(316\) 0.654672i 0.0368282i
\(317\) 5.84074 10.1165i 0.328049 0.568197i −0.654076 0.756429i \(-0.726942\pi\)
0.982125 + 0.188232i \(0.0602757\pi\)
\(318\) 6.30027 + 10.9124i 0.353302 + 0.611936i
\(319\) 1.12687 0.650599i 0.0630926 0.0364265i
\(320\) 9.58008 16.5932i 0.535543 0.927587i
\(321\) −35.0586 −1.95678
\(322\) 17.9420 4.04231i 0.999868 0.225269i
\(323\) 27.8497 1.54960
\(324\) 0.490026 0.848750i 0.0272237 0.0471528i
\(325\) 0.981007 0.566385i 0.0544165 0.0314174i
\(326\) 3.45780 + 5.98909i 0.191510 + 0.331705i
\(327\) 16.8313 29.1527i 0.930773 1.61215i
\(328\) 2.35239i 0.129889i
\(329\) 29.3071 7.10527i 1.61575 0.391726i
\(330\) 9.70334 0.534151
\(331\) −13.9316 + 24.1303i −0.765751 + 1.32632i 0.174098 + 0.984728i \(0.444299\pi\)
−0.939849 + 0.341591i \(0.889034\pi\)
\(332\) 0.277873 + 0.481290i 0.0152502 + 0.0264142i
\(333\) −27.1957 + 15.7014i −1.49032 + 0.860434i
\(334\) −22.5209 13.0024i −1.23229 0.711462i
\(335\) 13.1166i 0.716637i
\(336\) 18.3365 + 19.2364i 1.00034 + 1.04943i
\(337\) 3.40512i 0.185489i 0.995690 + 0.0927444i \(0.0295639\pi\)
−0.995690 + 0.0927444i \(0.970436\pi\)
\(338\) 8.96640 15.5303i 0.487708 0.844735i
\(339\) 9.52562 + 16.4989i 0.517360 + 0.896095i
\(340\) 0.503231 + 0.871622i 0.0272916 + 0.0472704i
\(341\) −2.68932 + 4.65805i −0.145635 + 0.252247i
\(342\) 28.1580 1.52261
\(343\) −12.1220 14.0020i −0.654528 0.756038i
\(344\) 11.1087i 0.598943i
\(345\) −29.1362 0.473623i −1.56864 0.0254990i
\(346\) −5.55700 + 3.20833i −0.298746 + 0.172481i
\(347\) −3.25674 5.64083i −0.174831 0.302816i 0.765272 0.643707i \(-0.222604\pi\)
−0.940103 + 0.340891i \(0.889271\pi\)
\(348\) 0.247459 + 0.142871i 0.0132652 + 0.00765868i
\(349\) 13.7110i 0.733931i 0.930234 + 0.366966i \(0.119603\pi\)
−0.930234 + 0.366966i \(0.880397\pi\)
\(350\) −3.96779 + 3.78217i −0.212087 + 0.202165i
\(351\) 0.489445 0.0261246
\(352\) −0.544448 0.314337i −0.0290192 0.0167542i
\(353\) −10.4296 + 6.02155i −0.555113 + 0.320495i −0.751182 0.660096i \(-0.770516\pi\)
0.196069 + 0.980590i \(0.437182\pi\)
\(354\) −8.42815 14.5980i −0.447951 0.775874i
\(355\) −13.3938 + 23.1987i −0.710869 + 1.23126i
\(356\) 0.0527622 0.00279639
\(357\) 24.2230 5.87266i 1.28201 0.310814i
\(358\) −19.5061 −1.03093
\(359\) −13.1144 7.57162i −0.692153 0.399615i 0.112265 0.993678i \(-0.464189\pi\)
−0.804418 + 0.594064i \(0.797523\pi\)
\(360\) −9.56989 16.5755i −0.504377 0.873607i
\(361\) −15.5920 27.0061i −0.820630 1.42137i
\(362\) −9.04748 + 15.6707i −0.475525 + 0.823634i
\(363\) 23.4505i 1.23083i
\(364\) 0.0596717 0.203113i 0.00312764 0.0106460i
\(365\) 23.7972i 1.24560i
\(366\) −30.0843 17.3692i −1.57253 0.907902i
\(367\) 15.2658 + 26.4412i 0.796870 + 1.38022i 0.921645 + 0.388034i \(0.126846\pi\)
−0.124775 + 0.992185i \(0.539821\pi\)
\(368\) 17.2439 + 10.3331i 0.898902 + 0.538648i
\(369\) −2.02959 1.17178i −0.105656 0.0610006i
\(370\) 42.0876i 2.18803i
\(371\) 2.70546 9.20895i 0.140460 0.478105i
\(372\) −1.18115 −0.0612396
\(373\) 5.76974 + 3.33116i 0.298746 + 0.172481i 0.641879 0.766806i \(-0.278155\pi\)
−0.343134 + 0.939287i \(0.611488\pi\)
\(374\) −5.43706 + 3.13909i −0.281144 + 0.162318i
\(375\) −18.7888 + 10.8477i −0.970251 + 0.560175i
\(376\) 27.1706 + 15.6869i 1.40122 + 0.808992i
\(377\) 0.935942i 0.0482035i
\(378\) −2.30180 + 0.558054i −0.118392 + 0.0287032i
\(379\) 24.8693i 1.27745i 0.769434 + 0.638726i \(0.220538\pi\)
−0.769434 + 0.638726i \(0.779462\pi\)
\(380\) 0.906799 1.57062i 0.0465178 0.0805712i
\(381\) 12.9248 7.46216i 0.662159 0.382298i
\(382\) −13.5833 + 7.84231i −0.694981 + 0.401247i
\(383\) 5.34052 9.25006i 0.272888 0.472656i −0.696712 0.717351i \(-0.745354\pi\)
0.969600 + 0.244695i \(0.0786878\pi\)
\(384\) 28.9809i 1.47892i
\(385\) −5.09978 5.35006i −0.259909 0.272665i
\(386\) −10.3951 −0.529096
\(387\) 9.58436 + 5.53353i 0.487200 + 0.281285i
\(388\) −0.601748 1.04226i −0.0305491 0.0529127i
\(389\) 24.9946 14.4306i 1.26728 0.731663i 0.292805 0.956172i \(-0.405411\pi\)
0.974472 + 0.224510i \(0.0720781\pi\)
\(390\) −3.48977 + 6.04446i −0.176712 + 0.306073i
\(391\) 16.4791 9.16035i 0.833383 0.463259i
\(392\) 0.922461 19.2461i 0.0465913 0.972073i
\(393\) −36.1461 −1.82333
\(394\) −3.30554 + 5.72536i −0.166531 + 0.288440i
\(395\) −14.2385 + 8.22062i −0.716418 + 0.413624i
\(396\) −0.264180 + 0.152524i −0.0132755 + 0.00766464i
\(397\) −0.919722 0.531001i −0.0461595 0.0266502i 0.476743 0.879043i \(-0.341817\pi\)
−0.522902 + 0.852393i \(0.675151\pi\)
\(398\) −4.98714 −0.249983
\(399\) −30.9888 32.5097i −1.55138 1.62752i
\(400\) −5.99162 −0.299581
\(401\) 21.0551 + 12.1562i 1.05144 + 0.607050i 0.923053 0.384674i \(-0.125686\pi\)
0.128389 + 0.991724i \(0.459019\pi\)
