Properties

Label 1614.2.a.i.1.2
Level $1614$
Weight $2$
Character 1614.1
Self dual yes
Analytic conductor $12.888$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1614,2,Mod(1,1614)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1614, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1614.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1614 = 2 \cdot 3 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1614.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.8878548862\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 33x^{6} + 352x^{4} - 18x^{3} - 1229x^{2} + 178x + 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.24183\) of defining polynomial
Character \(\chi\) \(=\) 1614.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -3.24183 q^{5} -1.00000 q^{6} +0.788032 q^{7} -1.00000 q^{8} +1.00000 q^{9} +3.24183 q^{10} -3.71321 q^{11} +1.00000 q^{12} -4.56367 q^{13} -0.788032 q^{14} -3.24183 q^{15} +1.00000 q^{16} +6.73472 q^{17} -1.00000 q^{18} +0.264723 q^{19} -3.24183 q^{20} +0.788032 q^{21} +3.71321 q^{22} -4.99945 q^{23} -1.00000 q^{24} +5.50946 q^{25} +4.56367 q^{26} +1.00000 q^{27} +0.788032 q^{28} +2.15583 q^{29} +3.24183 q^{30} +9.33164 q^{31} -1.00000 q^{32} -3.71321 q^{33} -6.73472 q^{34} -2.55467 q^{35} +1.00000 q^{36} +10.4700 q^{37} -0.264723 q^{38} -4.56367 q^{39} +3.24183 q^{40} +10.0262 q^{41} -0.788032 q^{42} +1.64774 q^{43} -3.71321 q^{44} -3.24183 q^{45} +4.99945 q^{46} -2.72055 q^{47} +1.00000 q^{48} -6.37901 q^{49} -5.50946 q^{50} +6.73472 q^{51} -4.56367 q^{52} -9.63165 q^{53} -1.00000 q^{54} +12.0376 q^{55} -0.788032 q^{56} +0.264723 q^{57} -2.15583 q^{58} -13.8386 q^{59} -3.24183 q^{60} +9.36822 q^{61} -9.33164 q^{62} +0.788032 q^{63} +1.00000 q^{64} +14.7946 q^{65} +3.71321 q^{66} +14.7199 q^{67} +6.73472 q^{68} -4.99945 q^{69} +2.55467 q^{70} +14.4817 q^{71} -1.00000 q^{72} +5.06594 q^{73} -10.4700 q^{74} +5.50946 q^{75} +0.264723 q^{76} -2.92613 q^{77} +4.56367 q^{78} +4.20572 q^{79} -3.24183 q^{80} +1.00000 q^{81} -10.0262 q^{82} +1.30785 q^{83} +0.788032 q^{84} -21.8328 q^{85} -1.64774 q^{86} +2.15583 q^{87} +3.71321 q^{88} +7.12840 q^{89} +3.24183 q^{90} -3.59632 q^{91} -4.99945 q^{92} +9.33164 q^{93} +2.72055 q^{94} -0.858187 q^{95} -1.00000 q^{96} +4.67710 q^{97} +6.37901 q^{98} -3.71321 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{3} + 8 q^{4} - 8 q^{6} + 9 q^{7} - 8 q^{8} + 8 q^{9} + 8 q^{11} + 8 q^{12} - 3 q^{13} - 9 q^{14} + 8 q^{16} + 8 q^{17} - 8 q^{18} + 18 q^{19} + 9 q^{21} - 8 q^{22} - 10 q^{23} - 8 q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −3.24183 −1.44979 −0.724895 0.688859i \(-0.758112\pi\)
−0.724895 + 0.688859i \(0.758112\pi\)
\(6\) −1.00000 −0.408248
\(7\) 0.788032 0.297848 0.148924 0.988849i \(-0.452419\pi\)
0.148924 + 0.988849i \(0.452419\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 3.24183 1.02516
\(11\) −3.71321 −1.11958 −0.559788 0.828636i \(-0.689117\pi\)
−0.559788 + 0.828636i \(0.689117\pi\)
\(12\) 1.00000 0.288675
\(13\) −4.56367 −1.26573 −0.632867 0.774260i \(-0.718122\pi\)
−0.632867 + 0.774260i \(0.718122\pi\)
\(14\) −0.788032 −0.210610
\(15\) −3.24183 −0.837037
\(16\) 1.00000 0.250000
\(17\) 6.73472 1.63341 0.816705 0.577055i \(-0.195798\pi\)
0.816705 + 0.577055i \(0.195798\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0.264723 0.0607316 0.0303658 0.999539i \(-0.490333\pi\)
0.0303658 + 0.999539i \(0.490333\pi\)
\(20\) −3.24183 −0.724895
\(21\) 0.788032 0.171963
\(22\) 3.71321 0.791659
\(23\) −4.99945 −1.04246 −0.521228 0.853417i \(-0.674526\pi\)
−0.521228 + 0.853417i \(0.674526\pi\)
\(24\) −1.00000 −0.204124
\(25\) 5.50946 1.10189
\(26\) 4.56367 0.895009
\(27\) 1.00000 0.192450
\(28\) 0.788032 0.148924
\(29\) 2.15583 0.400327 0.200163 0.979763i \(-0.435853\pi\)
0.200163 + 0.979763i \(0.435853\pi\)
\(30\) 3.24183 0.591875
\(31\) 9.33164 1.67601 0.838006 0.545661i \(-0.183721\pi\)
0.838006 + 0.545661i \(0.183721\pi\)
\(32\) −1.00000 −0.176777
\(33\) −3.71321 −0.646387
\(34\) −6.73472 −1.15500
\(35\) −2.55467 −0.431818
\(36\) 1.00000 0.166667
