Properties

Label 161.2.g.a.68.4
Level $161$
Weight $2$
Character 161.68
Analytic conductor $1.286$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,2,Mod(45,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.g (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28559147254\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 68.4
Character \(\chi\) \(=\) 161.68
Dual form 161.2.g.a.45.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.06863 + 1.85092i) q^{2} +(-2.39984 + 1.38555i) q^{3} +(-1.28394 - 2.22386i) q^{4} +(1.92742 - 3.33839i) q^{5} -5.92256i q^{6} +(-2.36835 - 1.17938i) q^{7} +1.21373 q^{8} +(2.33949 - 4.05212i) q^{9} +(4.11940 + 7.13501i) q^{10} +(-1.51548 + 0.874964i) q^{11} +(6.16253 + 3.55794i) q^{12} -0.204932i q^{13} +(4.71383 - 3.12331i) q^{14} +10.6821i q^{15} +(1.27086 - 2.20120i) q^{16} +(-0.829997 - 1.43760i) q^{17} +(5.00011 + 8.66045i) q^{18} +(2.01267 - 3.48605i) q^{19} -9.89880 q^{20} +(7.31775 - 0.451142i) q^{21} -3.74005i q^{22} +(-4.79290 + 0.167754i) q^{23} +(-2.91275 + 1.68168i) q^{24} +(-4.92989 - 8.53883i) q^{25} +(0.379314 + 0.218997i) q^{26} +4.65264i q^{27} +(0.418059 + 6.78112i) q^{28} -8.95599 q^{29} +(-19.7718 - 11.4153i) q^{30} +(3.78515 - 2.18536i) q^{31} +(3.92989 + 6.80678i) q^{32} +(2.42461 - 4.19955i) q^{33} +3.54784 q^{34} +(-8.50202 + 5.63331i) q^{35} -12.0151 q^{36} +(5.48330 + 3.16579i) q^{37} +(4.30161 + 7.45060i) q^{38} +(0.283944 + 0.491805i) q^{39} +(2.33936 - 4.05189i) q^{40} -5.27084i q^{41} +(-6.98494 + 14.0267i) q^{42} -10.2031i q^{43} +(3.89159 + 2.24681i) q^{44} +(-9.01838 - 15.6203i) q^{45} +(4.81134 - 9.05055i) q^{46} +(-0.416658 - 0.240557i) q^{47} +7.04338i q^{48} +(4.21814 + 5.58635i) q^{49} +21.0729 q^{50} +(3.98373 + 2.30000i) q^{51} +(-0.455740 + 0.263122i) q^{52} +(-6.22805 + 3.59576i) q^{53} +(-8.61169 - 4.97196i) q^{54} +6.74569i q^{55} +(-2.87452 - 1.43144i) q^{56} +11.1546i q^{57} +(9.57065 - 16.5769i) q^{58} +(-2.96207 + 1.71015i) q^{59} +(23.7555 - 13.7153i) q^{60} +(-1.45607 + 2.52199i) q^{61} +9.34135i q^{62} +(-10.3197 + 6.83769i) q^{63} -11.7150 q^{64} +(-0.684144 - 0.394991i) q^{65} +(5.18203 + 8.97554i) q^{66} +(-7.10467 + 4.10188i) q^{67} +(-2.13134 + 3.69159i) q^{68} +(11.2698 - 7.04338i) q^{69} +(-1.34130 - 21.7565i) q^{70} +2.87254 q^{71} +(2.83950 - 4.91816i) q^{72} +(-8.52674 + 4.92292i) q^{73} +(-11.7192 + 6.76611i) q^{74} +(23.6619 + 13.6612i) q^{75} -10.3366 q^{76} +(4.62110 - 0.284893i) q^{77} -1.21373 q^{78} +(-6.64288 - 3.83527i) q^{79} +(-4.89898 - 8.48527i) q^{80} +(0.572014 + 0.990758i) q^{81} +(9.75591 + 5.63258i) q^{82} -0.832284 q^{83} +(-10.3989 - 15.6944i) q^{84} -6.39901 q^{85} +(18.8852 + 10.9034i) q^{86} +(21.4930 - 12.4090i) q^{87} +(-1.83938 + 1.06197i) q^{88} +(1.27673 - 2.21136i) q^{89} +38.5493 q^{90} +(-0.241693 + 0.485351i) q^{91} +(6.52687 + 10.4433i) q^{92} +(-6.05584 + 10.4890i) q^{93} +(0.890507 - 0.514134i) q^{94} +(-7.75853 - 13.4382i) q^{95} +(-18.8622 - 10.8901i) q^{96} +16.3072 q^{97} +(-14.8475 + 1.83770i) q^{98} +8.18789i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{2} - 6 q^{3} - 12 q^{4} + 12 q^{8} + 4 q^{9} + 6 q^{12} + 22 q^{18} - 36 q^{24} - 22 q^{25} - 12 q^{26} - 44 q^{29} - 6 q^{32} - 10 q^{35} - 16 q^{39} + 18 q^{46} - 36 q^{47} + 28 q^{49} + 84 q^{50}+ \cdots - 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.06863 + 1.85092i −0.755636 + 1.30880i 0.189421 + 0.981896i \(0.439339\pi\)
−0.945057 + 0.326904i \(0.893995\pi\)
\(3\) −2.39984 + 1.38555i −1.38555 + 0.799947i −0.992810 0.119702i \(-0.961806\pi\)
−0.392740 + 0.919650i \(0.628473\pi\)
\(4\) −1.28394 2.22386i −0.641972 1.11193i
\(5\) 1.92742 3.33839i 0.861968 1.49297i −0.00805796 0.999968i \(-0.502565\pi\)
0.870026 0.493005i \(-0.164102\pi\)
\(6\) 5.92256i 2.41788i
\(7\) −2.36835 1.17938i −0.895151 0.445763i
\(8\) 1.21373 0.429117
\(9\) 2.33949 4.05212i 0.779832 1.35071i
\(10\) 4.11940 + 7.13501i 1.30267 + 2.25629i
\(11\) −1.51548 + 0.874964i −0.456935 + 0.263811i −0.710755 0.703440i \(-0.751646\pi\)
0.253820 + 0.967252i \(0.418313\pi\)
\(12\) 6.16253 + 3.55794i 1.77897 + 1.02709i
\(13\) 0.204932i 0.0568380i −0.999596 0.0284190i \(-0.990953\pi\)
0.999596 0.0284190i \(-0.00904727\pi\)
\(14\) 4.71383 3.12331i 1.25982 0.834739i
\(15\) 10.6821i 2.75812i
\(16\) 1.27086 2.20120i 0.317716 0.550300i
\(17\) −0.829997 1.43760i −0.201304 0.348669i 0.747645 0.664099i \(-0.231185\pi\)
−0.948949 + 0.315430i \(0.897851\pi\)
\(18\) 5.00011 + 8.66045i 1.17854 + 2.04129i
\(19\) 2.01267 3.48605i 0.461739 0.799755i −0.537309 0.843385i \(-0.680559\pi\)
0.999048 + 0.0436305i \(0.0138924\pi\)
\(20\) −9.89880 −2.21344
\(21\) 7.31775 0.451142i 1.59686 0.0984473i
\(22\) 3.74005i 0.797382i
\(23\) −4.79290 + 0.167754i −0.999388 + 0.0349791i
\(24\) −2.91275 + 1.68168i −0.594562 + 0.343271i
\(25\) −4.92989 8.53883i −0.985979 1.70777i
\(26\) 0.379314 + 0.218997i 0.0743896 + 0.0429489i
\(27\) 4.65264i 0.895402i
\(28\) 0.418059 + 6.78112i 0.0790057 + 1.28151i
\(29\) −8.95599 −1.66309 −0.831543 0.555460i \(-0.812542\pi\)
−0.831543 + 0.555460i \(0.812542\pi\)
\(30\) −19.7718 11.4153i −3.60982 2.08413i
\(31\) 3.78515 2.18536i 0.679832 0.392501i −0.119959 0.992779i \(-0.538276\pi\)
0.799792 + 0.600277i \(0.204943\pi\)
\(32\) 3.92989 + 6.80678i 0.694714 + 1.20328i
\(33\) 2.42461 4.19955i 0.422071 0.731048i
\(34\) 3.54784 0.608450
\(35\) −8.50202 + 5.63331i −1.43710 + 0.952203i
\(36\) −12.0151 −2.00252
\(37\) 5.48330 + 3.16579i 0.901449 + 0.520452i 0.877670 0.479265i \(-0.159097\pi\)
0.0237791 + 0.999717i \(0.492430\pi\)
\(38\) 4.30161 + 7.45060i 0.697813 + 1.20865i
\(39\) 0.283944 + 0.491805i 0.0454674 + 0.0787519i
\(40\) 2.33936 4.05189i 0.369885 0.640660i
\(41\) 5.27084i 0.823166i −0.911372 0.411583i \(-0.864976\pi\)
0.911372 0.411583i \(-0.135024\pi\)
\(42\) −6.98494 + 14.0267i −1.07780 + 2.16436i
\(43\) 10.2031i 1.55596i −0.628287 0.777981i \(-0.716244\pi\)
0.628287 0.777981i \(-0.283756\pi\)
\(44\) 3.89159 + 2.24681i 0.586679 + 0.338719i
\(45\) −9.01838 15.6203i −1.34438 2.32853i
\(46\) 4.81134 9.05055i 0.709393 1.33443i
\(47\) −0.416658 0.240557i −0.0607758 0.0350889i 0.469304 0.883037i \(-0.344505\pi\)
−0.530080 + 0.847948i \(0.677838\pi\)
\(48\) 7.04338i 1.01662i
\(49\) 4.21814 + 5.58635i 0.602591 + 0.798050i
\(50\) 21.0729 2.98016
\(51\) 3.98373 + 2.30000i 0.557833 + 0.322065i
\(52\) −0.455740 + 0.263122i −0.0631998 + 0.0364884i
\(53\) −6.22805 + 3.59576i −0.855488 + 0.493916i −0.862499 0.506059i \(-0.831102\pi\)
0.00701084 + 0.999975i \(0.497768\pi\)
\(54\) −8.61169 4.97196i −1.17190 0.676598i
\(55\) 6.74569i 0.909588i
\(56\) −2.87452 1.43144i −0.384124 0.191284i
\(57\) 11.1546i 1.47747i
\(58\) 9.57065 16.5769i 1.25669 2.17665i
\(59\) −2.96207 + 1.71015i −0.385629 + 0.222643i −0.680264 0.732967i \(-0.738135\pi\)
0.294636 + 0.955610i \(0.404802\pi\)
\(60\) 23.7555 13.7153i 3.06683 1.77063i
\(61\) −1.45607 + 2.52199i −0.186431 + 0.322908i −0.944058 0.329780i \(-0.893025\pi\)
0.757627 + 0.652688i \(0.226359\pi\)
\(62\) 9.34135i 1.18635i
\(63\) −10.3197 + 6.83769i −1.30016 + 0.861468i
\(64\) −11.7150 −1.46437
\(65\) −0.684144 0.394991i −0.0848576 0.0489926i
\(66\) 5.18203 + 8.97554i 0.637864 + 1.10481i
\(67\) −7.10467 + 4.10188i −0.867973 + 0.501125i −0.866674 0.498875i \(-0.833747\pi\)