\(402\) −8.98376 15.5603i −0.448069 0.776079i
\(403\) −1.93441 3.35050i −0.0963599 0.166900i
\(404\) 0.267461 + 0.154419i 0.0133067 + 0.00768261i
\(405\) 24.6127 1.22302
\(406\) −1.06714 4.40163i −0.0529613 0.218449i
\(407\) −12.6167 −0.625386
\(408\) 22.4571 + 12.9656i 1.11179 + 0.641893i
\(409\) 0.535872 0.309386i 0.0264972 0.0152981i −0.486693 0.873573i \(-0.661797\pi\)
0.513190 + 0.858275i \(0.328464\pi\)
\(410\) −2.72015 + 1.57048i −0.134339 + 0.0775605i
\(411\) −3.89265 + 6.74227i −0.192010 + 0.332572i
\(412\) −1.54875 −0.0763016
\(413\) −3.61921 + 12.3192i −0.178090 + 0.606189i
\(414\) 16.6615 9.26174i 0.818866 0.455190i
\(415\) −6.97841 + 12.0870i −0.342557 + 0.593326i
\(416\) 0.391618 0.226101i 0.0192006 0.0110855i
\(417\) 18.8705 + 32.6846i 0.924091 + 1.60057i
\(418\) 9.79733 + 5.65649i 0.479203 + 0.276668i
\(419\) −13.8170 −0.675005 −0.337502 0.941325i \(-0.609582\pi\)
−0.337502 + 0.941325i \(0.609582\pi\)
\(420\) 0.457513 1.55730i 0.0223244 0.0759885i
\(421\) 1.48319i 0.0722863i −0.999347 0.0361432i \(-0.988493\pi\)
0.999347 0.0361432i \(-0.0115072\pi\)
\(422\) 6.88216 11.9203i 0.335018 0.580269i
\(423\) 27.0686 15.6281i 1.31612 0.759863i
\(424\) 8.64790 4.99287i 0.419979 0.242475i
\(425\) −2.80969 + 4.86653i −0.136290 + 0.236062i
\(426\) 36.6944i 1.77785i
\(427\) 6.23466 + 25.7161i 0.301716 + 1.24449i
\(428\) 1.47716i 0.0714010i
\(429\) −1.81196 1.04614i −0.0874823 0.0505079i
\(430\) 12.8454 7.41629i 0.619460 0.357645i
\(431\) 30.4482 17.5793i 1.46664 0.846763i 0.467333 0.884081i \(-0.345215\pi\)
0.999303 + 0.0373185i \(0.0118816\pi\)
\(432\) −2.24201 1.29442i −0.107869 0.0622780i
\(433\) −12.5373 −0.602505 −0.301252 0.953544i \(-0.597405\pi\)
−0.301252 + 0.953544i \(0.597405\pi\)
\(434\) 12.9175 + 13.5515i 0.620060 + 0.650491i
\(435\) 7.17603i 0.344064i
\(436\) 1.22832 + 0.709170i 0.0588258 + 0.0339631i
\(437\) −29.1423 17.4630i −1.39407 0.835366i
\(438\) 16.2990 + 28.2308i 0.778798 + 1.34892i
\(439\) 21.8276 + 12.6022i 1.04177 + 0.601469i 0.920335 0.391130i \(-0.127916\pi\)
0.121439 + 0.992599i \(0.461249\pi\)
\(440\) 7.68976i 0.366595i
\(441\) −16.1455 10.3828i −0.768835 0.494419i
\(442\) 4.51585i 0.214797i
\(443\) −4.17328 + 7.22834i −0.198279 + 0.343429i −0.947970 0.318359i \(-0.896868\pi\)
0.749692 + 0.661787i \(0.230202\pi\)
\(444\) −1.38531 2.39942i −0.0657437 0.113871i
\(445\) 0.662527 + 1.14753i 0.0314068 + 0.0543981i
\(446\) 19.3089 + 11.1480i 0.914302 + 0.527872i
\(447\) −14.9723 −0.708163
\(448\) 14.4712 13.7942i 0.683698 0.651713i
\(449\) 4.40940 0.208092 0.104046 0.994572i \(-0.466821\pi\)
0.104046 + 0.994572i \(0.466821\pi\)
\(450\) −2.84079 + 4.92040i −0.133916 + 0.231950i
\(451\) −0.470786 0.815425i −0.0221684 0.0383969i
\(452\) −0.695162 + 0.401352i −0.0326977 + 0.0188780i
\(453\) 35.7393 + 20.6341i 1.67918 + 0.969475i
\(454\) −35.7811 −1.67929
\(455\) 5.16681 1.25265i 0.242224 0.0587252i
\(456\) 46.7268i 2.18818i
\(457\) 27.4739 + 15.8620i 1.28517 + 0.741995i 0.977789 0.209590i \(-0.0672130\pi\)
0.307384 + 0.951585i \(0.400546\pi\)
\(458\) 9.05530 + 15.6842i 0.423126 + 0.732876i
\(459\) −2.10272 + 1.21401i −0.0981467 + 0.0566650i
\(460\) 0.0199556 1.22762i 0.000930435 0.0572383i
\(461\) 34.4607i 1.60500i −0.596654 0.802498i \(-0.703504\pi\)
0.596654 0.802498i \(-0.296496\pi\)
\(462\) 9.71424 + 2.85390i 0.451947 + 0.132776i
\(463\) −3.47708 −0.161594 −0.0807968 0.996731i \(-0.525746\pi\)
−0.0807968 + 0.996731i \(0.525746\pi\)
\(464\) 2.47527 4.28729i 0.114911 0.199032i
\(465\) −14.8315 25.6889i −0.687793 1.19129i
\(466\) −18.8718 32.6869i −0.874219 1.51419i
\(467\) −11.4593 + 19.8481i −0.530274 + 0.918461i 0.469103 + 0.883144i \(0.344577\pi\)
−0.999376 + 0.0353171i \(0.988756\pi\)
\(468\) 0.219419i 0.0101427i
\(469\) −3.85780 + 13.1313i −0.178137 + 0.606349i
\(470\) 41.8909i 1.93228i
\(471\) −12.1498 7.01471i −0.559835 0.323221i
\(472\) −11.5687 + 6.67918i −0.532492 + 0.307434i
\(473\) 2.22320 + 3.85069i 0.102223 + 0.177055i
\(474\) 11.2608 19.5044i 0.517228 0.895865i
\(475\) 10.1259 0.464607
\(476\) 0.247439 + 1.02061i 0.0113413 + 0.0467795i
\(477\) 9.94827i 0.455500i
\(478\) 18.3348 31.7568i 0.838614 1.45252i
\(479\) −3.86417 6.69295i −0.176559 0.305809i 0.764141 0.645049i \(-0.223163\pi\)
−0.940700 + 0.339241i \(0.889830\pi\)
\(480\) 3.00260 1.73355i 0.137049 0.0791255i
\(481\) 4.53755 7.85926i 0.206894 0.358351i
\(482\) 41.8755 1.90737
\(483\) −29.0296 9.04357i −1.32089 0.411497i
\(484\) 0.988064 0.0449120
\(485\) 15.1121 26.1750i 0.686207 1.18854i
\(486\) −26.8724 + 15.5148i −1.21896 + 0.703766i
\(487\) −1.40999 2.44217i −0.0638926 0.110665i 0.832310 0.554311i \(-0.187018\pi\)
−0.896202 + 0.443646i \(0.853685\pi\)