\(37\) 10.4700 1.72126 0.860629 0.509233i \(-0.170071\pi\)
0.860629 + 0.509233i \(0.170071\pi\)
\(38\) −0.264723 −0.0429437
\(39\) −4.56367 −0.730772
\(40\) 3.24183 0.512578
\(41\) 10.0262 1.56584 0.782918 0.622125i \(-0.213730\pi\)
0.782918 + 0.622125i \(0.213730\pi\)
\(42\) −0.788032 −0.121596
\(43\) 1.64774 0.251278 0.125639 0.992076i \(-0.459902\pi\)
0.125639 + 0.992076i \(0.459902\pi\)
\(44\) −3.71321 −0.559788
\(45\) −3.24183 −0.483264
\(46\) 4.99945 0.737128
\(47\) −2.72055 −0.396834 −0.198417 0.980118i \(-0.563580\pi\)
−0.198417 + 0.980118i \(0.563580\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.37901 −0.911286
\(50\) −5.50946 −0.779156
\(51\) 6.73472 0.943050
\(52\) −4.56367 −0.632867
\(53\) −9.63165 −1.32301 −0.661504 0.749941i \(-0.730082\pi\)
−0.661504 + 0.749941i \(0.730082\pi\)
\(54\) −1.00000 −0.136083
\(55\) 12.0376 1.62315
\(56\) −0.788032 −0.105305
\(57\) 0.264723 0.0350634
\(58\) −2.15583 −0.283074
\(59\) −13.8386 −1.80163 −0.900814 0.434204i \(-0.857030\pi\)
−0.900814 + 0.434204i \(0.857030\pi\)
\(60\) −3.24183 −0.418519
\(61\) 9.36822 1.19948 0.599739 0.800196i \(-0.295271\pi\)
0.599739 + 0.800196i \(0.295271\pi\)
\(62\) −9.33164 −1.18512
\(63\) 0.788032 0.0992827
\(64\) 1.00000 0.125000
\(65\) 14.7946 1.83505
\(66\) 3.71321 0.457065
\(67\) 14.7199 1.79833 0.899163 0.437615i \(-0.144177\pi\)
0.899163 + 0.437615i \(0.144177\pi\)
\(68\) 6.73472 0.816705
\(69\) −4.99945 −0.601862
\(70\) 2.55467 0.305341
\(71\) 14.4817 1.71866 0.859328 0.511425i \(-0.170882\pi\)
0.859328 + 0.511425i \(0.170882\pi\)
\(72\) −1.00000 −0.117851
\(73\) 5.06594 0.592924 0.296462 0.955045i \(-0.404193\pi\)
0.296462 + 0.955045i \(0.404193\pi\)
\(74\) −10.4700 −1.21711
\(75\) 5.50946 0.636178
\(76\) 0.264723 0.0303658
\(77\) −2.92613 −0.333463
\(78\) 4.56367 0.516734
\(79\) 4.20572 0.473181 0.236590 0.971609i \(-0.423970\pi\)
0.236590 + 0.971609i \(0.423970\pi\)
\(80\) −3.24183 −0.362448
\(81\) 1.00000 0.111111
\(82\) −10.0262 −1.10721
\(83\) 1.30785 0.143555 0.0717774 0.997421i \(-0.477133\pi\)
0.0717774 + 0.997421i \(0.477133\pi\)
\(84\) 0.788032 0.0859814
\(85\) −21.8328 −2.36810
\(86\) −1.64774 −0.177681
\(87\) 2.15583 0.231129
\(88\) 3.71321 0.395830
\(89\) 7.12840 0.755609 0.377804 0.925885i \(-0.376679\pi\)
0.377804 + 0.925885i \(0.376679\pi\)
\(90\) 3.24183 0.341719
\(91\) −3.59632 −0.376997
\(92\) −4.99945 −0.521228
\(93\) 9.33164 0.967646
\(94\) 2.72055 0.280604
\(95\) −0.858187 −0.0880481
\(96\) −1.00000 −0.102062
\(97\) 4.67710 0.474888 0.237444 0.971401i \(-0.423690\pi\)
0.237444 + 0.971401i \(0.423690\pi\)
\(98\) 6.37901 0.644377
\(99\) −3.71321 −0.373192
\(100\) 5.50946 0.550946
\(101\) −9.10834 −0.906313 −0.453157 0.891431i \(-0.649702\pi\)
−0.453157 + 0.891431i \(0.649702\pi\)
\(102\) −6.73472 −0.666837
\(103\) −7.42243 −0.731354 −0.365677 0.930742i \(-0.619162\pi\)
−0.365677 + 0.930742i \(0.619162\pi\)
\(104\) 4.56367 0.447505
\(105\) −2.55467 −0.249310
\(106\) 9.63165 0.935508
\(107\) 15.4018 1.48895 0.744474 0.667652i \(-0.232700\pi\)
0.744474 + 0.667652i \(0.232700\pi\)
\(108\) 1.00000 0.0962250
\(109\) 5.10716 0.489177 0.244589 0.969627i \(-0.421347\pi\)
0.244589 + 0.969627i \(0.421347\pi\)
\(110\) −12.0376 −1.14774
\(111\) 10.4700 0.993768
\(112\) 0.788032 0.0744620
\(113\) −14.8298 −1.39507 −0.697535 0.716551i \(-0.745720\pi\)
−0.697535 + 0.716551i \(0.745720\pi\)
\(114\) −0.264723 −0.0247936
\(115\) 16.2074 1.51134
\(116\) 2.15583 0.200163
\(117\) −4.56367 −0.421911
\(118\) 13.8386 1.27394
\(119\) 5.30718 0.486508
\(120\) 3.24183 0.295937
\(121\) 2.78793 0.253448
\(122\) −9.36822 −0.848159
\(123\) 10.0262 0.904036
\(124\) 9.33164 0.838006
\(125\) −1.65160 −0.147723
\(126\) −0.788032 −0.0702035
\(127\) −10.0825 −0.894673 −0.447337 0.894366i \(-0.647627\pi\)
−0.447337 + 0.894366i \(0.647627\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.64774 0.145076
\(130\) −14.7946 −1.29758
\(131\) −3.81000 −0.332881 −0.166440 0.986052i \(-0.553227\pi\)
−0.166440 + 0.986052i \(0.553227\pi\)
\(132\) −3.71321 −0.323193