−0.00129901 + 0.999999i \(0.500413\pi\)
\(68\) −2.13134 + 3.69159i −0.258463 + 0.447671i
\(69\) 11.2698 7.04338i 1.35672 0.847923i
\(70\) −1.34130 21.7565i −0.160316 2.60040i
\(71\) 2.87254 0.340908 0.170454 0.985366i \(-0.445477\pi\)
0.170454 + 0.985366i \(0.445477\pi\)
\(72\) 2.83950 4.91816i 0.334639 0.579611i
\(73\) −8.52674 + 4.92292i −0.997980 + 0.576184i −0.907650 0.419728i \(-0.862125\pi\)
−0.0903298 + 0.995912i \(0.528792\pi\)
\(74\) −11.7192 + 6.76611i −1.36234 + 0.786545i
\(75\) 23.6619 + 13.6612i 2.73224 + 1.57746i
\(76\) −10.3366 −1.18569
\(77\) 4.62110 0.284893i 0.526623 0.0324666i
\(78\) −1.21373 −0.137427
\(79\) −6.64288 3.83527i −0.747383 0.431502i 0.0773647 0.997003i \(-0.475349\pi\)
−0.824747 + 0.565501i \(0.808683\pi\)
\(80\) −4.89898 8.48527i −0.547722 0.948682i
\(81\) 0.572014 + 0.990758i 0.0635571 + 0.110084i
\(82\) 9.75591 + 5.63258i 1.07736 + 0.622014i
\(83\) −0.832284 −0.0913551 −0.0456775 0.998956i \(-0.514545\pi\)
−0.0456775 + 0.998956i \(0.514545\pi\)
\(84\) −10.3989 15.6944i −1.13461 1.71240i
\(85\) −6.39901 −0.694070
\(86\) 18.8852 + 10.9034i 2.03644 + 1.17574i
\(87\) 21.4930 12.4090i 2.30429 1.33038i
\(88\) −1.83938 + 1.06197i −0.196078 + 0.113206i
\(89\) 1.27673 2.21136i 0.135333 0.234404i −0.790392 0.612602i \(-0.790123\pi\)
0.925725 + 0.378198i \(0.123456\pi\)
\(90\) 38.5493 4.06345
\(91\) −0.241693 + 0.485351i −0.0253363 + 0.0508786i
\(92\) 6.52687 + 10.4433i 0.680473 + 1.08879i
\(93\) −6.05584 + 10.4890i −0.627961 + 1.08766i
\(94\) 0.890507 0.514134i 0.0918487 0.0530289i
\(95\) −7.75853 13.4382i −0.796008 1.37873i
\(96\) −18.8622 10.8901i −1.92512 1.11147i
\(97\) 16.3072 1.65574 0.827871 0.560919i \(-0.189552\pi\)
0.827871 + 0.560919i \(0.189552\pi\)
\(98\) −14.8475 + 1.83770i −1.49983 + 0.185636i
\(99\) 8.18789i 0.822914i
\(100\) −12.6594 + 21.9267i −1.26594 + 2.19267i
\(101\) 3.28009 1.89376i 0.326381 0.188436i −0.327852 0.944729i \(-0.606325\pi\)
0.654233 + 0.756293i \(0.272992\pi\)
\(102\) −8.51426 + 4.91571i −0.843038 + 0.486728i
\(103\) 8.15645 14.1274i 0.803679 1.39201i −0.113501 0.993538i \(-0.536206\pi\)
0.917179 0.398474i \(-0.130460\pi\)
\(104\) 0.248732i 0.0243901i
\(105\) 12.5983 25.2990i 1.22947 2.46893i
\(106\) 15.3702i 1.49288i
\(107\) 5.70603 + 3.29438i 0.551622 + 0.318479i 0.749776 0.661692i \(-0.230161\pi\)
−0.198154 + 0.980171i \(0.563495\pi\)
\(108\) 10.3468 5.97374i 0.995623 0.574823i
\(109\) −0.721798 + 0.416730i −0.0691357 + 0.0399155i −0.534169 0.845377i \(-0.679376\pi\)
0.465034 + 0.885293i \(0.346042\pi\)
\(110\) −12.4858 7.20865i −1.19047 0.687318i
\(111\) −17.5454 −1.66534
\(112\) −5.60589 + 3.71438i −0.529707 + 0.350976i
\(113\) 0.292918i 0.0275554i −0.999905 0.0137777i \(-0.995614\pi\)
0.999905 0.0137777i \(-0.00438572\pi\)
\(114\) −20.6464 11.9202i −1.93371 1.11643i
\(115\) −8.67790 + 16.3239i −0.809218 + 1.52221i
\(116\) 11.4990 + 19.9168i 1.06765 + 1.84923i
\(117\) −0.830411 0.479438i −0.0767716 0.0443241i
\(118\) 7.31008i 0.672948i
\(119\) 0.270252 + 4.38361i 0.0247739 + 0.401845i
\(120\) 12.9652i 1.18355i
\(121\) −3.96888 + 6.87430i −0.360807 + 0.624936i
\(122\) −3.11201 5.39016i −0.281748 0.488002i
\(123\) 7.30301 + 12.6492i 0.658490 + 1.14054i
\(124\) −9.71983 5.61175i −0.872867 0.503950i
\(125\) −18.7337 −1.67559
\(126\) −1.62806 26.4080i −0.145039 2.35261i
\(127\) 14.3002 1.26894 0.634470 0.772947i \(-0.281218\pi\)
0.634470 + 0.772947i \(0.281218\pi\)
\(128\) 4.65919 8.06995i 0.411818 0.713290i
\(129\) 14.1369 + 24.4859i 1.24469 + 2.15586i
\(130\) 1.46219 0.844199i 0.128243 0.0740411i
\(131\) −1.48125 0.855202i −0.129418 0.0747194i 0.433893 0.900964i \(-0.357139\pi\)
−0.563311 + 0.826245i \(0.690473\pi\)
\(132\) −12.4523 −1.08383
\(133\) −8.87808 + 5.88248i −0.769827 + 0.510076i
\(134\) 17.5336i 1.51467i
\(135\) 15.5323 + 8.96760i 1.33681 + 0.771808i
\(136\) −1.00739 1.74485i −0.0863829 0.149620i
\(137\) 13.9951 8.08008i 1.19568 0.690328i 0.236093 0.971730i \(-0.424133\pi\)
0.959590 + 0.281403i \(0.0907997\pi\)
\(138\) 0.993532 + 28.3862i 0.0845751 + 2.41640i
\(139\) 3.58058i 0.303701i 0.988404 + 0.151850i \(0.0485232\pi\)
−0.988404 + 0.151850i \(0.951477\pi\)
\(140\) 23.4438 + 11.6744i 1.98136 + 0.986668i
\(141\) 1.33322 0.112277
\(142\) −3.06968 + 5.31685i −0.257602 + 0.446180i
\(143\) 0.179308 + 0.310571i 0.0149945 + 0.0259713i
\(144\) −5.94636 10.2994i −0.495530 0.858283i
\(145\) −17.2620 + 29.8986i −1.43353 + 2.48294i
\(146\) 21.0431i 1.74154i
\(147\) −17.8630 7.56192i −1.47332 0.623697i
\(148\) 16.2588i 1.33646i
\(149\) −11.2771 6.51085i −0.923858 0.533389i −0.0389938 0.999239i \(-0.512415\pi\)
−0.884864 + 0.465850i \(0.845749\pi\)
\(150\) −50.5717 + 29.1976i −4.12917 + 2.38397i
\(151\) 3.83347 + 6.63977i 0.311963 + 0.540337i 0.978787 0.204879i \(-0.0656800\pi\)
−0.666824 + 0.745215i \(0.732347\pi\)
\(152\) 2.44283 4.23111i 0.198140 0.343188i
\(153\) −7.76710 −0.627933
\(154\) −4.41093 + 8.85774i −0.355443 + 0.713777i
\(155\) 16.8484i 1.35330i
\(156\) 0.729136 1.26290i 0.0583776 0.101113i
\(157\) −7.19948 12.4699i −0.574581 0.995204i −0.996087 0.0883781i \(-0.971832\pi\)
0.421506 0.906826i \(-0.361502\pi\)
\(158\) 14.1976 8.19698i 1.12950 0.652116i
\(159\) 9.96422 17.2585i 0.790214 1.36869i
\(160\) 30.2982 2.39528
\(161\) 11.5491 + 5.25534i 0.910196 + 0.414178i
\(162\) −2.44509 −0.192104
\(163\) 0.164926 0.285661i 0.0129180 0.0223747i −0.859494 0.511146i \(-0.829221\pi\)
0.872412 + 0.488771i \(0.162555\pi\)
\(164\) −11.7216 + 6.76746i −0.915302 + 0.528450i
\(165\) −9.34648 16.1886i −0.727623 1.26028i
\(166\) 0.889405 1.54049i 0.0690312 0.119566i
\(167\) 10.3335i 0.799627i −0.916596 0.399814i \(-0.869075\pi\)
0.916596 0.399814i \(-0.130925\pi\)
\(168\) 8.88173 0.547563i 0.685241 0.0422454i
\(169\) 12.9580 0.996769
\(170\) 6.83818 11.8441i 0.524465 0.908400i
\(171\) −9.41727 16.3112i −0.720157 1.24735i
\(172\) −22.6903 + 13.1002i −1.73012 + 0.998884i
\(173\) −6.14735 3.54917i −0.467374 0.269839i 0.247766 0.968820i \(-0.420304\pi\)
−0.715140 + 0.698981i \(0.753637\pi\)
\(174\) 53.0424i 4.02114i
\(175\) 1.60520 + 26.0371i 0.121342 + 1.96822i
\(176\) 4.44784i 0.335268i
\(177\) 4.73900 8.20819i 0.356205 0.616965i
\(178\) 2.72871 + 4.72626i 0.204525 + 0.354248i
\(179\) 9.81217 + 16.9952i 0.733396 + 1.27028i 0.955423 + 0.295239i \(0.0953993\pi\)
−0.222027 + 0.975040i \(0.571267\pi\)
\(180\) −23.1582 + 40.1111i −1.72611 + 2.98971i
\(181\) −5.51100 −0.409629 −0.204815 0.978801i \(-0.565659\pi\)
−0.204815 + 0.978801i \(0.565659\pi\)
\(182\) −0.640067 0.966016i −0.0474449 0.0716058i
\(183\) 8.06985i 0.596541i
\(184\) −5.81726 + 0.203607i −0.428854 + 0.0150101i
\(185\) 21.1372 12.2036i 1.55404 0.897226i
\(186\) −12.9429 22.4178i −0.949020 1.64375i
\(187\) 2.51569 + 1.45244i 0.183966 + 0.106213i
\(188\) 1.23545i 0.0901044i
\(189\) 5.48722 11.0191i 0.399137 0.801520i
\(190\) 33.1640 2.40597
\(191\) 18.5510 + 10.7104i 1.34230 + 0.774977i 0.987145 0.159830i \(-0.0510947\pi\)
0.355155 + 0.934807i \(0.384428\pi\)
\(192\) 28.1141 16.2317i 2.02896 1.17142i
\(193\) −2.72633 4.72214i −0.196246 0.339907i 0.751063 0.660231i \(-0.229542\pi\)
−0.947308 + 0.320324i \(0.896208\pi\)
\(194\) −17.4263 + 30.1833i −1.25114 + 2.16704i
\(195\) 2.18912 0.156766
\(196\) 7.00739 16.5531i 0.500528 1.18236i