\(488\) −13.7648 + 23.8414i −0.623104 + 1.07925i
\(489\) 11.4331i 0.517021i
\(490\) −22.8707 + 11.7822i −1.03319 + 0.532264i
\(491\) −6.06047 −0.273505 −0.136753 0.990605i \(-0.543667\pi\)
−0.136753 + 0.990605i \(0.543667\pi\)
\(492\) 0.103384 0.179066i 0.00466091 0.00807294i
\(493\) −2.32149 4.02094i −0.104555 0.181094i
\(494\) −7.04715 + 4.06867i −0.317066 + 0.183058i
\(495\) −6.63454 3.83045i −0.298200 0.172166i
\(496\) 20.4636i 0.918843i
\(497\) −20.2319 + 19.2855i −0.907527 + 0.865071i
\(498\) 19.1185i 0.856719i
\(499\) 6.95553 12.0473i 0.311372 0.539313i −0.667287 0.744800i \(-0.732545\pi\)
0.978660 + 0.205488i \(0.0658780\pi\)
\(500\) −0.457058 0.791648i −0.0204403 0.0354036i
\(501\) 21.4960 + 37.2321i 0.960369 + 1.66341i
\(502\) −1.84506 + 3.19573i −0.0823490 + 0.142633i
\(503\) −18.7223 −0.834788 −0.417394 0.908726i \(-0.637056\pi\)
−0.417394 + 0.908726i \(0.637056\pi\)
\(504\) −4.70551 19.4088i −0.209600 0.864536i
\(505\) 7.75605i 0.345139i
\(506\) 7.65775 + 0.124480i 0.340429 + 0.00553383i
\(507\) −25.6750 + 14.8235i −1.14027 + 0.658334i
\(508\) 0.314410 + 0.544575i 0.0139497 + 0.0241616i
\(509\) 10.7975 + 6.23394i 0.478591 + 0.276315i 0.719829 0.694151i \(-0.244220\pi\)
−0.241238 + 0.970466i \(0.577553\pi\)
\(510\) 34.6238i 1.53317i
\(511\) 6.99912 23.8239i 0.309623 1.05391i
\(512\) 20.6845 0.914132
\(513\) 3.78901 + 2.18758i 0.167289 + 0.0965842i
\(514\) 0.353280 0.203966i 0.0155825 0.00899657i
\(515\) −19.4475 33.6840i −0.856957 1.48429i
\(516\) −0.488212 + 0.845608i −0.0214923 + 0.0372258i
\(517\) 12.5577 0.552288
\(518\) −12.3786 + 42.1349i −0.543885 + 1.85130i
\(519\) 10.6082 0.465648
\(520\) 4.79015 + 2.76559i 0.210062 + 0.121279i
\(521\) −4.25588 7.37140i −0.186453 0.322947i 0.757612 0.652705i \(-0.226366\pi\)
−0.944065 + 0.329758i \(0.893033\pi\)
\(522\) −2.34718 4.06544i −0.102733 0.177939i
\(523\) 2.22225 3.84905i 0.0971721 0.168307i −0.813341 0.581787i \(-0.802354\pi\)
0.910513 + 0.413480i \(0.135687\pi\)
\(524\) 1.52298i 0.0665315i
\(525\) 8.80721 2.13524i 0.384378 0.0931895i
\(526\) 42.4535i 1.85106i
\(527\) 16.6210 + 9.59614i 0.724022 + 0.418015i
\(528\) 5.53339 + 9.58411i 0.240810 + 0.417095i
\(529\) −22.9878 0.747554i −0.999472 0.0325024i
\(530\) −11.5468 6.66657i −0.501562 0.289577i
\(531\) 13.3082i 0.577528i
\(532\) 1.36976 1.30568i 0.0593867 0.0566085i
\(533\) 0.677266 0.0293356
\(534\) −1.57192 0.907548i −0.0680236 0.0392735i
\(535\) 32.1268 18.5484i 1.38896 0.801919i
\(536\) −12.3313 + 7.11950i −0.532632 + 0.307515i
\(537\) 27.9275 + 16.1240i 1.20516 + 0.695801i
\(538\) 2.64100i 0.113862i
\(539\) −3.53197 6.85599i −0.152133 0.295309i
\(540\) 0.158114i 0.00680416i
\(541\) −14.0046 + 24.2567i −0.602105 + 1.04288i 0.390396 + 0.920647i \(0.372338\pi\)
−0.992502 + 0.122230i \(0.960995\pi\)
\(542\) −2.98878 + 1.72557i −0.128379 + 0.0741196i
\(543\) 25.9072 14.9575i 1.11178 0.641889i
\(544\) −1.12163 + 1.94272i −0.0480895 + 0.0832934i
\(545\) 35.6198i 1.52578i
\(546\) −5.27146 + 5.02485i −0.225598 + 0.215044i
\(547\) −15.7527 −0.673539 −0.336769 0.941587i \(-0.609334\pi\)
−0.336769 + 0.941587i \(0.609334\pi\)
\(548\) −0.284079 0.164013i −0.0121352 0.00700628i
\(549\) 13.7132 + 23.7519i 0.585264 + 1.01371i
\(550\) −1.97686 + 1.14134i −0.0842936 + 0.0486669i
\(551\) −4.18321 + 7.24554i −0.178211 + 0.308670i
\(552\) −15.3694 27.6489i −0.654166 1.17682i
\(553\) −16.6723 + 4.04208i −0.708980 + 0.171887i
\(554\) −5.60203 −0.238007
\(555\) 34.7902 60.2583i 1.47676 2.55782i
\(556\) −1.37713 + 0.795088i −0.0584035 + 0.0337193i
\(557\) −5.53273 + 3.19432i −0.234429 + 0.135348i −0.612614 0.790383i \(-0.709882\pi\)
0.378185 + 0.925730i \(0.376548\pi\)
\(558\) 16.8050 + 9.70235i 0.711411 + 0.410733i
\(559\) −3.19826 −0.135272
\(560\) −26.9806 7.92651i −1.14014 0.334956i
\(561\) 10.3792 0.438212
\(562\) −27.4168 15.8291i −1.15651 0.667711i
\(563\) 1.50242 + 2.60227i 0.0633194 + 0.109672i 0.895947 0.444160i \(-0.146498\pi\)
−0.832628 + 0.553833i \(0.813165\pi\)
\(564\) 1.37883 + 2.38821i 0.0580593 + 0.100562i
\(565\) −17.4581 10.0794i −0.734468 0.424045i
\(566\) −22.3618 −0.939936
\(567\) 24.6404 + 7.23899i 1.03480 + 0.304009i
\(568\) −29.0798 −1.22016
\(569\) 6.67438 + 3.85345i 0.279804 + 0.161545i 0.633335 0.773878i \(-0.281686\pi\)
−0.353530 + 0.935423i \(0.615019\pi\)
\(570\) −54.0317 + 31.1952i −2.26314 + 1.30662i
\(571\) 17.3049 9.99099i 0.724188 0.418110i −0.0921042 0.995749i \(-0.529359\pi\)
0.816292 + 0.577639i \(0.196026\pi\)
\(572\) 0.0440779 0.0763451i 0.00184299 0.00319215i
\(573\) 25.9302 1.08325
\(574\) −3.18511 + 0.772204i −0.132944 + 0.0322312i
\(575\) 5.99162 3.33061i 0.249868 0.138896i