\(133\) 0.208610 0.0180888
\(134\) −14.7199 −1.27161
\(135\) −3.24183 −0.279012
\(136\) −6.73472 −0.577498
\(137\) 16.2799 1.39088 0.695441 0.718583i \(-0.255209\pi\)
0.695441 + 0.718583i \(0.255209\pi\)
\(138\) 4.99945 0.425581
\(139\) 9.94125 0.843206 0.421603 0.906780i \(-0.361468\pi\)
0.421603 + 0.906780i \(0.361468\pi\)
\(140\) −2.55467 −0.215909
\(141\) −2.72055 −0.229112
\(142\) −14.4817 −1.21527
\(143\) 16.9459 1.41708
\(144\) 1.00000 0.0833333
\(145\) −6.98882 −0.580390
\(146\) −5.06594 −0.419260
\(147\) −6.37901 −0.526131
\(148\) 10.4700 0.860629
\(149\) 2.19925 0.180170 0.0900848 0.995934i \(-0.471286\pi\)
0.0900848 + 0.995934i \(0.471286\pi\)
\(150\) −5.50946 −0.449846
\(151\) −18.2565 −1.48570 −0.742848 0.669460i \(-0.766525\pi\)
−0.742848 + 0.669460i \(0.766525\pi\)
\(152\) −0.264723 −0.0214719
\(153\) 6.73472 0.544470
\(154\) 2.92613 0.235794
\(155\) −30.2516 −2.42987
\(156\) −4.56367 −0.365386
\(157\) −21.7925 −1.73923 −0.869615 0.493731i \(-0.835633\pi\)
−0.869615 + 0.493731i \(0.835633\pi\)
\(158\) −4.20572 −0.334589
\(159\) −9.63165 −0.763839
\(160\) 3.24183 0.256289
\(161\) −3.93972 −0.310494
\(162\) −1.00000 −0.0785674
\(163\) 7.45439 0.583873 0.291937 0.956438i \(-0.405700\pi\)
0.291937 + 0.956438i \(0.405700\pi\)
\(164\) 10.0262 0.782918
\(165\) 12.0376 0.937126
\(166\) −1.30785 −0.101509
\(167\) 23.7891 1.84085 0.920426 0.390917i \(-0.127842\pi\)
0.920426 + 0.390917i \(0.127842\pi\)
\(168\) −0.788032 −0.0607980
\(169\) 7.82709 0.602084
\(170\) 21.8328 1.67450
\(171\) 0.264723 0.0202439
\(172\) 1.64774 0.125639
\(173\) 21.3001 1.61942 0.809709 0.586832i \(-0.199625\pi\)
0.809709 + 0.586832i \(0.199625\pi\)
\(174\) −2.15583 −0.163433
\(175\) 4.34164 0.328197
\(176\) −3.71321 −0.279894
\(177\) −13.8386 −1.04017
\(178\) −7.12840 −0.534296
\(179\) 15.4981 1.15839 0.579193 0.815191i \(-0.303368\pi\)
0.579193 + 0.815191i \(0.303368\pi\)
\(180\) −3.24183 −0.241632
\(181\) −7.50942 −0.558171 −0.279085 0.960266i \(-0.590031\pi\)
−0.279085 + 0.960266i \(0.590031\pi\)
\(182\) 3.59632 0.266577
\(183\) 9.36822 0.692519
\(184\) 4.99945 0.368564
\(185\) −33.9420 −2.49546
\(186\) −9.33164 −0.684229
\(187\) −25.0074 −1.82873
\(188\) −2.72055 −0.198417
\(189\) 0.788032 0.0573209
\(190\) 0.858187 0.0622594
\(191\) 12.6057 0.912114 0.456057 0.889951i \(-0.349261\pi\)
0.456057 + 0.889951i \(0.349261\pi\)
\(192\) 1.00000 0.0721688
\(193\) 19.3091 1.38990 0.694951 0.719057i \(-0.255426\pi\)
0.694951 + 0.719057i \(0.255426\pi\)
\(194\) −4.67710 −0.335796
\(195\) 14.7946 1.05947
\(196\) −6.37901 −0.455643
\(197\) −14.3110 −1.01962 −0.509809 0.860288i \(-0.670284\pi\)
−0.509809 + 0.860288i \(0.670284\pi\)
\(198\) 3.71321 0.263886
\(199\) −17.8313 −1.26402 −0.632012 0.774958i \(-0.717771\pi\)
−0.632012 + 0.774958i \(0.717771\pi\)
\(200\) −5.50946 −0.389578
\(201\) 14.7199 1.03826
\(202\) 9.10834 0.640860
\(203\) 1.69886 0.119237
\(204\) 6.73472 0.471525
\(205\) −32.5034 −2.27013
\(206\) 7.42243 0.517145
\(207\) −4.99945 −0.347485
\(208\) −4.56367 −0.316434
\(209\) −0.982972 −0.0679936
\(210\) 2.55467 0.176289
\(211\) 21.9781 1.51304 0.756518 0.653972i \(-0.226899\pi\)
0.756518 + 0.653972i \(0.226899\pi\)
\(212\) −9.63165 −0.661504
\(213\) 14.4817 0.992266
\(214\) −15.4018 −1.05285
\(215\) −5.34170 −0.364301
\(216\) −1.00000 −0.0680414
\(217\) 7.35363 0.499197
\(218\) −5.10716 −0.345900
\(219\) 5.06594 0.342325
\(220\) 12.0376 0.811575
\(221\) −30.7351 −2.06746
\(222\) −10.4700 −0.702700
\(223\) −5.97781 −0.400303 −0.200152 0.979765i \(-0.564144\pi\)
−0.200152 + 0.979765i \(0.564144\pi\)
\(224\) −0.788032 −0.0526526
\(225\) 5.50946 0.367298
\(226\) 14.8298 0.986464
\(227\) −24.6256 −1.63446 −0.817230 0.576311i \(-0.804492\pi\)
−0.817230 + 0.576311i \(0.804492\pi\)
\(228\) 0.264723 0.0175317
\(229\) −0.638337 −0.0421825 −0.0210912 0.999778i \(-0.506714\pi\)
−0.0210912 + 0.999778i \(0.506714\pi\)
\(230\) −16.2074 −1.06868
\(231\) −2.92613 −0.192525
\(232\) −2.15583 −0.141537
\(233\) 22.3358 1.46327 0.731635 0.681697i \(-0.238758\pi\)
0.731635 + 0.681697i \(0.238758\pi\)