\(197\) −6.78385 −0.483329 −0.241665 0.970360i \(-0.577693\pi\)
−0.241665 + 0.970360i \(0.577693\pi\)
\(198\) −15.1552 8.74983i −1.07703 0.621824i
\(199\) −0.946823 1.63995i −0.0671185 0.116253i 0.830513 0.556999i \(-0.188047\pi\)
−0.897632 + 0.440746i \(0.854714\pi\)
\(200\) −5.98354 10.3638i −0.423100 0.732831i
\(201\) 11.3667 19.6877i 0.801747 1.38867i
\(202\) 8.09492i 0.569556i
\(203\) 21.2109 + 10.5625i 1.48871 + 0.741342i
\(204\) 11.8123i 0.827027i
\(205\) −17.5961 10.1591i −1.22897 0.709543i
\(206\) 17.4325 + 30.1939i 1.21458 + 2.10371i
\(207\) −10.5332 + 19.8139i −0.732108 + 1.37716i
\(208\) −0.451097 0.260441i −0.0312780 0.0180583i
\(209\) 7.04406i 0.487248i
\(210\) 33.3636 + 50.3538i 2.30231 + 3.47474i
\(211\) 14.1714 0.975599 0.487800 0.872956i \(-0.337800\pi\)
0.487800 + 0.872956i \(0.337800\pi\)
\(212\) 15.9929 + 9.23352i 1.09840 + 0.634161i
\(213\) −6.89364 + 3.98004i −0.472344 + 0.272708i
\(214\) −12.1953 + 7.04094i −0.833652 + 0.481309i
\(215\) −34.0620 19.6657i −2.32301 1.34119i
\(216\) 5.64703i 0.384232i
\(217\) −11.5419 + 0.711564i −0.783515 + 0.0483041i
\(218\) 1.78132i 0.120646i
\(219\) 13.6419 23.6284i 0.921833 1.59666i
\(220\) 15.0014 8.66109i 1.01140 0.583930i
\(221\) −0.294610 + 0.170093i −0.0198176 + 0.0114417i
\(222\) 18.7496 32.4752i 1.25839 2.17959i
\(223\) 25.9587i 1.73832i −0.494528 0.869162i \(-0.664659\pi\)
0.494528 0.869162i \(-0.335341\pi\)
\(224\) −1.27959 20.7556i −0.0854965 1.38679i
\(225\) −46.1338 −3.07559
\(226\) 0.542169 + 0.313021i 0.0360645 + 0.0208219i
\(227\) −0.107801 0.186717i −0.00715502 0.0123929i 0.862426 0.506184i \(-0.168944\pi\)
−0.869581 + 0.493791i \(0.835611\pi\)
\(228\) 24.8063 14.3219i 1.64284 0.948492i
\(229\) −0.651636 + 1.12867i −0.0430613 + 0.0745844i −0.886753 0.462244i \(-0.847044\pi\)
0.843691 + 0.536828i \(0.180378\pi\)
\(230\) −20.9408 33.5063i −1.38079 2.20934i
\(231\) −10.6952 + 7.08646i −0.703691 + 0.466255i
\(232\) −10.8701 −0.713658
\(233\) 1.93886 3.35821i 0.127019 0.220004i −0.795501 0.605952i \(-0.792792\pi\)
0.922520 + 0.385948i \(0.126126\pi\)
\(234\) 1.77481 1.02469i 0.116023 0.0669858i
\(235\) −1.60615 + 0.927310i −0.104774 + 0.0604911i
\(236\) 7.60626 + 4.39148i 0.495125 + 0.285861i
\(237\) 21.2558 1.38071
\(238\) −8.40253 4.18425i −0.544655 0.271224i
\(239\) −11.5086 −0.744427 −0.372214 0.928147i \(-0.621401\pi\)
−0.372214 + 0.928147i \(0.621401\pi\)
\(240\) 23.5135 + 13.5755i 1.51779 + 0.876298i
\(241\) −0.170470 0.295263i −0.0109810 0.0190196i 0.860483 0.509480i \(-0.170162\pi\)
−0.871464 + 0.490460i \(0.836829\pi\)
\(242\) −8.48253 14.6922i −0.545278 0.944449i
\(243\) −14.8334 8.56408i −0.951564 0.549386i
\(244\) 7.47807 0.478734
\(245\) 26.7795 3.31454i 1.71088 0.211758i
\(246\) −31.2169 −1.99031
\(247\) −0.714405 0.412462i −0.0454565 0.0262443i
\(248\) 4.59413 2.65242i 0.291727 0.168429i
\(249\) 1.99735 1.15317i 0.126577 0.0730792i
\(250\) 20.0194 34.6746i 1.26614 2.19302i
\(251\) −20.2808 −1.28011 −0.640057 0.768327i \(-0.721089\pi\)
−0.640057 + 0.768327i \(0.721089\pi\)
\(252\) 28.4560 + 14.1704i 1.79256 + 0.892649i
\(253\) 7.11677 4.44784i 0.447427 0.279633i
\(254\) −15.2817 + 26.4686i −0.958857 + 1.66079i
\(255\) 15.3566 8.86615i 0.961669 0.555220i
\(256\) −1.75706 3.04332i −0.109816 0.190207i
\(257\) 17.7715 + 10.2604i 1.10856 + 0.640026i 0.938455 0.345401i \(-0.112257\pi\)
0.170102 + 0.985426i \(0.445590\pi\)
\(258\) −60.4287 −3.76213
\(259\) −9.25270 13.9646i −0.574935 0.867716i
\(260\) 2.02858i 0.125807i
\(261\) −20.9525 + 36.2908i −1.29693 + 2.24634i
\(262\) 3.16583 1.82779i 0.195585 0.112921i
\(263\) 6.29979 3.63718i 0.388461 0.224278i −0.293032 0.956103i \(-0.594664\pi\)
0.681493 + 0.731824i \(0.261331\pi\)
\(264\) 2.94281 5.09710i 0.181118 0.313705i
\(265\) 27.7222i 1.70296i
\(266\) −1.40063 22.7188i −0.0858779 1.39298i
\(267\) 7.07589i 0.433038i
\(268\) 18.2440 + 10.5332i 1.11443 + 0.643416i
\(269\) 13.9099 8.03088i 0.848101 0.489651i −0.0119088 0.999929i \(-0.503791\pi\)
0.860010 + 0.510278i \(0.170457\pi\)
\(270\) −33.1967 + 19.1661i −2.02029 + 1.16641i
\(271\) 8.48238 + 4.89730i 0.515268 + 0.297490i 0.734996 0.678071i \(-0.237184\pi\)
−0.219729 + 0.975561i \(0.570517\pi\)
\(272\) −4.21925 −0.255830
\(273\) −0.0924537 1.49964i −0.00559555 0.0907625i
\(274\) 34.5385i 2.08655i
\(275\) 14.9423 + 8.62696i 0.901056 + 0.520225i
\(276\) −30.1332 16.0190i −1.81381 0.964232i
\(277\) 5.37245 + 9.30536i 0.322800 + 0.559105i 0.981065 0.193681i \(-0.0620427\pi\)
−0.658265 + 0.752786i \(0.728709\pi\)
\(278\) −6.62737 3.82632i −0.397483 0.229487i
\(279\) 20.4505i 1.22434i
\(280\) −10.3191 + 6.83729i −0.616685 + 0.408606i
\(281\) 11.1537i 0.665376i −0.943037 0.332688i \(-0.892044\pi\)
0.943037 0.332688i \(-0.107956\pi\)
\(282\) −1.42472 + 2.46768i −0.0848406 + 0.146948i
\(283\) −8.61689 14.9249i −0.512221 0.887193i −0.999900 0.0141696i \(-0.995490\pi\)
0.487679 0.873023i \(-0.337844\pi\)
\(284\) −3.68818 6.38811i −0.218853 0.379065i
\(285\) 37.2385 + 21.4997i 2.20582 + 1.27353i
\(286\) −0.766458 −0.0453216
\(287\) −6.21631 + 12.4832i −0.366937 + 0.736858i
\(288\) 36.7759 2.16704
\(289\) 7.12221 12.3360i 0.418953 0.725649i
\(290\) −36.8933 63.9011i −2.16645 3.75240i
\(291\) −39.1346 + 22.5944i −2.29411 + 1.32451i
\(292\) 21.8957 + 12.6415i 1.28135 + 0.739788i
\(293\) −8.91155 −0.520618 −0.260309 0.965525i \(-0.583824\pi\)
−0.260309 + 0.965525i \(0.583824\pi\)
\(294\) 33.0855 24.9822i 1.92959 1.45699i
\(295\) 13.1847i 0.767644i
\(296\) 6.65522 + 3.84239i 0.386827 + 0.223335i
\(297\) −4.07089 7.05100i −0.236217 0.409140i
\(298\) 24.1022 13.9154i 1.39620 0.806097i
\(299\) 0.0343782 + 0.982220i 0.00198814 + 0.0568032i
\(300\) 70.1610i 4.05075i
\(301\) −12.0333 + 24.1646i −0.693590 + 1.39282i
\(302\) −16.3863 −0.942923
\(303\) −5.24779 + 9.08944i −0.301478 + 0.522175i
\(304\) −5.11566 8.86059i −0.293403 0.508190i
\(305\) 5.61293 + 9.72188i 0.321396 + 0.556673i
\(306\) 8.30016 14.3763i 0.474489 0.821838i
\(307\) 17.5645i 1.00246i 0.865314 + 0.501230i \(0.167119\pi\)
−0.865314 + 0.501230i \(0.832881\pi\)
\(308\) −6.56679 9.91087i −0.374178 0.564724i
\(309\) 45.2046i 2.57160i
\(310\) 31.1851 + 18.0047i 1.77119 + 1.02260i
\(311\) 2.32221 1.34073i 0.131681 0.0760259i −0.432713 0.901532i \(-0.642443\pi\)
0.564393 + 0.825506i \(0.309110\pi\)
\(312\) 0.344630 + 0.596917i 0.0195108 + 0.0337938i
\(313\) −3.71224 + 6.42979i −0.209828 + 0.363433i −0.951660 0.307152i \(-0.900624\pi\)
0.741832 + 0.670586i \(0.233957\pi\)
\(314\) 30.7744 1.73670
\(315\) 2.93643 + 47.6303i 0.165449 + 2.68367i
\(316\) 19.6971i 1.10805i
\(317\) −0.398442 + 0.690122i −0.0223787 + 0.0387611i −0.876998 0.480494i \(-0.840457\pi\)
0.854619 + 0.519255i \(0.173791\pi\)
\(318\) 21.2961 + 36.8860i 1.19423 + 2.06846i
\(319\) 13.5726 7.83617i 0.759922 0.438741i
\(320\) −22.5797 + 39.1091i −1.26224 + 2.18627i
\(321\) −18.2581 −1.01907
\(322\) −22.0689 + 15.7605i −1.22985 + 0.878296i
\(323\) −6.68205 −0.371799
\(324\) 1.46887 2.54415i 0.0816038 0.141342i
\(325\) −1.74988 + 1.01029i −0.0970660 + 0.0560411i
\(326\) 0.352491 + 0.610532i 0.0195227 + 0.0338143i
\(327\) 1.15480 2.00017i 0.0638606 0.110610i
\(328\) 6.39735i 0.353234i
\(329\) 0.703082 + 1.06112i 0.0387622 + 0.0585015i
\(330\) 39.9518 2.19927