\(576\) 10.3608 17.9455i 0.431701 0.747728i
\(577\) −18.0693 + 10.4323i −0.752236 + 0.434304i −0.826501 0.562935i \(-0.809672\pi\)
0.0742654 + 0.997239i \(0.476339\pi\)
\(578\) −1.11949 1.93902i −0.0465647 0.0806525i
\(579\) 14.8830 + 8.59272i 0.618517 + 0.357101i
\(580\) −0.302355 −0.0125546
\(581\) −10.5412 + 10.0481i −0.437323 + 0.416864i
\(582\) 41.4021i 1.71617i
\(583\) 1.99845 3.46142i 0.0827674 0.143357i
\(584\) 22.3725 12.9167i 0.925779 0.534499i
\(585\) 4.77217 2.75522i 0.197305 0.113914i
\(586\) 5.63808 9.76545i 0.232907 0.403407i
\(587\) 6.07612i 0.250788i −0.992107 0.125394i \(-0.959980\pi\)
0.992107 0.125394i \(-0.0400196\pi\)
\(588\) 0.916053 1.42449i 0.0377774 0.0587449i
\(589\) 34.5836i 1.42499i
\(590\) 15.4467 + 8.91816i 0.635931 + 0.367155i
\(591\) 9.46532 5.46480i 0.389351 0.224792i
\(592\) −41.5704 + 24.0007i −1.70853 + 0.986423i
\(593\) −14.8284 8.56116i −0.608928 0.351565i 0.163618 0.986524i \(-0.447684\pi\)
−0.772546 + 0.634959i \(0.781017\pi\)
\(594\) −0.986296 −0.0404682
\(595\) −19.0903 + 18.1972i −0.782625 + 0.746013i
\(596\) 0.630840i 0.0258402i
\(597\) 7.14027 + 4.12244i 0.292232 + 0.168720i
\(598\) −2.83163 + 4.72544i −0.115794 + 0.193238i
\(599\) 12.6564 + 21.9216i 0.517128 + 0.895693i 0.999802 + 0.0198925i \(0.00633239\pi\)
−0.482674 + 0.875800i \(0.660334\pi\)
\(600\) 8.16516 + 4.71416i 0.333341 + 0.192455i
\(601\) 27.7769i 1.13304i 0.824047 + 0.566522i \(0.191711\pi\)
−0.824047 + 0.566522i \(0.808289\pi\)
\(602\) 15.0411 3.64659i 0.613028 0.148624i
\(603\) 14.1856i 0.577681i
\(604\) −0.869397 + 1.50584i −0.0353753 + 0.0612718i
\(605\) 12.4070 + 21.4895i 0.504415 + 0.873673i
\(606\) −5.31223 9.20105i −0.215795 0.373767i
\(607\) 11.2012 + 6.46699i 0.454641 + 0.262487i 0.709788 0.704415i \(-0.248791\pi\)
−0.255147 + 0.966902i \(0.582124\pi\)
\(608\) 4.04225 0.163935
\(609\) −2.11058 + 7.18409i −0.0855251 + 0.291114i
\(610\) 36.7581 1.48829
\(611\) −4.51634 + 7.82254i −0.182712 + 0.316466i
\(612\) 0.544243 + 0.942656i 0.0219997 + 0.0381046i
\(613\) 22.0172 12.7117i 0.889268 0.513419i 0.0155649 0.999879i \(-0.495045\pi\)
0.873703 + 0.486460i \(0.161712\pi\)
\(614\) −5.79582 3.34622i −0.233900 0.135042i
\(615\) 5.19271 0.209390
\(616\) 2.26168 7.69839i 0.0911256 0.310177i
\(617\) 23.3062i 0.938271i 0.883126 + 0.469135i \(0.155434\pi\)
−0.883126 + 0.469135i \(0.844566\pi\)
\(618\) 46.1413 + 26.6397i 1.85608 + 1.07161i
\(619\) −6.18042 10.7048i −0.248412 0.430262i 0.714673 0.699458i \(-0.246575\pi\)
−0.963085 + 0.269196i \(0.913242\pi\)
\(620\) 1.08237 0.624909i 0.0434692 0.0250969i
\(621\) 2.96155 + 0.0481414i 0.118843 + 0.00193185i
\(622\) 34.2653i 1.37391i
\(623\) 0.325764 + 1.34368i 0.0130515 + 0.0538333i
\(624\) −7.96025 −0.318665
\(625\) 15.0519 26.0706i 0.602076 1.04283i
\(626\) −7.76669 13.4523i −0.310419 0.537662i
\(627\) −9.35146 16.1972i −0.373461 0.646854i
\(628\) 0.295558 0.511921i 0.0117940 0.0204279i
\(629\) 45.0193i 1.79504i
\(630\) −19.3016 + 18.3986i −0.768993 + 0.733018i
\(631\) 33.1168i 1.31836i −0.751985 0.659180i \(-0.770903\pi\)
0.751985 0.659180i \(-0.229097\pi\)
\(632\) −15.4569 8.92405i −0.614843 0.354980i
\(633\) −19.7069 + 11.3778i −0.783278 + 0.452226i
\(634\) −8.46598 14.6635i −0.336227 0.582362i
\(635\) −7.89601 + 13.6763i −0.313344 + 0.542727i
\(636\) 0.877715 0.0348037
\(637\) 5.54103 + 0.265581i 0.219544 + 0.0105227i
\(638\) 1.88605i 0.0746693i
\(639\) −14.4853 + 25.0893i −0.573031 + 0.992519i
\(640\) −15.3329 26.5574i −0.606086 1.04977i
\(641\) −16.6053 + 9.58710i −0.655871 + 0.378668i −0.790702 0.612201i \(-0.790284\pi\)
0.134831 + 0.990869i \(0.456951\pi\)
\(642\) −25.4082 + 44.0082i −1.00278 + 1.73687i
\(643\) 33.6042 1.32522 0.662610 0.748965i \(-0.269449\pi\)
0.662610 + 0.748965i \(0.269449\pi\)
\(644\) 0.381041 1.22313i 0.0150151 0.0481982i
\(645\) −24.5216 −0.965538
\(646\) 20.1837 34.9592i 0.794117 1.37545i
\(647\) −40.7198 + 23.5096i −1.60086 + 0.924258i −0.609546 + 0.792751i \(0.708648\pi\)
−0.991315 + 0.131507i \(0.958019\pi\)
\(648\) 13.3594 + 23.1392i 0.524807 + 0.908993i
\(649\) −2.67341 + 4.63049i −0.104941 + 0.181763i
\(650\) 1.64192i 0.0644012i
\(651\) −7.29263 30.0799i −0.285821 1.17892i
\(652\) 0.481720 0.0188656
\(653\) −6.83605 + 11.8404i −0.267515 + 0.463350i −0.968220 0.250102i \(-0.919536\pi\)
0.700704 + 0.713452i \(0.252869\pi\)
\(654\) −24.3965 42.2560i −0.953978 1.65234i
\(655\) 33.1234 19.1238i 1.29424 0.747228i
\(656\) −3.10236 1.79115i −0.121127 0.0699327i
\(657\) 25.7366i 1.00408i
\(658\) 12.3208 41.9380i 0.480314 1.63491i
\(659\) 24.5743i 0.957280i 0.878011 + 0.478640i \(0.158870\pi\)
−0.878011 + 0.478640i \(0.841130\pi\)
\(660\) 0.337953 0.585351i 0.0131548 0.0227848i