\(234\) 4.56367 0.298336
\(235\) 8.81958 0.575326
\(236\) −13.8386 −0.900814
\(237\) 4.20572 0.273191
\(238\) −5.30718 −0.344013
\(239\) 13.6030 0.879904 0.439952 0.898021i \(-0.354996\pi\)
0.439952 + 0.898021i \(0.354996\pi\)
\(240\) −3.24183 −0.209259
\(241\) 9.10154 0.586282 0.293141 0.956069i \(-0.405299\pi\)
0.293141 + 0.956069i \(0.405299\pi\)
\(242\) −2.78793 −0.179215
\(243\) 1.00000 0.0641500
\(244\) 9.36822 0.599739
\(245\) 20.6797 1.32117
\(246\) −10.0262 −0.639250
\(247\) −1.20811 −0.0768701
\(248\) −9.33164 −0.592560
\(249\) 1.30785 0.0828814
\(250\) 1.65160 0.104456
\(251\) 20.2994 1.28129 0.640643 0.767839i \(-0.278668\pi\)
0.640643 + 0.767839i \(0.278668\pi\)
\(252\) 0.788032 0.0496414
\(253\) 18.5640 1.16711
\(254\) 10.0825 0.632629
\(255\) −21.8328 −1.36722
\(256\) 1.00000 0.0625000
\(257\) 29.5408 1.84270 0.921352 0.388729i \(-0.127086\pi\)
0.921352 + 0.388729i \(0.127086\pi\)
\(258\) −1.64774 −0.102584
\(259\) 8.25070 0.512673
\(260\) 14.7946 0.917525
\(261\) 2.15583 0.133442
\(262\) 3.81000 0.235382
\(263\) −20.8720 −1.28702 −0.643511 0.765437i \(-0.722523\pi\)
−0.643511 + 0.765437i \(0.722523\pi\)
\(264\) 3.71321 0.228532
\(265\) 31.2242 1.91809
\(266\) −0.208610 −0.0127907
\(267\) 7.12840 0.436251
\(268\) 14.7199 0.899163
\(269\) −1.00000 −0.0609711
\(270\) 3.24183 0.197292
\(271\) −4.95607 −0.301060 −0.150530 0.988605i \(-0.548098\pi\)
−0.150530 + 0.988605i \(0.548098\pi\)
\(272\) 6.73472 0.408353
\(273\) −3.59632 −0.217659
\(274\) −16.2799 −0.983502
\(275\) −20.4578 −1.23365
\(276\) −4.99945 −0.300931
\(277\) −13.4047 −0.805408 −0.402704 0.915330i \(-0.631930\pi\)
−0.402704 + 0.915330i \(0.631930\pi\)
\(278\) −9.94125 −0.596237
\(279\) 9.33164 0.558671
\(280\) 2.55467 0.152671
\(281\) −15.3640 −0.916538 −0.458269 0.888814i \(-0.651530\pi\)
−0.458269 + 0.888814i \(0.651530\pi\)
\(282\) 2.72055 0.162007
\(283\) −29.1980 −1.73564 −0.867822 0.496876i \(-0.834480\pi\)
−0.867822 + 0.496876i \(0.834480\pi\)
\(284\) 14.4817 0.859328
\(285\) −0.858187 −0.0508346
\(286\) −16.9459 −1.00203
\(287\) 7.90100 0.466381
\(288\) −1.00000 −0.0589256
\(289\) 28.3565 1.66803
\(290\) 6.98882 0.410398
\(291\) 4.67710 0.274177
\(292\) 5.06594 0.296462
\(293\) −15.7324 −0.919094 −0.459547 0.888153i \(-0.651988\pi\)
−0.459547 + 0.888153i \(0.651988\pi\)
\(294\) 6.37901 0.372031
\(295\) 44.8623 2.61198
\(296\) −10.4700 −0.608556
\(297\) −3.71321 −0.215462
\(298\) −2.19925 −0.127399
\(299\) 22.8158 1.31947
\(300\) 5.50946 0.318089
\(301\) 1.29847 0.0748428
\(302\) 18.2565 1.05055
\(303\) −9.10834 −0.523260
\(304\) 0.264723 0.0151829
\(305\) −30.3702 −1.73899
\(306\) −6.73472 −0.384998
\(307\) 13.2383 0.755551 0.377776 0.925897i \(-0.376689\pi\)
0.377776 + 0.925897i \(0.376689\pi\)
\(308\) −2.92613 −0.166732
\(309\) −7.42243 −0.422247
\(310\) 30.2516 1.71818
\(311\) 0.988862 0.0560732 0.0280366 0.999607i \(-0.491074\pi\)
0.0280366 + 0.999607i \(0.491074\pi\)
\(312\) 4.56367 0.258367
\(313\) 10.8424 0.612851 0.306426 0.951895i \(-0.400867\pi\)
0.306426 + 0.951895i \(0.400867\pi\)
\(314\) 21.7925 1.22982
\(315\) −2.55467 −0.143939
\(316\) 4.20572 0.236590
\(317\) 1.55022 0.0870688 0.0435344 0.999052i \(-0.486138\pi\)
0.0435344 + 0.999052i \(0.486138\pi\)
\(318\) 9.63165 0.540116
\(319\) −8.00504 −0.448196
\(320\) −3.24183 −0.181224
\(321\) 15.4018 0.859644
\(322\) 3.93972 0.219552
\(323\) 1.78284 0.0991996
\(324\) 1.00000 0.0555556
\(325\) −25.1434 −1.39470
\(326\) −7.45439 −0.412861
\(327\) 5.10716 0.282426
\(328\) −10.0262 −0.553607
\(329\) −2.14388 −0.118196
\(330\) −12.0376 −0.662648
\(331\) 8.69747 0.478056 0.239028 0.971013i \(-0.423171\pi\)
0.239028 + 0.971013i \(0.423171\pi\)
\(332\) 1.30785 0.0717774
\(333\) 10.4700 0.573752
\(334\) −23.7891 −1.30168
\(335\) −47.7195 −2.60720
\(336\) 0.788032 0.0429907
\(337\) 7.56563 0.412126 0.206063 0.978539i \(-0.433935\pi\)
0.206063 + 0.978539i \(0.433935\pi\)
\(338\) −7.82709 −0.425737
\(339\) −14.8298 −0.805444
\(340\) −21.8328 −1.18405
\(341\) −34.6503 −1.87642
\(342\) −0.264723 −0.0143146
\(343\) −10.5431 −0.569273