\(331\) −5.96961 + 10.3397i −0.328119 + 0.568319i −0.982139 0.188159i \(-0.939748\pi\)
0.654019 + 0.756478i \(0.273081\pi\)
\(332\) 1.06861 + 1.85088i 0.0586474 + 0.101580i
\(333\) 25.6563 14.8127i 1.40596 0.811730i
\(334\) 19.1264 + 11.0427i 1.04655 + 0.604227i
\(335\) 31.6242i 1.72781i
\(336\) 8.30680 16.6812i 0.453173 0.910032i
\(337\) 17.0561i 0.929104i −0.885546 0.464552i \(-0.846215\pi\)
0.885546 0.464552i \(-0.153785\pi\)
\(338\) −13.8473 + 23.9843i −0.753195 + 1.30457i
\(339\) 0.405853 + 0.702957i 0.0220429 + 0.0381794i
\(340\) 8.21597 + 14.2305i 0.445574 + 0.771756i
\(341\) −3.82421 + 6.62373i −0.207093 + 0.358695i
\(342\) 40.2544 2.17671
\(343\) −3.40160 18.2052i −0.183669 0.982988i
\(344\) 12.3838i 0.667689i
\(345\) −1.79197 51.1984i −0.0964764 2.75643i
\(346\) 13.1385 7.58551i 0.706330 0.407800i
\(347\) −3.29852 5.71320i −0.177074 0.306701i 0.763803 0.645449i \(-0.223330\pi\)
−0.940877 + 0.338748i \(0.889996\pi\)
\(348\) −55.1915 31.8648i −2.95858 1.70814i
\(349\) 36.4610i 1.95171i −0.218417 0.975855i \(-0.570089\pi\)
0.218417 0.975855i \(-0.429911\pi\)
\(350\) −49.9081 24.8530i −2.66770 1.32845i
\(351\) 0.953478 0.0508929
\(352\) −11.9114 6.87703i −0.634878 0.366547i
\(353\) 8.67372 5.00778i 0.461656 0.266537i −0.251084 0.967965i \(-0.580787\pi\)
0.712740 + 0.701428i \(0.247454\pi\)
\(354\) 10.1285 + 17.5430i 0.538323 + 0.932402i
\(355\) 5.53659 9.58965i 0.293852 0.508966i
\(356\) −6.55700 −0.347520
\(357\) −6.72227 10.1455i −0.355780 0.536958i
\(358\) −41.9424 −2.21672
\(359\) −3.27783 1.89246i −0.172997 0.0998801i 0.411001 0.911635i \(-0.365179\pi\)
−0.583998 + 0.811755i \(0.698513\pi\)
\(360\) −10.9458 18.9587i −0.576896 0.999213i
\(361\) 1.39830 + 2.42193i 0.0735947 + 0.127470i
\(362\) 5.88923 10.2004i 0.309531 0.536123i
\(363\) 21.9963i 1.15451i
\(364\) 1.38967 0.0856739i 0.0728385 0.00449053i
\(365\) 37.9541i 1.98661i
\(366\) 14.9367 + 8.62369i 0.780752 + 0.450768i
\(367\) −4.53149 7.84876i −0.236542 0.409702i 0.723178 0.690662i \(-0.242681\pi\)
−0.959720 + 0.280960i \(0.909347\pi\)
\(368\) −5.72186 + 10.7633i −0.298273 + 0.561077i
\(369\) −21.3581 12.3311i −1.11186 0.641931i
\(370\) 52.1646i 2.71191i
\(371\) 18.9909 1.17080i 0.985960 0.0607849i
\(372\) 31.1014 1.61253
\(373\) −19.1866 11.0774i −0.993446 0.573566i −0.0871431 0.996196i \(-0.527774\pi\)
−0.906302 + 0.422630i \(0.861107\pi\)
\(374\) −5.37669 + 3.10423i −0.278022 + 0.160516i
\(375\) 44.9579 25.9565i 2.32162 1.34039i
\(376\) −0.505708 0.291971i −0.0260799 0.0150572i
\(377\) 1.83537i 0.0945265i
\(378\) 14.5316 + 21.9318i 0.747427 + 1.12805i
\(379\) 20.0332i 1.02904i 0.857479 + 0.514519i \(0.172029\pi\)
−0.857479 + 0.514519i \(0.827971\pi\)
\(380\) −19.9230 + 34.5077i −1.02203 + 1.77021i
\(381\) −34.3183 + 19.8137i −1.75818 + 1.01509i
\(382\) −39.6482 + 22.8909i −2.02858 + 1.17120i
\(383\) −8.45906 + 14.6515i −0.432238 + 0.748658i −0.997066 0.0765509i \(-0.975609\pi\)
0.564828 + 0.825209i \(0.308943\pi\)
\(384\) 25.8222i 1.31773i
\(385\) 7.95571 15.9761i 0.405461 0.814219i
\(386\) 11.6538 0.593161
\(387\) −41.3443 23.8702i −2.10165 1.21339i
\(388\) −20.9375 36.2648i −1.06294 1.84107i
\(389\) 22.8244 13.1777i 1.15724 0.668136i 0.206603 0.978425i \(-0.433759\pi\)
0.950642 + 0.310289i \(0.100426\pi\)
\(390\) −2.33936 + 4.05189i −0.118458 + 0.205175i
\(391\) 4.21925 + 6.75102i 0.213377 + 0.341414i
\(392\) 5.11966 + 6.78030i 0.258582 + 0.342457i
\(393\) 4.73970 0.239086
\(394\) 7.24943 12.5564i 0.365221 0.632582i
\(395\) −25.6072 + 14.7844i −1.28844 + 0.743881i
\(396\) 18.2087 10.5128i 0.915021 0.528288i
\(397\) −13.6338 7.87148i −0.684261 0.395058i 0.117197 0.993109i \(-0.462609\pi\)
−0.801459 + 0.598050i \(0.795942\pi\)
\(398\) 4.04722 0.202869
\(399\) 13.1555 26.4180i 0.658600 1.32256i
\(400\) −25.0609 −1.25304
\(401\) −33.1621 19.1461i −1.65603 0.956112i −0.974518 0.224309i \(-0.927987\pi\)
−0.681516 0.731803i \(-0.738679\pi\)
\(402\) 24.2937 + 42.0778i 1.21166 + 2.09865i
\(403\) −0.447850 0.775699i −0.0223090 0.0386403i
\(404\) −8.42290 4.86296i −0.419055 0.241941i
\(405\) 4.41005 0.219137
\(406\) −42.2170 + 27.9723i −2.09519 + 1.38824i
\(407\) −11.0798 −0.549205
\(408\) 4.83515 + 2.79157i 0.239375 + 0.138204i
\(409\) −7.35607 + 4.24703i −0.363734 + 0.210002i −0.670718 0.741713i \(-0.734014\pi\)
0.306983 + 0.951715i \(0.400680\pi\)
\(410\) 37.6075 21.7127i 1.85730 1.07231i
\(411\) −22.3907 + 38.7818i −1.10445 + 1.91297i
\(412\) −41.8897 −2.06376
\(413\) 9.03212 0.556834i 0.444442 0.0274000i
\(414\) −25.4178 40.6698i −1.24922 1.99881i
\(415\) −1.60416 + 2.77849i −0.0787452 + 0.136391i
\(416\) 1.39493 0.805363i 0.0683920 0.0394861i
\(417\) −4.96107 8.59282i −0.242944 0.420792i
\(418\) −13.0380 7.52750i −0.637710 0.368182i
\(419\) −9.67094 −0.472456 −0.236228 0.971698i \(-0.575911\pi\)
−0.236228 + 0.971698i \(0.575911\pi\)
\(420\) −72.4369 + 4.46577i −3.53456 + 0.217907i
\(421\) 19.7189i 0.961042i 0.876983 + 0.480521i \(0.159553\pi\)
−0.876983 + 0.480521i \(0.840447\pi\)
\(422\) −15.1440 + 26.2302i −0.737198 + 1.27686i
\(423\) −1.94954 + 1.12557i −0.0947897 + 0.0547269i
\(424\) −7.55914 + 4.36427i −0.367104 + 0.211948i
\(425\) −8.18360 + 14.1744i −0.396963 + 0.687560i
\(426\) 17.0128i 0.824272i
\(427\) 6.42287 4.25570i 0.310825 0.205948i
\(428\) 16.9192i 0.817819i
\(429\) −0.860624 0.496881i −0.0415513 0.0239897i
\(430\) 72.7994 42.0308i 3.51070 2.02690i
\(431\) 14.6709 8.47027i 0.706674 0.407998i −0.103154 0.994665i \(-0.532894\pi\)
0.809828 + 0.586667i \(0.199560\pi\)
\(432\) 10.2414 + 5.91288i 0.492740 + 0.284483i
\(433\) 32.0100 1.53830 0.769152 0.639065i \(-0.220679\pi\)
0.769152 + 0.639065i \(0.220679\pi\)
\(434\) 11.0170 22.1236i 0.528832 1.06197i
\(435\) 95.6692i 4.58699i
\(436\) 1.85350 + 1.07012i 0.0887664 + 0.0512493i
\(437\) −9.06173 + 17.0459i −0.433481 + 0.815417i
\(438\) 29.1563 + 50.5002i 1.39314 + 2.41299i
\(439\) −22.8492 13.1920i −1.09053 0.629620i −0.156815 0.987628i \(-0.550123\pi\)
−0.933719 + 0.358008i \(0.883456\pi\)
\(440\) 8.18741i 0.390320i
\(441\) 32.5049 4.02317i 1.54785 0.191580i
\(442\) 0.727068i 0.0345831i
\(443\) 0.574139 0.994438i 0.0272782 0.0472472i −0.852064 0.523438i \(-0.824649\pi\)
0.879342 + 0.476190i \(0.157983\pi\)
\(444\) 22.5273 + 39.0185i 1.06910 + 1.85173i
\(445\) −4.92159 8.52445i −0.233306 0.404098i
\(446\) 48.0476 + 27.7403i 2.27512 + 1.31354i
\(447\) 36.0844 1.70673
\(448\) 27.7451 + 13.8164i 1.31083 + 0.652762i
\(449\) −20.0207 −0.944838 −0.472419 0.881374i \(-0.656619\pi\)
−0.472419 + 0.881374i \(0.656619\pi\)
\(450\) 49.3000 85.3902i 2.32403 4.02533i
\(451\) 4.61179 + 7.98786i 0.217161 + 0.376133i
\(452\) −0.651408 + 0.376090i −0.0306396 + 0.0176898i
\(453\) −18.3994 10.6229i −0.864482 0.499109i
\(454\) 0.460799 0.0216264
\(455\) 1.15445 + 1.74234i 0.0541213 + 0.0816821i
\(456\) 13.5387i 0.634006i
\(457\) 15.0469 + 8.68734i 0.703865 + 0.406377i 0.808785 0.588104i \(-0.200125\pi\)
−0.104920 + 0.994481i \(0.533459\pi\)
\(458\) −1.39272 2.41226i −0.0650774 0.112717i
\(459\) 6.68863 3.86168i 0.312199 0.180248i
\(460\) 47.4439 1.66056i 2.21208 0.0774240i
\(461\) 15.2031i 0.708081i −0.935230 0.354040i \(-0.884807\pi\)
0.935230 0.354040i \(-0.115193\pi\)
\(462\) −1.68730 27.3688i −0.0785001 1.27331i