\(661\) −7.59564 13.1560i −0.295436 0.511710i 0.679650 0.733536i \(-0.262132\pi\)
−0.975086 + 0.221826i \(0.928798\pi\)
\(662\) 20.1935 + 34.9761i 0.784841 + 1.35939i
\(663\) −3.73286 + 6.46550i −0.144972 + 0.251099i
\(664\) −15.1511 −0.587977
\(665\) 45.5973 + 13.3958i 1.76819 + 0.519469i
\(666\) 45.5176i 1.76377i
\(667\) −0.0920585 + 5.66323i −0.00356452 + 0.219281i
\(668\) −1.56874 + 0.905711i −0.0606963 + 0.0350430i
\(669\) −18.4301 31.9219i −0.712550 1.23417i
\(670\) 16.4650 + 9.50608i 0.636099 + 0.367252i
\(671\) 11.0190i 0.425385i
\(672\) 3.51584 0.852387i 0.135626 0.0328815i
\(673\) −0.379942 −0.0146457 −0.00732284 0.999973i \(-0.502331\pi\)
−0.00732284 + 0.999973i \(0.502331\pi\)
\(674\) 4.27437 + 2.46781i 0.164643 + 0.0950565i
\(675\) −0.764528 + 0.441400i −0.0294267 + 0.0169895i
\(676\) −0.624572 1.08179i −0.0240220 0.0416074i
\(677\) 14.8652 25.7473i 0.571317 0.989550i −0.425114 0.905140i \(-0.639766\pi\)
0.996431 0.0844105i \(-0.0269007\pi\)
\(678\) 27.6142 1.06052
\(679\) 22.8276 21.7597i 0.876042 0.835059i
\(680\) −27.4389 −1.05223
\(681\) 51.2291 + 29.5772i 1.96310 + 1.13340i
\(682\) 3.89810 + 6.75170i 0.149266 + 0.258536i
\(683\) −19.7761 34.2532i −0.756710 1.31066i −0.944520 0.328455i \(-0.893472\pi\)
0.187809 0.982206i \(-0.439861\pi\)
\(684\) 0.980700 1.69862i 0.0374980 0.0649484i
\(685\) 8.23794i 0.314756i
\(686\) −26.3617 + 5.06877i −1.00649 + 0.193527i
\(687\) 29.9409i 1.14232i
\(688\) 14.6503 + 8.45837i 0.558538 + 0.322472i
\(689\) 1.43747 + 2.48977i 0.0547633 + 0.0948528i
\(690\) −21.7106 + 36.2308i −0.826507 + 1.37928i
\(691\) 30.1036 + 17.3803i 1.14520 + 0.661180i 0.947712 0.319127i \(-0.103389\pi\)
0.197484 + 0.980306i \(0.436723\pi\)
\(692\) 0.446966i 0.0169911i
\(693\) −5.51539 5.78607i −0.209512 0.219795i
\(694\) −9.44109 −0.358379
\(695\) −34.5849 19.9676i −1.31188 0.757415i
\(696\) −6.74640 + 3.89504i −0.255722 + 0.147641i
\(697\) −2.90963 + 1.67987i −0.110210 + 0.0636298i
\(698\) 17.2111 + 9.93683i 0.651449 + 0.376114i
\(699\) 62.3987i 2.36013i
\(700\) 0.0899661 + 0.371083i 0.00340040 + 0.0140256i
\(701\) 2.33382i 0.0881471i 0.999028 + 0.0440735i \(0.0140336\pi\)
−0.999028 + 0.0440735i \(0.985966\pi\)
\(702\) 0.354718 0.614389i 0.0133880 0.0231886i
\(703\) 70.2543 40.5613i 2.64969 1.52980i
\(704\) 7.20992 4.16265i 0.271734 0.156886i
\(705\) −34.6276 + 59.9768i −1.30415 + 2.25886i
\(706\) 17.4561i 0.656970i
\(707\) −2.28117 + 7.76475i −0.0857924 + 0.292024i
\(708\) −1.17416 −0.0441276
\(709\) −23.0680 13.3183i −0.866339 0.500181i −0.000208831 1.00000i \(-0.500066\pi\)
−0.866130 + 0.499819i \(0.833400\pi\)
\(710\) 19.4139 + 33.6259i 0.728591 + 1.26196i
\(711\) −15.3989 + 8.89057i −0.577504 + 0.333422i
\(712\) −0.719219 + 1.24572i −0.0269539 + 0.0466854i
\(713\) −11.3753 20.4636i −0.426007 0.766368i
\(714\) 10.1834 34.6627i 0.381104 1.29722i
\(715\) 2.21392 0.0827958
\(716\) −0.679367 + 1.17670i −0.0253891 + 0.0439753i
\(717\) −52.5012 + 30.3116i −1.96069 + 1.13201i
\(718\) −19.0090 + 10.9748i −0.709409 + 0.409577i
\(719\) −24.0839 13.9049i −0.898179 0.518564i −0.0215704 0.999767i \(-0.506867\pi\)
−0.876609 + 0.481203i \(0.840200\pi\)
\(720\) −29.1466 −1.08623
\(721\) −9.56231 39.4416i −0.356119 1.46888i
\(722\) −45.2002 −1.68218
\(723\) −59.9546 34.6148i −2.22973 1.28734i
\(724\) 0.630220 + 1.09157i 0.0234219 + 0.0405680i
\(725\) −0.844069 1.46197i −0.0313479 0.0542962i
\(726\) −29.4370 16.9954i −1.09251 0.630760i
\(727\) −52.1718 −1.93494 −0.967472 0.252980i \(-0.918589\pi\)
−0.967472 + 0.252980i \(0.918589\pi\)
\(728\) 3.98212 + 4.17755i 0.147587 + 0.154830i
\(729\) 22.1786 0.821431
\(730\) −29.8721 17.2467i −1.10562 0.638328i
\(731\) 13.7402 7.93289i 0.508199 0.293409i
\(732\) −2.09558 + 1.20988i −0.0774549 + 0.0447186i
\(733\) 1.09544 1.89736i 0.0404610 0.0700806i −0.845086 0.534631i \(-0.820451\pi\)
0.885547 + 0.464550i \(0.153784\pi\)
\(734\) 44.2548 1.63347
\(735\) 42.4841 + 2.03626i 1.56705 + 0.0751084i
\(736\) 2.39185 1.32958i 0.0881649 0.0490089i
\(737\) −2.84966 + 4.93575i −0.104968 + 0.181811i
\(738\) −2.94183 + 1.69847i −0.108290 + 0.0625214i
\(739\) −18.1785 31.4861i −0.668707 1.15823i −0.978266 0.207354i \(-0.933515\pi\)
0.309559 0.950880i \(-0.399819\pi\)
\(740\) 2.53892 + 1.46585i 0.0933326 + 0.0538856i
\(741\) 13.4529 0.494204
\(742\) −9.59906 10.0702i −0.352392 0.369687i
\(743\) 9.56263i 0.350819i −0.984496 0.175410i \(-0.943875\pi\)
0.984496 0.175410i \(-0.0561249\pi\)
\(744\) 16.1006 27.8870i 0.590276 1.02239i
\(745\) 13.7202 7.92137i 0.502670 0.290217i
\(746\) 8.36307 4.82842i 0.306194 0.176781i
\(747\) −7.54712 + 13.0720i −0.276135 + 0.478279i
\(748\) 0.437319i 0.0159900i