\(344\) −1.64774 −0.0888403
\(345\) 16.2074 0.872575
\(346\) −21.3001 −1.14510
\(347\) −23.9341 −1.28485 −0.642426 0.766348i \(-0.722072\pi\)
−0.642426 + 0.766348i \(0.722072\pi\)
\(348\) 2.15583 0.115564
\(349\) −20.8227 −1.11462 −0.557308 0.830306i \(-0.688166\pi\)
−0.557308 + 0.830306i \(0.688166\pi\)
\(350\) −4.34164 −0.232070
\(351\) −4.56367 −0.243591
\(352\) 3.71321 0.197915
\(353\) −15.0592 −0.801521 −0.400760 0.916183i \(-0.631254\pi\)
−0.400760 + 0.916183i \(0.631254\pi\)
\(354\) 13.8386 0.735512
\(355\) −46.9471 −2.49169
\(356\) 7.12840 0.377804
\(357\) 5.30718 0.280886
\(358\) −15.4981 −0.819102
\(359\) −5.38757 −0.284345 −0.142173 0.989842i \(-0.545409\pi\)
−0.142173 + 0.989842i \(0.545409\pi\)
\(360\) 3.24183 0.170859
\(361\) −18.9299 −0.996312
\(362\) 7.50942 0.394686
\(363\) 2.78793 0.146328
\(364\) −3.59632 −0.188498
\(365\) −16.4229 −0.859615
\(366\) −9.36822 −0.489685
\(367\) 11.6957 0.610509 0.305255 0.952271i \(-0.401258\pi\)
0.305255 + 0.952271i \(0.401258\pi\)
\(368\) −4.99945 −0.260614
\(369\) 10.0262 0.521945
\(370\) 33.9420 1.76456
\(371\) −7.59005 −0.394056
\(372\) 9.33164 0.483823
\(373\) −5.57113 −0.288462 −0.144231 0.989544i \(-0.546071\pi\)
−0.144231 + 0.989544i \(0.546071\pi\)
\(374\) 25.0074 1.29310
\(375\) −1.65160 −0.0852882
\(376\) 2.72055 0.140302
\(377\) −9.83848 −0.506708
\(378\) −0.788032 −0.0405320
\(379\) −26.4889 −1.36064 −0.680322 0.732913i \(-0.738160\pi\)
−0.680322 + 0.732913i \(0.738160\pi\)
\(380\) −0.858187 −0.0440241
\(381\) −10.0825 −0.516540
\(382\) −12.6057 −0.644962
\(383\) −9.63095 −0.492118 −0.246059 0.969255i \(-0.579136\pi\)
−0.246059 + 0.969255i \(0.579136\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 9.48602 0.483452
\(386\) −19.3091 −0.982809
\(387\) 1.64774 0.0837595
\(388\) 4.67710 0.237444
\(389\) −24.4142 −1.23785 −0.618923 0.785451i \(-0.712431\pi\)
−0.618923 + 0.785451i \(0.712431\pi\)
\(390\) −14.7946 −0.749156
\(391\) −33.6699 −1.70276
\(392\) 6.37901 0.322188
\(393\) −3.81000 −0.192189
\(394\) 14.3110 0.720979
\(395\) −13.6342 −0.686013
\(396\) −3.71321 −0.186596
\(397\) −4.91361 −0.246607 −0.123304 0.992369i \(-0.539349\pi\)
−0.123304 + 0.992369i \(0.539349\pi\)
\(398\) 17.8313 0.893800
\(399\) 0.208610 0.0104436
\(400\) 5.50946 0.275473
\(401\) 30.0274 1.49950 0.749749 0.661723i \(-0.230174\pi\)
0.749749 + 0.661723i \(0.230174\pi\)
\(402\) −14.7199 −0.734163
\(403\) −42.5865 −2.12139
\(404\) −9.10834 −0.453157
\(405\) −3.24183 −0.161088
\(406\) −1.69886 −0.0843130
\(407\) −38.8773 −1.92708
\(408\) −6.73472 −0.333418
\(409\) 3.62462 0.179226 0.0896129 0.995977i \(-0.471437\pi\)
0.0896129 + 0.995977i \(0.471437\pi\)
\(410\) 32.5034 1.60523
\(411\) 16.2799 0.803026
\(412\) −7.42243 −0.365677
\(413\) −10.9052 −0.536612
\(414\) 4.99945 0.245709
\(415\) −4.23982 −0.208124
\(416\) 4.56367 0.223752
\(417\) 9.94125 0.486825
\(418\) 0.982972 0.0480787
\(419\) −17.4582 −0.852887 −0.426443 0.904514i \(-0.640234\pi\)
−0.426443 + 0.904514i \(0.640234\pi\)
\(420\) −2.55467 −0.124655
\(421\) 30.3284 1.47812 0.739058 0.673641i \(-0.235271\pi\)
0.739058 + 0.673641i \(0.235271\pi\)
\(422\) −21.9781 −1.06988
\(423\) −2.72055 −0.132278
\(424\) 9.63165 0.467754
\(425\) 37.1047 1.79984
\(426\) −14.4817 −0.701638
\(427\) 7.38246 0.357262
\(428\) 15.4018 0.744474
\(429\) 16.9459 0.818154
\(430\) 5.34170 0.257600
\(431\) 21.5434 1.03771 0.518854 0.854863i \(-0.326359\pi\)
0.518854 + 0.854863i \(0.326359\pi\)
\(432\) 1.00000 0.0481125
\(433\) 16.3157 0.784083 0.392041 0.919948i \(-0.371769\pi\)
0.392041 + 0.919948i \(0.371769\pi\)
\(434\) −7.35363 −0.352986
\(435\) −6.98882 −0.335088
\(436\) 5.10716 0.244589
\(437\) −1.32347 −0.0633101
\(438\) −5.06594 −0.242060
\(439\) −13.5738 −0.647842 −0.323921 0.946084i \(-0.605001\pi\)
−0.323921 + 0.946084i \(0.605001\pi\)
\(440\) −12.0376 −0.573870
\(441\) −6.37901 −0.303762
\(442\) 30.7351 1.46192
\(443\) −6.63518 −0.315247 −0.157623 0.987499i \(-0.550383\pi\)
−0.157623 + 0.987499i \(0.550383\pi\)
\(444\) 10.4700 0.496884
\(445\) −23.1091 −1.09547