\(463\) 0.731023 0.0339735 0.0169868 0.999856i \(-0.494593\pi\)
0.0169868 + 0.999856i \(0.494593\pi\)
\(464\) −11.3818 + 19.7139i −0.528389 + 0.915196i
\(465\) 23.3443 + 40.4335i 1.08256 + 1.87506i
\(466\) 4.14386 + 7.17737i 0.191961 + 0.332485i
\(467\) 20.5833 35.6513i 0.952481 1.64975i 0.212451 0.977172i \(-0.431855\pi\)
0.740030 0.672574i \(-0.234811\pi\)
\(468\) 2.46229i 0.113819i
\(469\) 21.6640 1.33559i 1.00035 0.0616720i
\(470\) 3.96381i 0.182837i
\(471\) 34.5552 + 19.9505i 1.59222 + 0.919269i
\(472\) −3.59514 + 2.07565i −0.165480 + 0.0955397i
\(473\) 8.92737 + 15.4627i 0.410481 + 0.710973i
\(474\) −22.7146 + 39.3429i −1.04332 + 1.80708i
\(475\) −39.6890 −1.82106
\(476\) 9.40153 6.22931i 0.430919 0.285520i
\(477\) 33.6491i 1.54069i
\(478\) 12.2984 21.3015i 0.562516 0.974306i
\(479\) −9.59591 16.6206i −0.438448 0.759415i 0.559122 0.829086i \(-0.311138\pi\)
−0.997570 + 0.0696707i \(0.977805\pi\)
\(480\) −72.7109 + 41.9797i −3.31879 + 1.91610i
\(481\) 0.648772 1.12371i 0.0295815 0.0512366i
\(482\) 0.728679 0.0331904
\(483\) −34.9975 + 3.38986i −1.59244 + 0.154244i
\(484\) 20.3833 0.926512
\(485\) 31.4308 54.4397i 1.42720 2.47198i
\(486\) 31.7029 18.3037i 1.43807 0.830271i
\(487\) −1.56672 2.71364i −0.0709948 0.122967i 0.828343 0.560222i \(-0.189284\pi\)
−0.899338 + 0.437255i \(0.855951\pi\)
\(488\) −1.76727 + 3.06101i −0.0800007 + 0.138565i
\(489\) 0.914055i 0.0413350i
\(490\) −22.4825 + 53.1089i −1.01565 + 2.39921i
\(491\) 35.3438 1.59504 0.797522 0.603290i \(-0.206144\pi\)
0.797522 + 0.603290i \(0.206144\pi\)
\(492\) 18.7533 32.4817i 0.845464 1.46439i
\(493\) 7.43345 + 12.8751i 0.334786 + 0.579866i
\(494\) 1.52687 0.881539i 0.0686971 0.0396623i
\(495\) 27.3344 + 15.7815i 1.22859 + 0.709326i
\(496\) 11.1092i 0.498816i
\(497\) −6.80317 3.38781i −0.305164 0.151964i
\(498\) 4.92926i 0.220885i
\(499\) −8.70475 + 15.0771i −0.389678 + 0.674942i −0.992406 0.123005i \(-0.960747\pi\)
0.602728 + 0.797947i \(0.294080\pi\)
\(500\) 24.0530 + 41.6611i 1.07568 + 1.86314i
\(501\) 14.3175 + 24.7987i 0.639660 + 1.10792i
\(502\) 21.6727 37.5382i 0.967300 1.67541i
\(503\) 8.82795 0.393619 0.196809 0.980442i \(-0.436942\pi\)
0.196809 + 0.980442i \(0.436942\pi\)
\(504\) −12.5253 + 8.29907i −0.557921 + 0.369670i
\(505\) 14.6003i 0.649704i
\(506\) 0.627408 + 17.9257i 0.0278917 + 0.796894i
\(507\) −31.0972 + 17.9540i −1.38107 + 0.797363i
\(508\) −18.3607 31.8017i −0.814624 1.41097i
\(509\) 15.3321 + 8.85200i 0.679584 + 0.392358i 0.799698 0.600402i \(-0.204993\pi\)
−0.120114 + 0.992760i \(0.538326\pi\)
\(510\) 37.8986i 1.67818i
\(511\) 26.0003 1.60293i 1.15018 0.0709094i
\(512\) 26.1474 1.15556
\(513\) 16.2194 + 9.36425i 0.716102 + 0.413442i
\(514\) −37.9824 + 21.9291i −1.67533 + 0.967253i
\(515\) −31.4418 54.4588i −1.38549 2.39974i
\(516\) 36.3021 62.8770i 1.59811 2.76801i
\(517\) 0.841916 0.0370274
\(518\) 35.7351 2.20308i 1.57011 0.0967979i
\(519\) 19.6702 0.863427
\(520\) −0.830363 0.479410i −0.0364138 0.0210235i
\(521\) 3.42606 + 5.93411i 0.150098 + 0.259978i 0.931263 0.364346i \(-0.118708\pi\)
−0.781165 + 0.624325i \(0.785374\pi\)
\(522\) −44.7810 77.5629i −1.96001 3.39484i
\(523\) −9.90492 + 17.1558i −0.433112 + 0.750172i −0.997139 0.0755843i \(-0.975918\pi\)
0.564028 + 0.825756i \(0.309251\pi\)
\(524\) 4.39213i 0.191871i
\(525\) −39.9279 60.2609i −1.74260 2.63000i
\(526\) 15.5472i 0.677891i
\(527\) −6.28332 3.62768i −0.273706 0.158024i
\(528\) −6.16270 10.6741i −0.268197 0.464531i
\(529\) 22.9437 1.60805i 0.997553 0.0699153i
\(530\) −51.3116 29.6248i −2.22883 1.28682i
\(531\) 16.0036i 0.694495i
\(532\) 24.4807 + 12.1908i 1.06137 + 0.528538i
\(533\) −1.08017 −0.0467872
\(534\) −13.0969 7.56152i −0.566760 0.327219i
\(535\) 21.9958 12.6993i 0.950962 0.549038i
\(536\) −8.62311 + 4.97856i −0.372462 + 0.215041i
\(537\) −47.0953 27.1905i −2.03231 1.17336i
\(538\) 34.3282i 1.47999i
\(539\) −11.2804 4.77529i −0.485880 0.205687i
\(540\) 46.0556i 1.98192i
\(541\) 5.21528 9.03313i 0.224222 0.388365i −0.731863 0.681451i \(-0.761349\pi\)
0.956086 + 0.293087i \(0.0946825\pi\)
\(542\) −18.1291 + 10.4668i −0.778710 + 0.449588i
\(543\) 13.2255 7.63576i 0.567562 0.327682i
\(544\) 6.52360 11.2992i 0.279697 0.484450i
\(545\) 3.21286i 0.137624i
\(546\) 2.87452 + 1.43144i 0.123018 + 0.0612600i
\(547\) −28.3266 −1.21116 −0.605580 0.795785i \(-0.707059\pi\)
−0.605580 + 0.795785i \(0.707059\pi\)
\(548\) −35.9379 20.7487i −1.53519 0.886342i
\(549\) 6.81296 + 11.8004i 0.290770 + 0.503628i
\(550\) −31.9357 + 18.4381i −1.36174 + 0.786202i
\(551\) −18.0255 + 31.2210i −0.767911 + 1.33006i
\(552\) 13.6784 8.54873i 0.582191 0.363858i
\(553\) 11.2094 + 16.9177i 0.476673 + 0.719415i
\(554\) −22.9647 −0.975676
\(555\) −33.8174 + 58.5734i −1.43547 + 2.48630i
\(556\) 7.96269 4.59726i 0.337693 0.194967i
\(557\) −21.6038 + 12.4730i −0.915384 + 0.528497i −0.882159 0.470951i \(-0.843911\pi\)
−0.0332242 + 0.999448i \(0.510578\pi\)
\(558\) 37.8523 + 21.8540i 1.60242 + 0.925156i
\(559\) −2.09095 −0.0884378
\(560\) 1.59513 + 25.8738i 0.0674067 + 1.09337i
\(561\) −8.04968 −0.339858
\(562\) 20.6447 + 11.9192i 0.870844 + 0.502782i
\(563\) −9.04897 15.6733i −0.381368 0.660550i 0.609890 0.792486i \(-0.291214\pi\)
−0.991258 + 0.131937i \(0.957880\pi\)
\(564\) −1.71178 2.96488i −0.0720788 0.124844i
\(565\) −0.977875 0.564576i −0.0411395 0.0237519i
\(566\) 36.8331 1.54821
\(567\) −0.186251 3.02108i −0.00782180 0.126873i
\(568\) 3.48647 0.146289
\(569\) 12.2131 + 7.05123i 0.511999 + 0.295603i 0.733655 0.679522i \(-0.237813\pi\)
−0.221656 + 0.975125i \(0.571146\pi\)
\(570\) −79.5884 + 45.9504i −3.33359 + 1.92465i
\(571\) −28.6167 + 16.5218i −1.19757 + 0.691418i −0.960013 0.279956i \(-0.909680\pi\)
−0.237558 + 0.971373i \(0.576347\pi\)
\(572\) 0.460444 0.797512i 0.0192521 0.0333457i
\(573\) −59.3591 −2.47976
\(574\) −16.4625 24.8458i −0.687130 1.03704i
\(575\) 25.0609 + 40.0987i 1.04511 + 1.67223i
\(576\) −27.4071 + 47.4705i −1.14196 + 1.97794i
\(577\) −8.24985 + 4.76305i −0.343446 + 0.198288i −0.661795 0.749685i \(-0.730205\pi\)
0.318349 + 0.947974i \(0.396872\pi\)
\(578\) 15.2220 + 26.3653i 0.633153 + 1.09665i
\(579\) 13.0855 + 7.55493i 0.543816 + 0.313972i
\(580\) 88.6535 3.68114
\(581\) 1.97114 + 0.981577i 0.0817766 + 0.0407227i
\(582\) 96.5802i 4.00338i
\(583\) 6.29233 10.8986i 0.260601 0.451375i
\(584\) −10.3491 + 5.97507i −0.428250 + 0.247250i
\(585\) −3.20110 + 1.84816i −0.132349 + 0.0764119i
\(586\) 9.52316 16.4946i 0.393398 0.681385i
\(587\) 32.6248i 1.34657i −0.739383 0.673285i \(-0.764883\pi\)
0.739383 0.673285i \(-0.235117\pi\)
\(588\) 6.11850 + 49.4339i 0.252323 + 2.03862i
\(589\) 17.5936i 0.724932i
\(590\) −24.4039 14.0896i −1.00469 0.580059i
\(591\) 16.2802 9.39936i 0.669677 0.386638i
\(592\) 13.9371 8.04656i 0.572809 0.330712i
\(593\) 38.1901 + 22.0491i 1.56828 + 0.905447i 0.996370 + 0.0851318i \(0.0271311\pi\)
0.571911 + 0.820316i \(0.306202\pi\)
\(594\) 17.4011 0.713977
\(595\) 15.1551 + 7.54685i 0.621298 + 0.309391i
\(596\) 33.4383i 1.36968i
\(597\) 4.54445 + 2.62374i 0.185992 + 0.107383i
\(598\) −1.85475 0.985999i −0.0758464 0.0403205i
\(599\) −16.9745 29.4008i −0.693561 1.20128i −0.970663 0.240443i \(-0.922707\pi\)
0.277102 0.960841i \(-0.410626\pi\)
\(600\) 28.7191 + 16.5810i 1.17245 + 0.676915i