\(749\) 37.6183 9.12025i 1.37454 0.333247i
\(750\) 31.4470i 1.14828i
\(751\) −17.9493 10.3630i −0.654978 0.378152i 0.135383 0.990793i \(-0.456773\pi\)
−0.790361 + 0.612642i \(0.790107\pi\)
\(752\) 41.3762 23.8886i 1.50883 0.871126i
\(753\) 5.28327 3.05030i 0.192533 0.111159i
\(754\) 1.17487 + 0.678310i 0.0427862 + 0.0247026i
\(755\) −43.6676 −1.58923
\(756\) −0.0465039 + 0.158292i −0.00169133 + 0.00575702i
\(757\) 30.8300i 1.12054i 0.828312 + 0.560268i \(0.189302\pi\)
−0.828312 + 0.560268i \(0.810698\pi\)
\(758\) 31.2179 + 18.0237i 1.13389 + 0.654650i
\(759\) −10.8610 6.50822i −0.394229 0.236233i
\(760\) 24.7218 + 42.8194i 0.896753 + 1.55322i
\(761\) 25.2474 + 14.5766i 0.915218 + 0.528402i 0.882106 0.471050i \(-0.156125\pi\)
0.0331119 + 0.999452i \(0.489458\pi\)
\(762\) 21.6324i 0.783658i
\(763\) −10.4763 + 35.6598i −0.379269 + 1.29097i
\(764\) 1.09254i 0.0395268i
\(765\) −13.6679 + 23.6736i −0.494166 + 0.855920i
\(766\) −7.74093 13.4077i −0.279691 0.484439i
\(767\) −1.92297 3.33068i −0.0694343 0.120264i
\(768\) 5.01612 + 2.89606i 0.181004 + 0.104503i
\(769\) −1.49923 −0.0540637 −0.0270318 0.999635i \(-0.508606\pi\)
−0.0270318 + 0.999635i \(0.508606\pi\)
\(770\) −10.4118 + 2.52426i −0.375216 + 0.0909681i
\(771\) −0.674405 −0.0242881
\(772\) −0.362045 + 0.627081i −0.0130303 + 0.0225691i
\(773\) 6.31015 + 10.9295i 0.226960 + 0.393107i 0.956906 0.290399i \(-0.0937879\pi\)
−0.729945 + 0.683505i \(0.760455\pi\)
\(774\) 13.8922 8.02069i 0.499346 0.288298i
\(775\) 6.04322 + 3.48906i 0.217079 + 0.125331i
\(776\) 32.8105 1.17783
\(777\) 52.5521 50.0936i 1.88530 1.79710i
\(778\) 41.8336i 1.49981i
\(779\) 5.24301 + 3.02705i 0.187850 + 0.108456i
\(780\) 0.243087 + 0.421039i 0.00870391 + 0.0150756i
\(781\) −10.0801 + 5.81975i −0.360694 + 0.208247i
\(782\) 0.444175 27.3247i 0.0158837 0.977128i
\(783\) 0.729407i 0.0260669i
\(784\) −24.6795 15.8708i −0.881412 0.566815i
\(785\) 14.8451 0.529844
\(786\) −26.1963 + 45.3734i −0.934392 + 1.61841i
\(787\) −5.38671 9.33005i −0.192015 0.332580i 0.753903 0.656986i \(-0.228169\pi\)
−0.945918 + 0.324406i \(0.894836\pi\)
\(788\) 0.230254 + 0.398811i 0.00820245 + 0.0142071i
\(789\) 35.0926 60.7822i 1.24933 2.16390i
\(790\) 23.8311i 0.847873i
\(791\) −14.5132 15.2254i −0.516029 0.541355i
\(792\) 8.31644i 0.295512i
\(793\) −6.86404 3.96296i −0.243749 0.140729i
\(794\) −1.33311 + 0.769671i −0.0473103 + 0.0273146i
\(795\) 11.0213 + 19.0895i 0.390887 + 0.677036i
\(796\) −0.173695 + 0.300848i −0.00615644 + 0.0106633i
\(797\) 1.15594 0.0409457 0.0204728 0.999790i \(-0.493483\pi\)
0.0204728 + 0.999790i \(0.493483\pi\)
\(798\) −63.2674 + 15.3387i −2.23964 + 0.542983i
\(799\) 44.8089i 1.58523i
\(800\) −0.407813 + 0.706353i −0.0144184 + 0.0249733i
\(801\) 0.716520 + 1.24105i 0.0253170 + 0.0438503i
\(802\) 30.5188 17.6200i 1.07765 0.622184i
\(803\) 5.17007 8.95482i 0.182448 0.316009i
\(804\) −1.25156 −0.0441392
\(805\) 31.3867 7.07139i 1.10624 0.249234i
\(806\) −5.60775 −0.197524
\(807\) 2.18309 3.78122i 0.0768483 0.133105i
\(808\) −7.29169 + 4.20986i −0.256521 + 0.148102i
\(809\) −7.05670 12.2226i −0.248100 0.429722i 0.714898 0.699228i \(-0.246473\pi\)
−0.962999 + 0.269506i \(0.913140\pi\)
\(810\) 17.8377 30.8958i 0.626753 1.08557i
\(811\) 36.0451i 1.26572i 0.774268 + 0.632858i \(0.218118\pi\)
−0.774268 + 0.632858i \(0.781882\pi\)
\(812\) −0.302694 0.0889272i −0.0106225 0.00312073i
\(813\) 5.70552 0.200101
\(814\) −9.14376 + 15.8375i −0.320489 + 0.555103i
\(815\) 6.04889 + 10.4770i 0.211883 + 0.366993i
\(816\) 34.1984 19.7444i 1.19718 0.691193i
\(817\) −24.7591 14.2947i −0.866213 0.500108i
\(818\) 0.896891i 0.0313591i
\(819\) 5.58788 1.35474i 0.195256 0.0473384i
\(820\) 0.218790i 0.00764047i
\(821\) −11.4197 + 19.7796i −0.398552 + 0.690312i −0.993548 0.113417i \(-0.963820\pi\)
0.594996 + 0.803729i \(0.297154\pi\)
\(822\) 5.64229 + 9.77272i 0.196797 + 0.340863i
\(823\) 26.4562 + 45.8235i 0.922206 + 1.59731i 0.795995 + 0.605304i \(0.206948\pi\)
0.126211 + 0.992003i \(0.459718\pi\)
\(824\) 21.1116 36.5663i 0.735456 1.27385i
\(825\) 3.77379 0.131386
\(826\) 12.8411 + 13.4713i 0.446798 + 0.468726i
\(827\) 24.4927i 0.851694i −0.904795 0.425847i \(-0.859976\pi\)
0.904795 0.425847i \(-0.140024\pi\)
\(828\) 0.0215819 1.32767i 0.000750023 0.0461397i
\(829\) −1.46534 + 0.846013i −0.0508933 + 0.0293833i −0.525231 0.850960i \(-0.676021\pi\)
0.474337 + 0.880343i \(0.342688\pi\)
\(830\) 10.1150 + 17.5197i 0.351097 + 0.608118i
\(831\) 8.02063 + 4.63071i 0.278232 + 0.160638i
\(832\) 5.98833i 0.207608i
\(833\) −24.4638 + 12.6029i −0.847620 + 0.436664i
\(834\) 54.7044 1.89426
\(835\) −39.3968 22.7457i −1.36338 0.787149i