\(446\) 5.97781 0.283057
\(447\) 2.19925 0.104021
\(448\) 0.788032 0.0372310
\(449\) −9.47509 −0.447157 −0.223578 0.974686i \(-0.571774\pi\)
−0.223578 + 0.974686i \(0.571774\pi\)
\(450\) −5.50946 −0.259719
\(451\) −37.2296 −1.75307
\(452\) −14.8298 −0.697535
\(453\) −18.2565 −0.857767
\(454\) 24.6256 1.15574
\(455\) 11.6587 0.546566
\(456\) −0.264723 −0.0123968
\(457\) −16.5364 −0.773540 −0.386770 0.922176i \(-0.626409\pi\)
−0.386770 + 0.922176i \(0.626409\pi\)
\(458\) 0.638337 0.0298275
\(459\) 6.73472 0.314350
\(460\) 16.2074 0.755672
\(461\) 36.0311 1.67814 0.839068 0.544027i \(-0.183101\pi\)
0.839068 + 0.544027i \(0.183101\pi\)
\(462\) 2.92613 0.136136
\(463\) −22.1663 −1.03016 −0.515078 0.857144i \(-0.672237\pi\)
−0.515078 + 0.857144i \(0.672237\pi\)
\(464\) 2.15583 0.100082
\(465\) −30.2516 −1.40288
\(466\) −22.3358 −1.03469
\(467\) −9.92491 −0.459270 −0.229635 0.973277i \(-0.573753\pi\)
−0.229635 + 0.973277i \(0.573753\pi\)
\(468\) −4.56367 −0.210956
\(469\) 11.5998 0.535628
\(470\) −8.81958 −0.406817
\(471\) −21.7925 −1.00414
\(472\) 13.8386 0.636972
\(473\) −6.11842 −0.281325
\(474\) −4.20572 −0.193175
\(475\) 1.45848 0.0669197
\(476\) 5.30718 0.243254
\(477\) −9.63165 −0.441003
\(478\) −13.6030 −0.622186
\(479\) 34.4376 1.57349 0.786747 0.617276i \(-0.211764\pi\)
0.786747 + 0.617276i \(0.211764\pi\)
\(480\) 3.24183 0.147969
\(481\) −47.7816 −2.17865
\(482\) −9.10154 −0.414564
\(483\) −3.93972 −0.179264
\(484\) 2.78793 0.126724
\(485\) −15.1624 −0.688488
\(486\) −1.00000 −0.0453609
\(487\) 7.07833 0.320750 0.160375 0.987056i \(-0.448730\pi\)
0.160375 + 0.987056i \(0.448730\pi\)
\(488\) −9.36822 −0.424080
\(489\) 7.45439 0.337099
\(490\) −20.6797 −0.934212
\(491\) −10.6411 −0.480226 −0.240113 0.970745i \(-0.577185\pi\)
−0.240113 + 0.970745i \(0.577185\pi\)
\(492\) 10.0262 0.452018
\(493\) 14.5189 0.653898
\(494\) 1.20811 0.0543554
\(495\) 12.0376 0.541050
\(496\) 9.33164 0.419003
\(497\) 11.4120 0.511899
\(498\) −1.30785 −0.0586060
\(499\) −33.9900 −1.52160 −0.760801 0.648985i \(-0.775194\pi\)
−0.760801 + 0.648985i \(0.775194\pi\)
\(500\) −1.65160 −0.0738617
\(501\) 23.7891 1.06282
\(502\) −20.2994 −0.906005
\(503\) −18.5083 −0.825242 −0.412621 0.910903i \(-0.635387\pi\)
−0.412621 + 0.910903i \(0.635387\pi\)
\(504\) −0.788032 −0.0351017
\(505\) 29.5277 1.31396
\(506\) −18.5640 −0.825270
\(507\) 7.82709 0.347613
\(508\) −10.0825 −0.447337
\(509\) 21.7092 0.962246 0.481123 0.876653i \(-0.340229\pi\)
0.481123 + 0.876653i \(0.340229\pi\)
\(510\) 21.8328 0.966774
\(511\) 3.99213 0.176601
\(512\) −1.00000 −0.0441942
\(513\) 0.264723 0.0116878
\(514\) −29.5408 −1.30299
\(515\) 24.0623 1.06031
\(516\) 1.64774 0.0725378
\(517\) 10.1020 0.444285
\(518\) −8.25070 −0.362515
\(519\) 21.3001 0.934972
\(520\) −14.7946 −0.648788
\(521\) 34.1532 1.49628 0.748139 0.663542i \(-0.230948\pi\)
0.748139 + 0.663542i \(0.230948\pi\)
\(522\) −2.15583 −0.0943580
\(523\) −29.4256 −1.28669 −0.643347 0.765575i \(-0.722455\pi\)
−0.643347 + 0.765575i \(0.722455\pi\)
\(524\) −3.81000 −0.166440
\(525\) 4.34164 0.189485
\(526\) 20.8720 0.910061
\(527\) 62.8460 2.73762
\(528\) −3.71321 −0.161597
\(529\) 1.99445 0.0867153
\(530\) −31.2242 −1.35629
\(531\) −13.8386 −0.600543
\(532\) 0.208610 0.00904440
\(533\) −45.7565 −1.98193
\(534\) −7.12840 −0.308476
\(535\) −49.9300 −2.15866
\(536\) −14.7199 −0.635804
\(537\) 15.4981 0.668794
\(538\) 1.00000 0.0431131
\(539\) 23.6866 1.02025
\(540\) −3.24183 −0.139506
\(541\) 24.5585 1.05585 0.527926 0.849290i \(-0.322970\pi\)
0.527926 + 0.849290i \(0.322970\pi\)
\(542\) 4.95607 0.212881
\(543\) −7.50942 −0.322260
\(544\) −6.73472 −0.288749
\(545\) −16.5565 −0.709204
\(546\) 3.59632 0.153908
\(547\) −21.9377 −0.937988 −0.468994 0.883201i \(-0.655383\pi\)
−0.468994 + 0.883201i \(0.655383\pi\)
\(548\) 16.2799 0.695441
\(549\) 9.36822 0.399826
\(550\) 20.4578 0.872324
\(551\) 0.570697 0.0243125
\(552\) 4.99945 0.212791
\(553\) 3.31424 0.140936
\(554\) 13.4047 0.569509
\(555\) −33.9420 −1.44076
\(556\) 9.94125 0.421603