\(601\) 36.3934i 1.48452i 0.670112 + 0.742260i \(0.266246\pi\)
−0.670112 + 0.742260i \(0.733754\pi\)
\(602\) −31.8675 48.0958i −1.29882 1.96024i
\(603\) 38.3853i 1.56317i
\(604\) 9.84392 17.0502i 0.400544 0.693762i
\(605\) 15.2994 + 26.4993i 0.622008 + 1.07735i
\(606\) −11.2159 19.4265i −0.455615 0.789149i
\(607\) 38.8257 + 22.4160i 1.57589 + 0.909839i 0.995424 + 0.0955520i \(0.0304616\pi\)
0.580463 + 0.814287i \(0.302872\pi\)
\(608\) 31.6384 1.28310
\(609\) −65.5377 + 4.04043i −2.65572 + 0.163726i
\(610\) −23.9926 −0.971432
\(611\) −0.0492980 + 0.0853867i −0.00199438 + 0.00345437i
\(612\) 9.97252 + 17.2729i 0.403115 + 0.698216i
\(613\) −6.87254 + 3.96787i −0.277579 + 0.160261i −0.632327 0.774702i \(-0.717900\pi\)
0.354748 + 0.934962i \(0.384567\pi\)
\(614\) −32.5106 18.7700i −1.31202 0.757496i
\(615\) 56.3038 2.27039
\(616\) 5.60874 0.345782i 0.225983 0.0139319i
\(617\) 17.5849i 0.707940i −0.935257 0.353970i \(-0.884831\pi\)
0.935257 0.353970i \(-0.115169\pi\)
\(618\) −83.6703 48.3071i −3.36571 1.94320i
\(619\) 17.9338 + 31.0622i 0.720820 + 1.24850i 0.960672 + 0.277687i \(0.0895677\pi\)
−0.239852 + 0.970809i \(0.577099\pi\)
\(620\) −37.4684 + 21.6324i −1.50477 + 0.868778i
\(621\) −0.780498 22.2996i −0.0313203 0.894854i
\(622\) 5.73099i 0.229792i
\(623\) −5.63177 + 3.73153i −0.225632 + 0.149500i
\(624\) 1.44342 0.0577829
\(625\) −11.4582 + 19.8462i −0.458329 + 0.793850i
\(626\) −7.93404 13.7422i −0.317108 0.549247i
\(627\) −9.75989 16.9046i −0.389773 0.675106i
\(628\) −18.4875 + 32.0212i −0.737730 + 1.27779i
\(629\) 10.5104i 0.419076i
\(630\) −91.2980 45.4641i −3.63740 1.81133i
\(631\) 44.9970i 1.79130i −0.444755 0.895652i \(-0.646709\pi\)
0.444755 0.895652i \(-0.353291\pi\)
\(632\) −8.06263 4.65496i −0.320714 0.185165i
\(633\) −34.0091 + 19.6352i −1.35174 + 0.780428i
\(634\) −0.851575 1.47497i −0.0338204 0.0585786i
\(635\) 27.5625 47.7397i 1.09379 1.89449i
\(636\) −51.1740 −2.02918
\(637\) 1.14482 0.864433i 0.0453596 0.0342501i
\(638\) 33.4959i 1.32611i
\(639\) 6.72029 11.6399i 0.265850 0.460467i
\(640\) −17.9604 31.1084i −0.709948 1.22967i
\(641\) −30.2125 + 17.4432i −1.19332 + 0.688964i −0.959058 0.283209i \(-0.908601\pi\)
−0.234263 + 0.972173i \(0.575268\pi\)
\(642\) 19.5112 33.7943i 0.770044 1.33375i
\(643\) −1.84376 −0.0727106 −0.0363553 0.999339i \(-0.511575\pi\)
−0.0363553 + 0.999339i \(0.511575\pi\)
\(644\) −3.14127 32.4311i −0.123783 1.27796i
\(645\) 108.991 4.29153
\(646\) 7.14065 12.3680i 0.280945 0.486611i
\(647\) 19.2967 11.1410i 0.758632 0.437997i −0.0701722 0.997535i \(-0.522355\pi\)
0.828804 + 0.559538i \(0.189022\pi\)
\(648\) 0.694268 + 1.20251i 0.0272734 + 0.0472390i
\(649\) 2.99264 5.18340i 0.117471 0.203466i
\(650\) 4.31853i 0.169387i
\(651\) 26.7128 17.6995i 1.04696 0.693699i
\(652\) −0.847026 −0.0331721
\(653\) 9.39204 16.2675i 0.367539 0.636596i −0.621641 0.783302i \(-0.713534\pi\)
0.989180 + 0.146706i \(0.0468672\pi\)
\(654\) 2.46811 + 4.27490i 0.0965108 + 0.167162i
\(655\) −5.71000 + 3.29667i −0.223108 + 0.128811i
\(656\) −11.6022 6.69852i −0.452989 0.261533i
\(657\) 46.0685i 1.79731i
\(658\) −2.71539 + 0.167405i −0.105857 + 0.00652612i
\(659\) 37.4963i 1.46065i −0.683100 0.730325i \(-0.739369\pi\)
0.683100 0.730325i \(-0.260631\pi\)
\(660\) −24.0007 + 41.5705i −0.934227 + 1.61813i
\(661\) −16.1735 28.0133i −0.629076 1.08959i −0.987737 0.156124i \(-0.950100\pi\)
0.358661 0.933468i \(-0.383233\pi\)
\(662\) −12.7586 22.0986i −0.495877 0.858885i
\(663\) 0.471346 0.816394i 0.0183055 0.0317061i
\(664\) −1.01016 −0.0392020
\(665\) 2.52622 + 40.9765i 0.0979626 + 1.58900i
\(666\) 63.3171i 2.45349i
\(667\) 42.9251 1.50240i 1.66207 0.0581732i
\(668\) −22.9801 + 13.2676i −0.889128 + 0.513338i
\(669\) 35.9671 + 62.2968i 1.39057 + 2.40853i
\(670\) −58.5339 33.7946i −2.26136 1.30560i
\(671\) 5.09605i 0.196731i
\(672\) 31.8288 + 48.0373i 1.22782 + 1.85308i
\(673\) −35.4082 −1.36489 −0.682443 0.730939i \(-0.739082\pi\)
−0.682443 + 0.730939i \(0.739082\pi\)
\(674\) 31.5695 + 18.2267i 1.21601 + 0.702064i
\(675\) 39.7281 22.9370i 1.52914 0.882847i
\(676\) −16.6373 28.8167i −0.639898 1.10834i
\(677\) −21.7250 + 37.6288i −0.834960 + 1.44619i 0.0591026 + 0.998252i \(0.481176\pi\)
−0.894063 + 0.447942i \(0.852157\pi\)
\(678\) −1.73483 −0.0666256
\(679\) −38.6210 19.2323i −1.48214 0.738068i
\(680\) −7.76664 −0.297837
\(681\) 0.517412 + 0.298728i 0.0198273 + 0.0114473i
\(682\) −8.17334 14.1566i −0.312974 0.542086i
\(683\) 16.4252 + 28.4493i 0.628494 + 1.08858i 0.987854 + 0.155384i \(0.0496616\pi\)
−0.359360 + 0.933199i \(0.617005\pi\)
\(684\) −24.1825 + 41.8853i −0.924641 + 1.60153i
\(685\) 62.2948i 2.38016i
\(686\) 37.3315 + 13.1585i 1.42532 + 0.502395i
\(687\) 3.61149i 0.137787i
\(688\) −22.4591 12.9668i −0.856246 0.494354i
\(689\) 0.736889 + 1.27633i 0.0280732 + 0.0486242i
\(690\) 96.6792 + 51.3954i 3.68052 + 1.95659i
\(691\) −3.00191 1.73316i −0.114198 0.0659323i 0.441813 0.897107i \(-0.354335\pi\)
−0.556011 + 0.831175i \(0.687669\pi\)
\(692\) 18.2278i 0.692915i
\(693\) 9.65661 19.3918i 0.366824 0.736632i
\(694\) 14.0996 0.535213
\(695\) 11.9534 + 6.90128i 0.453417 + 0.261780i
\(696\) 26.0866 15.0611i 0.988808 0.570889i
\(697\) −7.57734 + 4.37478i −0.287012 + 0.165707i
\(698\) 67.4864 + 38.9633i 2.55440 + 1.47478i
\(699\) 10.7456i 0.406435i
\(700\) 55.8418 36.9999i 2.11062 1.39847i
\(701\) 36.7209i 1.38693i −0.720491 0.693464i \(-0.756083\pi\)
0.720491 0.693464i \(-0.243917\pi\)
\(702\) −1.01892 + 1.76481i −0.0384565 + 0.0666086i
\(703\) 22.0722 12.7434i 0.832468 0.480626i
\(704\) 17.7538 10.2502i 0.669122 0.386318i
\(705\) 2.56967 4.45080i 0.0967793 0.167627i
\(706\) 21.4059i 0.805620i
\(707\) −10.0018 + 0.616618i −0.376158 + 0.0231903i
\(708\) −24.3384 −0.914694
\(709\) 12.5304 + 7.23444i 0.470590 + 0.271695i 0.716486 0.697601i \(-0.245749\pi\)
−0.245897 + 0.969296i \(0.579082\pi\)
\(710\) 11.8331 + 20.4956i 0.444090 + 0.769186i
\(711\) −31.0820 + 17.9452i −1.16567 + 0.672997i
\(712\) 1.54960 2.68399i 0.0580737 0.100587i
\(713\) −17.7752 + 11.1092i −0.665687 + 0.416041i
\(714\) 25.9622 1.60058i 0.971611 0.0599003i
\(715\) 1.38241 0.0516992
\(716\) 25.1966 43.6417i 0.941640 1.63097i
\(717\) 27.6187 15.9457i 1.03144 0.595502i
\(718\) 7.00559 4.04468i 0.261446 0.150946i
\(719\) 21.2999 + 12.2975i 0.794354 + 0.458620i 0.841493 0.540268i \(-0.181677\pi\)
−0.0471393 + 0.998888i \(0.515010\pi\)
\(720\) −45.8445 −1.70852
\(721\) −35.9788 + 23.8390i −1.33992 + 0.887811i
\(722\) −5.97706 −0.222443
\(723\) 0.818204 + 0.472390i 0.0304293 + 0.0175684i
\(724\) 7.07582 + 12.2557i 0.262971 + 0.455478i
\(725\) 44.1521 + 76.4737i 1.63977 + 2.84016i
\(726\) 40.7135 + 23.5059i 1.51102 + 0.872387i
\(727\) −25.3332 −0.939557 −0.469779 0.882784i \(-0.655666\pi\)
−0.469779 + 0.882784i \(0.655666\pi\)
\(728\) −0.293349 + 0.589083i −0.0108722 + 0.0218329i
\(729\) 44.0317 1.63080
\(730\) −70.2501 40.5589i −2.60007 1.50115i
\(731\) −14.6680 + 8.46857i −0.542515 + 0.313221i
\(732\) −17.9462 + 10.3612i −0.663310 + 0.382962i
\(733\) 6.83443 11.8376i 0.252436 0.437231i −0.711760 0.702422i \(-0.752102\pi\)
0.964196 + 0.265191i \(0.0854351\pi\)
\(734\) 19.3699 0.714958
\(735\) −59.6742 + 45.0587i −2.20112 + 1.66202i
\(736\) −19.9774 31.9649i −0.736378 1.17824i
\(737\) 7.17799 12.4326i 0.264405 0.457963i