\(836\) 0.682453 0.394014i 0.0236031 0.0136273i
\(837\) 1.50755 + 2.61114i 0.0521084 + 0.0902544i
\(838\) −10.0137 + 17.3442i −0.345916 + 0.599145i
\(839\) −35.3581 −1.22070 −0.610349 0.792133i \(-0.708971\pi\)
−0.610349 + 0.792133i \(0.708971\pi\)
\(840\) 30.5316 + 32.0300i 1.05344 + 1.10514i
\(841\) −27.6052 −0.951903
\(842\) −1.86182 1.07492i −0.0641625 0.0370442i
\(843\) 26.1691 + 45.3262i 0.901312 + 1.56112i
\(844\) −0.479391 0.830329i −0.0165013 0.0285811i
\(845\) 15.6853 27.1678i 0.539592 0.934600i
\(846\) 45.3049i 1.55761i
\(847\) 6.10050 + 25.1627i 0.209616 + 0.864601i
\(848\) 15.2066i 0.522197i
\(849\) 32.0162 + 18.4845i 1.09879 + 0.634388i
\(850\) 4.07257 + 7.05390i 0.139688 + 0.241947i
\(851\) 28.2290 47.1088i 0.967677 1.61487i
\(852\) −2.21358 1.27801i −0.0758360 0.0437839i
\(853\) 22.6660i 0.776071i −0.921645 0.388035i \(-0.873154\pi\)
0.921645 0.388035i \(-0.126846\pi\)
\(854\) 36.7993 + 10.8111i 1.25925 + 0.369949i
\(855\) 49.2580 1.68459
\(856\) 34.8759 + 20.1356i 1.19203 + 0.688221i
\(857\) 12.9065 7.45159i 0.440879 0.254542i −0.263091 0.964771i \(-0.584742\pi\)
0.703970 + 0.710229i \(0.251409\pi\)
\(858\) −2.62638 + 1.51634i −0.0896633 + 0.0517671i
\(859\) −6.14530 3.54799i −0.209675 0.121056i 0.391485 0.920184i \(-0.371961\pi\)
−0.601160 + 0.799128i \(0.705295\pi\)
\(860\) 1.03319i 0.0352316i
\(861\) 5.19854 + 1.52726i 0.177166 + 0.0520488i
\(862\) 50.9612i 1.73575i
\(863\) −11.0652 + 19.1655i −0.376663 + 0.652400i −0.990574 0.136975i \(-0.956262\pi\)
0.613911 + 0.789375i \(0.289595\pi\)
\(864\) −0.305199 + 0.176207i −0.0103831 + 0.00599468i
\(865\) −9.72110 + 5.61248i −0.330527 + 0.190830i
\(866\) −9.08623 + 15.7378i −0.308763 + 0.534793i
\(867\) 3.70155i 0.125711i
\(868\) 1.26738 0.307267i 0.0430178 0.0104293i
\(869\) −7.14390 −0.242340
\(870\) 9.00792 + 5.20072i 0.305397 + 0.176321i
\(871\) −2.04974 3.55025i −0.0694527 0.120296i
\(872\) −33.4872 + 19.3339i −1.13402 + 0.654727i
\(873\) 16.3437 28.3081i 0.553151 0.958085i
\(874\) −43.0414 + 23.9257i −1.45590 + 0.809300i
\(875\) 17.3387 16.5275i 0.586155 0.558733i
\(876\) 2.27068 0.0767193
\(877\) 18.1869 31.5006i 0.614127 1.06370i −0.376410 0.926453i \(-0.622842\pi\)
0.990537 0.137245i \(-0.0438249\pi\)
\(878\) 31.6385 18.2665i 1.06775 0.616464i
\(879\) −16.1445 + 9.32102i −0.544540 + 0.314390i
\(880\) −10.1413 5.85510i −0.341864 0.197375i
\(881\) 28.1227 0.947479 0.473739 0.880665i \(-0.342904\pi\)
0.473739 + 0.880665i \(0.342904\pi\)
\(882\) −24.7346 + 12.7424i −0.832856 + 0.429058i
\(883\) 40.3739 1.35869 0.679345 0.733819i \(-0.262264\pi\)
0.679345 + 0.733819i \(0.262264\pi\)
\(884\) −0.272417 0.157280i −0.00916238 0.00528991i
\(885\) −14.7437 25.5369i −0.495605 0.858413i
\(886\) 6.04905 + 10.4773i 0.203222 + 0.351990i
\(887\) −40.6923 23.4937i −1.36631 0.788842i −0.375859 0.926677i \(-0.622652\pi\)
−0.990455 + 0.137835i \(0.955986\pi\)
\(888\) 75.5342 2.53476
\(889\) −11.9273 + 11.3693i −0.400028 + 0.381314i
\(890\) 1.92063 0.0643795
\(891\) 9.26171 + 5.34725i 0.310279 + 0.179140i
\(892\) 1.34500 0.776535i 0.0450339 0.0260003i
\(893\) −69.9260 + 40.3718i −2.33998 + 1.35099i
\(894\) −10.8509 + 18.7943i −0.362909 + 0.628577i
\(895\) −34.1228 −1.14060
\(896\) −7.53918 31.0968i −0.251866 1.03887i
\(897\) 7.96025 4.42493i 0.265785 0.147744i
\(898\) 3.19564 5.53502i 0.106640 0.184706i
\(899\) −4.99317 + 2.88281i −0.166531 + 0.0961470i
\(900\) 0.197881 + 0.342740i 0.00659603 + 0.0114247i
\(901\) −12.3512 7.13094i −0.411477 0.237566i
\(902\) −1.36478 −0.0454422
\(903\) −24.5491 7.21219i −0.816944 0.240007i
\(904\) 21.8838i 0.727846i
\(905\) −15.8272 + 27.4134i −0.526113 + 0.911254i
\(906\) 51.8031 29.9085i 1.72104 0.993645i
\(907\) −14.0079 + 8.08749i −0.465126 + 0.268541i −0.714197 0.699945i \(-0.753208\pi\)
0.249071 + 0.968485i \(0.419875\pi\)
\(908\) −1.24620 + 2.15849i −0.0413567 + 0.0716319i
\(909\) 8.38813i 0.278217i
\(910\) 2.17214 7.39363i 0.0720058 0.245096i
\(911\) 54.7724i 1.81469i 0.420385 + 0.907346i \(0.361895\pi\)
−0.420385 + 0.907346i \(0.638105\pi\)
\(912\) −61.6238 35.5785i −2.04057 1.17812i
\(913\) −5.25192 + 3.03220i −0.173813 + 0.100351i
\(914\) 39.8226 22.9916i 1.31721 0.760494i
\(915\) −52.6278 30.3847i −1.73982 1.00449i
\(916\) 1.26153 0.0416821
\(917\) 38.7852 9.40316i 1.28080 0.310520i
\(918\) 3.51934i 0.116155i
\(919\) 44.2701 + 25.5594i 1.46034 + 0.843125i 0.999026 0.0441143i \(-0.0140466\pi\)
0.461309 + 0.887239i \(0.347380\pi\)
\(920\) 28.7124 + 17.2053i 0.946619 + 0.567242i
\(921\) 5.53206 + 9.58181i 0.182288 + 0.315731i
\(922\) −43.2578 24.9749i −1.42462 0.822505i
\(923\) 8.37221i 0.275575i
\(924\) 0.510493 0.486611i 0.0167940 0.0160083i
\(925\) 16.3685i 0.538195i