\(557\) −28.7962 −1.22013 −0.610067 0.792350i \(-0.708857\pi\)
−0.610067 + 0.792350i \(0.708857\pi\)
\(558\) −9.33164 −0.395040
\(559\) −7.51975 −0.318052
\(560\) −2.55467 −0.107954
\(561\) −25.0074 −1.05581
\(562\) 15.3640 0.648090
\(563\) 7.64634 0.322255 0.161127 0.986934i \(-0.448487\pi\)
0.161127 + 0.986934i \(0.448487\pi\)
\(564\) −2.72055 −0.114556
\(565\) 48.0757 2.02256
\(566\) 29.1980 1.22729
\(567\) 0.788032 0.0330942
\(568\) −14.4817 −0.607637
\(569\) 26.1305 1.09545 0.547724 0.836659i \(-0.315495\pi\)
0.547724 + 0.836659i \(0.315495\pi\)
\(570\) 0.858187 0.0359455
\(571\) 31.1296 1.30273 0.651366 0.758764i \(-0.274196\pi\)
0.651366 + 0.758764i \(0.274196\pi\)
\(572\) 16.9459 0.708542
\(573\) 12.6057 0.526609
\(574\) −7.90100 −0.329782
\(575\) −27.5443 −1.14868
\(576\) 1.00000 0.0416667
\(577\) 15.5734 0.648329 0.324165 0.946001i \(-0.394917\pi\)
0.324165 + 0.946001i \(0.394917\pi\)
\(578\) −28.3565 −1.17947
\(579\) 19.3091 0.802460
\(580\) −6.98882 −0.290195
\(581\) 1.03063 0.0427575
\(582\) −4.67710 −0.193872
\(583\) 35.7643 1.48121
\(584\) −5.06594 −0.209630
\(585\) 14.7946 0.611683
\(586\) 15.7324 0.649898
\(587\) 46.6362 1.92488 0.962442 0.271489i \(-0.0875160\pi\)
0.962442 + 0.271489i \(0.0875160\pi\)
\(588\) −6.37901 −0.263066
\(589\) 2.47030 0.101787
\(590\) −44.8623 −1.84695
\(591\) −14.3110 −0.588677
\(592\) 10.4700 0.430314
\(593\) −15.3034 −0.628436 −0.314218 0.949351i \(-0.601742\pi\)
−0.314218 + 0.949351i \(0.601742\pi\)
\(594\) 3.71321 0.152355
\(595\) −17.2050 −0.705335
\(596\) 2.19925 0.0900848
\(597\) −17.8313 −0.729785
\(598\) −22.8158 −0.933008
\(599\) −16.1321 −0.659138 −0.329569 0.944131i \(-0.606903\pi\)
−0.329569 + 0.944131i \(0.606903\pi\)
\(600\) −5.50946 −0.224923
\(601\) −9.05954 −0.369546 −0.184773 0.982781i \(-0.559155\pi\)
−0.184773 + 0.982781i \(0.559155\pi\)
\(602\) −1.29847 −0.0529219
\(603\) 14.7199 0.599442
\(604\) −18.2565 −0.742848
\(605\) −9.03800 −0.367447
\(606\) 9.10834 0.370001
\(607\) −4.64018 −0.188339 −0.0941696 0.995556i \(-0.530020\pi\)
−0.0941696 + 0.995556i \(0.530020\pi\)
\(608\) −0.264723 −0.0107359
\(609\) 1.69886 0.0688413
\(610\) 30.3702 1.22965
\(611\) 12.4157 0.502286
\(612\) 6.73472 0.272235
\(613\) 25.9966 1.04999 0.524997 0.851104i \(-0.324066\pi\)
0.524997 + 0.851104i \(0.324066\pi\)
\(614\) −13.2383 −0.534256
\(615\) −32.5034 −1.31066
\(616\) 2.92613 0.117897
\(617\) −38.3931 −1.54565 −0.772824 0.634620i \(-0.781156\pi\)
−0.772824 + 0.634620i \(0.781156\pi\)
\(618\) 7.42243 0.298574
\(619\) −9.23910 −0.371351 −0.185675 0.982611i \(-0.559447\pi\)
−0.185675 + 0.982611i \(0.559447\pi\)
\(620\) −30.2516 −1.21493
\(621\) −4.99945 −0.200621
\(622\) −0.988862 −0.0396498
\(623\) 5.61741 0.225057
\(624\) −4.56367 −0.182693
\(625\) −22.1931 −0.887725
\(626\) −10.8424 −0.433351
\(627\) −0.982972 −0.0392561
\(628\) −21.7925 −0.869615
\(629\) 70.5125 2.81152
\(630\) 2.55467 0.101780
\(631\) −12.5492 −0.499574 −0.249787 0.968301i \(-0.580361\pi\)
−0.249787 + 0.968301i \(0.580361\pi\)
\(632\) −4.20572 −0.167295
\(633\) 21.9781 0.873552
\(634\) −1.55022 −0.0615669
\(635\) 32.6856 1.29709
\(636\) −9.63165 −0.381920
\(637\) 29.1117 1.15345
\(638\) 8.00504 0.316922
\(639\) 14.4817 0.572885
\(640\) 3.24183 0.128145
\(641\) 3.02513 0.119485 0.0597427 0.998214i \(-0.480972\pi\)
0.0597427 + 0.998214i \(0.480972\pi\)
\(642\) −15.4018 −0.607860
\(643\) −7.68781 −0.303178 −0.151589 0.988444i \(-0.548439\pi\)
−0.151589 + 0.988444i \(0.548439\pi\)
\(644\) −3.93972 −0.155247
\(645\) −5.34170 −0.210329
\(646\) −1.78284 −0.0701447
\(647\) 7.92807 0.311685 0.155842 0.987782i \(-0.450191\pi\)
0.155842 + 0.987782i \(0.450191\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 51.3855 2.01706
\(650\) 25.1434 0.986205
\(651\) 7.35363 0.288212
\(652\) 7.45439 0.291937
\(653\) 3.09574 0.121146 0.0605728 0.998164i \(-0.480707\pi\)
0.0605728 + 0.998164i \(0.480707\pi\)
\(654\) −5.10716 −0.199706
\(655\) 12.3514 0.482608
\(656\) 10.0262 0.391459
\(657\) 5.06594 0.197641
\(658\) 2.14388 0.0835773
\(659\) 18.4579 0.719016 0.359508 0.933142i \(-0.382945\pi\)