\(738\) 45.6478 26.3548i 1.68032 0.970133i
\(739\) 7.37651 + 12.7765i 0.271349 + 0.469990i 0.969208 0.246245i \(-0.0791969\pi\)
−0.697858 + 0.716236i \(0.745864\pi\)
\(740\) −54.2781 31.3375i −1.99530 1.15199i
\(741\) 2.28594 0.0839763
\(742\) −18.1272 + 36.4019i −0.665472 + 1.33636i
\(743\) 28.7849i 1.05602i 0.849240 + 0.528008i \(0.177061\pi\)
−0.849240 + 0.528008i \(0.822939\pi\)
\(744\) −7.35012 + 12.7308i −0.269469 + 0.466733i
\(745\) −43.4715 + 25.0983i −1.59267 + 0.919529i
\(746\) 41.0068 23.6753i 1.50137 0.866814i
\(747\) −1.94712 + 3.37252i −0.0712416 + 0.123394i
\(748\) 7.45938i 0.272742i
\(749\) −9.62854 14.5318i −0.351819 0.530980i
\(750\) 110.952i 4.05138i
\(751\) 4.42625 + 2.55549i 0.161516 + 0.0932513i 0.578579 0.815626i \(-0.303607\pi\)
−0.417063 + 0.908877i \(0.636941\pi\)
\(752\) −1.05903 + 0.611431i −0.0386189 + 0.0222966i
\(753\) 48.6708 28.1001i 1.77366 1.02402i
\(754\) −3.39713 1.96134i −0.123716 0.0714277i
\(755\) 29.5548 1.07561
\(756\) −31.5501 + 1.94508i −1.14747 + 0.0707419i
\(757\) 23.5243i 0.855004i 0.904014 + 0.427502i \(0.140606\pi\)
−0.904014 + 0.427502i \(0.859394\pi\)
\(758\) −37.0800 21.4081i −1.34680 0.777578i
\(759\) −10.9164 + 20.5347i −0.396241 + 0.745364i
\(760\) −9.41672 16.3102i −0.341580 0.591635i
\(761\) 7.69396 + 4.44211i 0.278906 + 0.161026i 0.632928 0.774211i \(-0.281853\pi\)
−0.354022 + 0.935237i \(0.615186\pi\)
\(762\) 84.6940i 3.06814i
\(763\) 2.20095 0.135690i 0.0796798 0.00491230i
\(764\) 55.0062i 1.99005i
\(765\) −14.9705 + 25.9296i −0.541258 + 0.937486i
\(766\) −18.0792 31.3141i −0.653229 1.13143i
\(767\) 0.350465 + 0.607024i 0.0126546 + 0.0219184i
\(768\) 8.43333 + 4.86899i 0.304312 + 0.175694i
\(769\) −5.85712 −0.211213 −0.105607 0.994408i \(-0.533678\pi\)
−0.105607 + 0.994408i \(0.533678\pi\)
\(770\) 21.0689 + 31.7980i 0.759269 + 1.14592i
\(771\) −56.8651 −2.04795
\(772\) −7.00091 + 12.1259i −0.251968 + 0.436422i
\(773\) 20.5386 + 35.5739i 0.738721 + 1.27950i 0.953071 + 0.302746i \(0.0979033\pi\)
−0.214350 + 0.976757i \(0.568763\pi\)
\(774\) 88.3637 51.0168i 3.17617 1.83376i
\(775\) −37.3207 21.5471i −1.34060 0.773996i
\(776\) 19.7924 0.710506
\(777\) 41.5536 + 20.6927i 1.49073 + 0.742345i
\(778\) 56.3284i 2.01947i
\(779\) −18.3744 10.6085i −0.658331 0.380088i
\(780\) −2.81070 4.86828i −0.100639 0.174312i
\(781\) −4.35328 + 2.51337i −0.155773 + 0.0899353i
\(782\) −17.0044 + 0.595164i −0.608078 + 0.0212830i
\(783\) 41.6691i 1.48913i
\(784\) 17.6574 2.18547i 0.630620 0.0780527i
\(785\) −55.5057 −1.98108
\(786\) −5.06499 + 8.77282i −0.180662 + 0.312916i
\(787\) −14.2477 24.6778i −0.507876 0.879667i −0.999958 0.00911848i \(-0.997097\pi\)
0.492082 0.870549i \(-0.336236\pi\)
\(788\) 8.71009 + 15.0863i 0.310284 + 0.537428i
\(789\) −10.0790 + 17.4573i −0.358822 + 0.621497i
\(790\) 63.1961i 2.24841i
\(791\) −0.345461 + 0.693732i −0.0122832 + 0.0246663i
\(792\) 9.93785i 0.353126i
\(793\) 0.516838 + 0.298397i 0.0183535 + 0.0105964i
\(794\) 29.1390 16.8234i 1.03411 0.597041i
\(795\) −38.4105 66.5289i −1.36228 2.35954i
\(796\) −2.43134 + 4.21120i −0.0861764 + 0.149262i
\(797\) 35.2018 1.24691 0.623455 0.781859i \(-0.285728\pi\)
0.623455 + 0.781859i \(0.285728\pi\)
\(798\) 34.8394 + 52.5810i 1.23330 + 1.86135i
\(799\) 0.798648i 0.0282541i
\(800\) 38.7479 67.1134i 1.36995 2.37282i
\(801\) −5.97381 10.3469i −0.211074 0.365591i
\(802\) 70.8760 40.9203i 2.50272 1.44495i
\(803\) 8.61475 14.9212i 0.304008 0.526557i
\(804\) −58.3769 −2.05880
\(805\) 39.8043 28.4261i 1.40292 1.00189i
\(806\) 1.91435 0.0674300
\(807\) −22.2544 + 38.5457i −0.783390 + 1.35687i
\(808\) 3.98112 2.29850i 0.140055 0.0808611i
\(809\) −8.24264 14.2767i −0.289796 0.501941i 0.683965 0.729515i \(-0.260254\pi\)
−0.973761 + 0.227574i \(0.926921\pi\)
\(810\) −4.71271 + 8.16265i −0.165588 + 0.286806i
\(811\) 3.18946i 0.111997i 0.998431 + 0.0559985i \(0.0178342\pi\)
−0.998431 + 0.0559985i \(0.982166\pi\)
\(812\) −3.74413 60.7316i −0.131393 2.13126i
\(813\) −27.1418 −0.951905
\(814\) 11.8402 20.5078i 0.414999 0.718799i
\(815\) −0.635765 1.10118i −0.0222699 0.0385726i
\(816\) 10.1255 5.84599i 0.354465 0.204650i
\(817\) −35.5686 20.5356i −1.24439 0.718448i
\(818\) 18.1540i 0.634740i
\(819\) 1.40126 + 2.11484i 0.0489641 + 0.0738987i
\(820\) 52.1749i 1.82203i
\(821\) −0.356735 + 0.617882i −0.0124501 + 0.0215642i −0.872183 0.489179i \(-0.837296\pi\)
0.859733 + 0.510743i \(0.170630\pi\)
\(822\) −47.8548 82.8869i −1.66913 2.89101i
\(823\) −8.49394 14.7119i −0.296080 0.512826i 0.679155 0.733994i \(-0.262346\pi\)
−0.975236 + 0.221169i \(0.929013\pi\)
\(824\) 9.89969 17.1468i 0.344872 0.597336i
\(825\) −47.8123 −1.66461
\(826\) −8.62135 + 17.3128i −0.299975 + 0.602390i
\(827\) 24.4522i 0.850285i 0.905127 + 0.425142i \(0.139776\pi\)
−0.905127 + 0.425142i \(0.860224\pi\)
\(828\) 57.5872 2.01558i 2.00129 0.0700463i
\(829\) −3.16909 + 1.82968i −0.110067 + 0.0635473i −0.554023 0.832501i \(-0.686908\pi\)
0.443956 + 0.896049i \(0.353575\pi\)
\(830\) −3.42851 5.93836i −0.119005 0.206123i
\(831\) −25.7861 14.8876i −0.894509 0.516445i
\(832\) 2.40078i 0.0832320i
\(833\) 4.52988 10.7006i 0.156951 0.370755i
\(834\) 21.2062 0.734311
\(835\) −34.4971 19.9169i −1.19382 0.689254i
\(836\) 15.6650 9.04418i 0.541785 0.312799i
\(837\) 10.1677 + 17.6109i 0.351447 + 0.608723i
\(838\) 10.3347 17.9002i 0.357005 0.618351i
\(839\) −51.2893 −1.77070 −0.885351 0.464923i \(-0.846082\pi\)
−0.885351 + 0.464923i \(0.846082\pi\)
\(840\) 15.2908 30.7061i 0.527584 1.05946i
\(841\) 51.2098 1.76586
\(842\) −36.4982 21.0723i −1.25781 0.726198i
\(843\) 15.4540 + 26.7672i 0.532265 + 0.921911i
\(844\) −18.1953 31.5152i −0.626307 1.08480i
\(845\) 24.9755 43.2589i 0.859184 1.48815i
\(846\) 4.81126i 0.165414i
\(847\) 17.5071 11.5999i 0.601550 0.398578i
\(848\) 18.2789i 0.627700i
\(849\) 41.3584 + 23.8783i 1.41942 + 0.819500i
\(850\) −17.4905 30.2944i −0.599919 1.03909i
\(851\) −26.8120 14.2534i −0.919102 0.488602i
\(852\) 17.7021 + 10.2203i 0.606464 + 0.350142i
\(853\) 37.4884i 1.28358i 0.766881 + 0.641790i \(0.221808\pi\)
−0.766881 + 0.641790i \(0.778192\pi\)
\(854\) 1.01329 + 16.4360i 0.0346740 + 0.562429i
\(855\) −72.6041 −2.48301
\(856\) 6.92555 + 3.99847i 0.236710 + 0.136665i
\(857\) 24.2615 14.0074i 0.828756 0.478483i −0.0246704 0.999696i \(-0.507854\pi\)
0.853427 + 0.521213i \(0.174520\pi\)
\(858\) 1.83938 1.06197i 0.0627953 0.0362549i
\(859\) 27.1045 + 15.6488i 0.924793 + 0.533929i 0.885161 0.465285i \(-0.154048\pi\)
0.0396317 + 0.999214i \(0.487382\pi\)
\(860\) 100.999i 3.44403i
\(861\) −2.37790 38.5706i −0.0810385 1.31448i
\(862\) 36.2064i 1.23319i
\(863\) 18.7314 32.4438i 0.637625 1.10440i −0.348328 0.937373i \(-0.613250\pi\)
0.985953 0.167025i \(-0.0534162\pi\)
\(864\) −31.6695 + 18.2844i −1.07742 + 0.622048i
\(865\) −23.6970 + 13.6815i −0.805724 + 0.465185i
\(866\) −34.2069 + 59.2481i −1.16240 + 2.01333i
\(867\) 39.4727i 1.34056i
\(868\) 16.4016 + 24.7539i 0.556706 + 0.840203i
\(869\) 13.4229 0.455340
\(870\) 177.076 + 102.235i 6.00345 + 3.46609i
\(871\) 0.840608 + 1.45598i 0.0284829 + 0.0493339i
\(872\) −0.876065 + 0.505796i −0.0296673 + 0.0171284i
\(873\) 38.1505 66.0787i 1.29120 2.23642i
\(874\) −21.8670 34.9884i −0.739663 1.18350i
\(875\) 44.3679 + 22.0941i 1.49991 + 0.746917i