\(926\) −2.51996 + 4.36471i −0.0828112 + 0.143433i
\(927\) −21.0323 36.4291i −0.690793 1.19649i
\(928\) −0.336952 0.583618i −0.0110610 0.0191582i
\(929\) −36.3178 20.9681i −1.19155 0.687941i −0.232891 0.972503i \(-0.574819\pi\)
−0.958658 + 0.284562i \(0.908152\pi\)
\(930\) −42.9956 −1.40988
\(931\) 41.7086 + 26.8218i 1.36694 + 0.879048i
\(932\) −2.62910 −0.0861192
\(933\) −28.3241 + 49.0588i −0.927290 + 1.60611i
\(934\) 16.6099 + 28.7693i 0.543494 + 0.941359i
\(935\) −9.51130 + 5.49135i −0.311053 + 0.179586i
\(936\) 5.18052 + 2.99098i 0.169331 + 0.0977631i
\(937\) −35.9442 −1.17425 −0.587123 0.809498i \(-0.699739\pi\)
−0.587123 + 0.809498i \(0.699739\pi\)
\(938\) 13.6876 + 14.3594i 0.446916 + 0.468850i
\(939\) 25.6802i 0.838041i
\(940\) −2.52706 1.45900i −0.0824236 0.0475873i
\(941\) 14.9692 + 25.9274i 0.487981 + 0.845208i 0.999904 0.0138228i \(-0.00440007\pi\)
−0.511923 + 0.859031i \(0.671067\pi\)
\(942\) −17.6108 + 10.1676i −0.573792 + 0.331279i
\(943\) 4.09802 + 0.0666153i 0.133450 + 0.00216929i
\(944\) 20.3425i 0.662093i
\(945\) −4.02665 + 0.976229i −0.130987 + 0.0317567i
\(946\) 6.44492 0.209542
\(947\) 23.2755 40.3144i 0.756353 1.31004i −0.188346 0.982103i \(-0.560313\pi\)
0.944699 0.327939i \(-0.106354\pi\)
\(948\) −0.784396 1.35861i −0.0254760 0.0441257i
\(949\) 3.71879 + 6.44114i 0.120717 + 0.209088i
\(950\) 7.33858 12.7108i 0.238095 0.412393i
\(951\) 27.9924i 0.907714i
\(952\) −27.4697 8.07020i −0.890297 0.261557i
\(953\) 46.6808i 1.51214i 0.654492 + 0.756069i \(0.272883\pi\)
−0.654492 + 0.756069i \(0.727117\pi\)
\(954\) −12.4879 7.20987i −0.404309 0.233428i
\(955\) −23.7618 + 13.7189i −0.768914 + 0.443933i
\(956\) −1.27715 2.21208i −0.0413059 0.0715439i
\(957\) −1.55903 + 2.70032i −0.0503963 + 0.0872890i
\(958\) −11.2020 −0.361921
\(959\) 2.42291 8.24719i 0.0782398 0.266316i
\(960\) 45.9135i 1.48185i
\(961\) −3.58358 + 6.20695i −0.115599 + 0.200224i
\(962\) −6.57704 11.3918i −0.212052 0.367285i
\(963\) 34.7450 20.0600i 1.11964 0.646426i
\(964\) 1.45846 2.52612i 0.0469738 0.0813610i
\(965\) −18.1846 −0.585383
\(966\) −32.3910 + 29.8861i −1.04216 + 0.961568i
\(967\) −27.1443 −0.872902 −0.436451 0.899728i \(-0.643765\pi\)
−0.436451 + 0.899728i \(0.643765\pi\)
\(968\) −13.4686 + 23.3284i −0.432898 + 0.749802i
\(969\) −57.7954 + 33.3682i −1.85666 + 1.07194i
\(970\) −21.9046 37.9399i −0.703314 1.21818i
\(971\) −8.26330 + 14.3125i −0.265182 + 0.459309i −0.967611 0.252445i \(-0.918765\pi\)
0.702429 + 0.711754i \(0.252099\pi\)
\(972\) 2.16143i 0.0693279i
\(973\) −28.7510 30.1620i −0.921713 0.966949i
\(974\) −4.08747 −0.130971
\(975\) −1.35723 + 2.35079i −0.0434661 + 0.0752855i
\(976\) 20.9615 + 36.3064i 0.670961 + 1.16214i
\(977\) −27.2815 + 15.7510i −0.872813 + 0.503919i −0.868282 0.496071i \(-0.834776\pi\)
−0.00453074 + 0.999990i \(0.501442\pi\)
\(978\) −14.3517 8.28594i −0.458916 0.264955i
\(979\) 0.575750i 0.0184011i
\(980\) −0.0857956 + 1.79002i −0.00274064 + 0.0571802i
\(981\) 38.5226i 1.22993i
\(982\) −4.39224 + 7.60758i −0.140162 + 0.242768i
\(983\) −15.8593 27.4691i −0.505833 0.876129i −0.999977 0.00674862i \(-0.997852\pi\)
0.494144 0.869380i \(-0.335482\pi\)
\(984\) 2.81853 + 4.88183i 0.0898513 + 0.155627i
\(985\) −5.78253 + 10.0156i −0.184247 + 0.319124i
\(986\) −6.72986 −0.214322
\(987\) −52.3066 + 49.8596i −1.66494 + 1.58705i
\(988\) 0.566823i 0.0180330i
\(989\) −19.3521 0.314578i −0.615362 0.0100030i
\(990\) −9.61657 + 5.55213i −0.305635 + 0.176458i
\(991\) −7.74129 13.4083i −0.245910 0.425929i 0.716477 0.697611i \(-0.245753\pi\)
−0.962387 + 0.271682i \(0.912420\pi\)
\(992\) 2.41245 + 1.39283i 0.0765955 + 0.0442224i
\(993\) 66.7687i 2.11884i
\(994\) 9.54581 + 39.3736i 0.302775 + 1.24885i
\(995\) −8.72423 −0.276577
\(996\) −1.15332 0.665867i −0.0365442 0.0210988i
\(997\) 35.6689 20.5935i 1.12965 0.652202i 0.185800 0.982588i \(-0.440512\pi\)
0.943846 + 0.330386i \(0.107179\pi\)
\(998\) −10.0818 17.4623i −0.319135 0.552758i
\(999\) −3.53624 + 6.12496i −0.111882 + 0.193785i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.2.g.a.68.12 yes 28
7.2 even 3 1127.2.c.c.1126.8 28
7.3 odd 6 inner 161.2.g.a.45.11 28
7.5 odd 6 1127.2.c.c.1126.6 28
23.22 odd 2 inner 161.2.g.a.68.11 yes 28
161.45 even 6 inner 161.2.g.a.45.12 yes 28
161.68 even 6 1127.2.c.c.1126.5 28
161.114 odd 6 1127.2.c.c.1126.7 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.g.a.45.11 28 7.3 odd 6 inner
161.2.g.a.45.12 yes 28 161.45 even 6 inner
161.2.g.a.68.11 yes 28 23.22 odd 2 inner
161.2.g.a.68.12 yes 28 1.1 even 1 trivial
1127.2.c.c.1126.5 28 161.68 even 6
1127.2.c.c.1126.6 28 7.5 odd 6
1127.2.c.c.1126.7 28 161.114 odd 6
1127.2.c.c.1126.8 28 7.2 even 3