\(876\) −70.0617 −2.36717
\(877\) −26.9369 + 46.6560i −0.909593 + 1.57546i −0.0949631 + 0.995481i \(0.530273\pi\)
−0.814630 + 0.579981i \(0.803060\pi\)
\(878\) 48.8348 28.1948i 1.64809 0.951527i
\(879\) 21.3863 12.3474i 0.721342 0.416467i
\(880\) 14.8486 + 8.57285i 0.500547 + 0.288991i
\(881\) −4.08101 −0.137493 −0.0687464 0.997634i \(-0.521900\pi\)
−0.0687464 + 0.997634i \(0.521900\pi\)
\(882\) −27.2891 + 64.4633i −0.918873 + 2.17059i
\(883\) 30.2362 1.01753 0.508764 0.860906i \(-0.330103\pi\)
0.508764 + 0.860906i \(0.330103\pi\)
\(884\) 0.756526 + 0.436781i 0.0254447 + 0.0146905i
\(885\) −18.2681 31.6412i −0.614075 1.06361i
\(886\) 1.22709 + 2.12537i 0.0412247 + 0.0714034i
\(887\) 34.5006 + 19.9189i 1.15842 + 0.668812i 0.950924 0.309425i \(-0.100137\pi\)
0.207492 + 0.978237i \(0.433470\pi\)
\(888\) −21.2953 −0.714624
\(889\) −33.8679 16.8654i −1.13589 0.565646i
\(890\) 21.0375 0.705177
\(891\) −1.73375 1.00098i −0.0580829 0.0335342i
\(892\) −57.7284 + 33.3295i −1.93289 + 1.11596i
\(893\) −1.67719 + 0.968327i −0.0561251 + 0.0324038i
\(894\) −38.5609 + 66.7895i −1.28967 + 2.23377i
\(895\) 75.6487 2.52866
\(896\) −20.5521 + 13.6175i −0.686598 + 0.454929i
\(897\) −1.44342 2.30954i −0.0481943 0.0771133i
\(898\) 21.3948 37.0569i 0.713953 1.23660i
\(899\) −33.8997 + 19.5720i −1.13062 + 0.652764i
\(900\) 59.2333 + 102.595i 1.97444 + 3.41983i
\(901\) 10.3385 + 5.96895i 0.344426 + 0.198855i
\(902\) −19.7132 −0.656378
\(903\) −4.60306 74.6639i −0.153180 2.48466i
\(904\) 0.355522i 0.0118245i
\(905\) −10.6220 + 18.3979i −0.353088 + 0.611566i
\(906\) 39.3244 22.7040i 1.30647 0.754289i
\(907\) −26.4224 + 15.2550i −0.877340 + 0.506532i −0.869780 0.493439i \(-0.835740\pi\)
−0.00755954 + 0.999971i \(0.502406\pi\)
\(908\) −0.276822 + 0.479469i −0.00918665 + 0.0159117i
\(909\) 17.7218i 0.587794i
\(910\) −4.45861 + 0.274876i −0.147802 + 0.00911204i
\(911\) 6.86165i 0.227337i −0.993519 0.113668i \(-0.963740\pi\)
0.993519 0.113668i \(-0.0362601\pi\)
\(912\) 24.5536 + 14.1760i 0.813050 + 0.469415i
\(913\) 1.26131 0.728218i 0.0417433 0.0241005i
\(914\) −32.1592 + 18.5671i −1.06373 + 0.614146i
\(915\) −26.9403 15.5540i −0.890619 0.514199i
\(916\) 3.34666 0.110577
\(917\) 2.49952 + 3.77237i 0.0825413 + 0.124575i
\(918\) 16.5069i 0.544807i
\(919\) 22.6047 + 13.0508i 0.745659 + 0.430506i 0.824123 0.566411i \(-0.191668\pi\)
−0.0784645 + 0.996917i \(0.525002\pi\)
\(920\) −10.5326 + 19.8127i −0.347249 + 0.653206i
\(921\) −24.3365 42.1521i −0.801916 1.38896i
\(922\) 28.1398 + 16.2465i 0.926737 + 0.535052i
\(923\) 0.588676i 0.0193765i
\(924\) 29.4913 + 14.6859i 0.970192 + 0.483131i
\(925\) 62.4279i 2.05262i
\(926\) −0.781193 + 1.35307i −0.0256716 + 0.0444645i
\(927\) −38.1639 66.1019i −1.25347 2.17107i
\(928\) −35.1961 60.9614i −1.15537 2.00116i
\(929\) −19.4884 11.2516i −0.639394 0.369155i 0.144987 0.989434i \(-0.453686\pi\)
−0.784381 + 0.620279i \(0.787019\pi\)
\(930\) −99.7857 −3.27210
\(931\) 27.9640 3.46115i 0.916484 0.113434i
\(932\) −9.95757 −0.326171
\(933\) −3.71530 + 6.43509i −0.121633 + 0.210675i
\(934\) 43.9919 + 76.1962i 1.43946 + 2.49322i
\(935\) 9.69759 5.59890i 0.317145 0.183104i
\(936\) −1.00789 0.581906i −0.0329440 0.0190202i
\(937\) −25.6250 −0.837132 −0.418566 0.908186i \(-0.637467\pi\)
−0.418566 + 0.908186i \(0.637467\pi\)
\(938\) −20.6787 + 41.5256i −0.675184 + 1.35586i
\(939\) 20.5740i 0.671407i
\(940\) 4.12441 + 2.38123i 0.134523 + 0.0776671i
\(941\) 22.5938 + 39.1336i 0.736537 + 1.27572i 0.954046 + 0.299661i \(0.0968737\pi\)
−0.217509 + 0.976058i \(0.569793\pi\)
\(942\) −73.8536 + 42.6394i −2.40628 + 1.38927i
\(943\) 0.884202 + 25.2626i 0.0287936 + 0.822663i
\(944\) 8.69348i 0.282949i
\(945\) −26.2098 39.5569i −0.852604 1.28679i
\(946\) −38.1602 −1.24070
\(947\) −1.93187 + 3.34609i −0.0627772 + 0.108733i −0.895706 0.444647i \(-0.853329\pi\)
0.832929 + 0.553380i \(0.186662\pi\)
\(948\) −27.2913 47.2699i −0.886380 1.53526i
\(949\) 1.00887 + 1.74741i 0.0327492 + 0.0567232i
\(950\) 42.4129 73.4614i 1.37606 2.38340i
\(951\) 2.20824i 0.0716072i
\(952\) 0.328011 + 5.32050i 0.0106309 + 0.172438i
\(953\) 46.4045i 1.50319i 0.659626 + 0.751594i \(0.270715\pi\)
−0.659626 + 0.751594i \(0.729285\pi\)
\(954\) −62.2819 35.9584i −2.01645 1.16420i
\(955\) 71.5109 41.2869i 2.31404 1.33601i
\(956\) 14.7764 + 25.5934i 0.477901 + 0.827749i
\(957\) −21.7148 + 37.6111i −0.701940 + 1.21580i
\(958\) 41.0180 1.32523
\(959\) −42.6747 + 2.63092i −1.37804 + 0.0849568i
\(960\) 125.141i 4.03891i
\(961\) −5.94844 + 10.3030i −0.191885 + 0.332355i
\(962\) 1.38660 + 2.40165i 0.0447056 + 0.0774324i
\(963\) 26.6984 15.4143i 0.860345 0.496720i
\(964\) −0.437749 + 0.758203i −0.0140989 + 0.0244201i
\(965\) −21.0191 −0.676630
\(966\) 31.1251 68.4002i 1.00143 2.20074i
\(967\) −48.6298 −1.56383 −0.781914 0.623386i \(-0.785757\pi\)
−0.781914 + 0.623386i \(0.785757\pi\)
\(968\) −4.81713 + 8.34351i −0.154828 + 0.268171i
\(969\) 16.0359 9.25831i 0.515146 0.297420i
\(970\) 67.1758 + 116.352i 2.15688 + 3.73583i
\(971\) 17.8488 30.9150i 0.572795 0.992109i −0.423483 0.905904i \(-0.639193\pi\)
0.996277 0.0862053i \(-0.0274741\pi\)
\(972\) 43.9832i 1.41076i
\(973\) 4.22285 8.48005i 0.135378 0.271858i
\(974\) 6.69698 0.214585
\(975\) 2.79963 4.84910i 0.0896598 0.155295i
\(976\) 3.70094 + 6.41022i 0.118464 + 0.205186i
\(977\) 20.4258 11.7928i 0.653479 0.377286i −0.136309 0.990666i \(-0.543524\pi\)
0.789788 + 0.613380i \(0.210191\pi\)
\(978\) −1.69185 0.976788i −0.0540993 0.0312342i
\(979\) 4.46837i 0.142810i
\(980\) −41.7545 55.2981i −1.33380 1.76643i
\(981\) 3.89975i 0.124510i
\(982\) −37.7695 + 65.4187i −1.20527 + 2.08759i
\(983\) −5.05628 8.75774i −0.161270 0.279329i 0.774054 0.633119i \(-0.218226\pi\)
−0.935325 + 0.353791i \(0.884892\pi\)
\(984\) 8.86384 + 15.3526i 0.282569 + 0.489424i
\(985\) −13.0753 + 22.6471i −0.416615 + 0.721598i
\(986\) −31.7745 −1.01190
\(987\) −3.15752 1.57237i −0.100505 0.0500490i
\(988\) 2.11831i 0.0673925i
\(989\) 1.71161 + 48.9025i 0.0544261 + 1.55501i
\(990\) −58.4207 + 33.7292i −1.85673 + 1.07198i
\(991\) −17.7089 30.6727i −0.562541 0.974350i −0.997274 0.0737905i \(-0.976490\pi\)
0.434732 0.900560i \(-0.356843\pi\)
\(992\) 29.7504 + 17.1764i 0.944578 + 0.545352i
\(993\) 33.0847i 1.04991i
\(994\) 13.5406 8.97183i 0.429483 0.284569i
\(995\) −7.29970 −0.231416
\(996\) −5.12897 2.96121i −0.162518 0.0938296i
\(997\) 46.7706 27.0030i 1.48124 0.855195i 0.481467 0.876464i \(-0.340104\pi\)
0.999774 + 0.0212694i \(0.00677078\pi\)
\(998\) −18.6043 32.2236i −0.588910 1.02002i
\(999\) −14.7293 + 25.5119i −0.466014 + 0.807159i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.2.g.a.68.4 yes 28
7.2 even 3 1127.2.c.c.1126.23 28
7.3 odd 6 inner 161.2.g.a.45.3 28
7.5 odd 6 1127.2.c.c.1126.21 28
23.22 odd 2 inner 161.2.g.a.68.3 yes 28
161.45 even 6 inner 161.2.g.a.45.4 yes 28
161.68 even 6 1127.2.c.c.1126.22 28
161.114 odd 6 1127.2.c.c.1126.24 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.g.a.45.3 28 7.3 odd 6 inner
161.2.g.a.45.4 yes 28 161.45 even 6 inner
161.2.g.a.68.3 yes 28 23.22 odd 2 inner
161.2.g.a.68.4 yes 28 1.1 even 1 trivial
1127.2.c.c.1126.21 28 7.5 odd 6
1127.2.c.c.1126.22 28 161.68 even 6
1127.2.c.c.1126.23 28 7.2 even 3
1127.2.c.c.1126.24 28 161.114 odd 6