0.359508 + 0.933142i \(0.382945\pi\)
\(660\) 12.0376 0.468563
\(661\) 19.8458 0.771913 0.385957 0.922517i \(-0.373871\pi\)
0.385957 + 0.922517i \(0.373871\pi\)
\(662\) −8.69747 −0.338037
\(663\) −30.7351 −1.19365
\(664\) −1.30785 −0.0507543
\(665\) −0.676279 −0.0262250
\(666\) −10.4700 −0.405704
\(667\) −10.7779 −0.417323
\(668\) 23.7891 0.920426
\(669\) −5.97781 −0.231115
\(670\) 47.7195 1.84357
\(671\) −34.7862 −1.34291
\(672\) −0.788032 −0.0303990
\(673\) 35.8330 1.38126 0.690631 0.723207i \(-0.257333\pi\)
0.690631 + 0.723207i \(0.257333\pi\)
\(674\) −7.56563 −0.291417
\(675\) 5.50946 0.212059
\(676\) 7.82709 0.301042
\(677\) −24.0269 −0.923427 −0.461714 0.887029i \(-0.652765\pi\)
−0.461714 + 0.887029i \(0.652765\pi\)
\(678\) 14.8298 0.569535
\(679\) 3.68571 0.141444
\(680\) 21.8328 0.837251
\(681\) −24.6256 −0.943656
\(682\) 34.6503 1.32683
\(683\) −27.3594 −1.04688 −0.523440 0.852063i \(-0.675352\pi\)
−0.523440 + 0.852063i \(0.675352\pi\)
\(684\) 0.264723 0.0101219
\(685\) −52.7765 −2.01649
\(686\) 10.5431 0.402537
\(687\) −0.638337 −0.0243541
\(688\) 1.64774 0.0628196
\(689\) 43.9557 1.67458
\(690\) −16.2074 −0.617003
\(691\) 32.5316 1.23756 0.618779 0.785565i \(-0.287627\pi\)
0.618779 + 0.785565i \(0.287627\pi\)
\(692\) 21.3001 0.809709
\(693\) −2.92613 −0.111154
\(694\) 23.9341 0.908528
\(695\) −32.2279 −1.22247
\(696\) −2.15583 −0.0817164
\(697\) 67.5240 2.55765
\(698\) 20.8227 0.788153
\(699\) 22.3358 0.844819
\(700\) 4.34164 0.164098
\(701\) 29.7680 1.12432 0.562161 0.827028i \(-0.309970\pi\)
0.562161 + 0.827028i \(0.309970\pi\)
\(702\) 4.56367 0.172245
\(703\) 2.77165 0.104535
\(704\) −3.71321 −0.139947
\(705\) 8.81958 0.332165
\(706\) 15.0592 0.566761
\(707\) −7.17766 −0.269944
\(708\) −13.8386 −0.520085
\(709\) 42.7612 1.60593 0.802965 0.596026i \(-0.203254\pi\)
0.802965 + 0.596026i \(0.203254\pi\)
\(710\) 46.9471 1.76189
\(711\) 4.20572 0.157727
\(712\) −7.12840 −0.267148
\(713\) −46.6530 −1.74717
\(714\) −5.30718 −0.198616
\(715\) −54.9356 −2.05448
\(716\) 15.4981 0.579193
\(717\) 13.6030 0.508013
\(718\) 5.38757 0.201062
\(719\) −19.6263 −0.731936 −0.365968 0.930627i \(-0.619262\pi\)
−0.365968 + 0.930627i \(0.619262\pi\)
\(720\) −3.24183 −0.120816
\(721\) −5.84911 −0.217832
\(722\) 18.9299 0.704499
\(723\) 9.10154 0.338490
\(724\) −7.50942 −0.279085
\(725\) 11.8774 0.441117
\(726\) −2.78793 −0.103470
\(727\) −8.61161 −0.319387 −0.159693 0.987167i \(-0.551051\pi\)
−0.159693 + 0.987167i \(0.551051\pi\)
\(728\) 3.59632 0.133288
\(729\) 1.00000 0.0370370
\(730\) 16.4229 0.607840
\(731\) 11.0971 0.410441
\(732\) 9.36822 0.346260
\(733\) 6.38328 0.235772 0.117886 0.993027i \(-0.462388\pi\)
0.117886 + 0.993027i \(0.462388\pi\)
\(734\) −11.6957 −0.431695
\(735\) 20.6797 0.762781
\(736\) 4.99945 0.184282
\(737\) −54.6582 −2.01336
\(738\) −10.0262 −0.369071
\(739\) 13.0171 0.478841 0.239420 0.970916i \(-0.423043\pi\)
0.239420 + 0.970916i \(0.423043\pi\)
\(740\) −33.9420 −1.24773
\(741\) −1.20811 −0.0443810
\(742\) 7.59005 0.278639
\(743\) 27.7669 1.01867 0.509334 0.860569i \(-0.329892\pi\)
0.509334 + 0.860569i \(0.329892\pi\)
\(744\) −9.33164 −0.342115
\(745\) −7.12960 −0.261208
\(746\) 5.57113 0.203973
\(747\) 1.30785 0.0478516
\(748\) −25.0074 −0.914363
\(749\) 12.1371 0.443480
\(750\) 1.65160 0.0603079
\(751\) −24.4403 −0.891839 −0.445920 0.895073i \(-0.647123\pi\)
−0.445920 + 0.895073i \(0.647123\pi\)
\(752\) −2.72055 −0.0992084
\(753\) 20.2994 0.739750
\(754\) 9.83848 0.358296
\(755\) 59.1846 2.15395
\(756\) 0.788032 0.0286605
\(757\) −36.4296 −1.32406 −0.662029 0.749478i \(-0.730304\pi\)
−0.662029 + 0.749478i \(0.730304\pi\)
\(758\) 26.4889 0.962121
\(759\) 18.5640 0.673830
\(760\) 0.858187 0.0311297
\(761\) −8.24382 −0.298838 −0.149419 0.988774i \(-0.547740\pi\)
−0.149419 + 0.988774i \(0.547740\pi\)
\(762\) 10.0825 0.365249
\(763\) 4.02461 0.145700
\(764\) 12.6057 0.456057
\(765\) −21.8328 −0.789368
\(766\) 9.63095 0.347980
\(767\) 63.1547 2.28038
\(768\) 1.00000 0.0360844
\(769\) −21.9280 −0.790744 −0.395372 0.918521i \(-0.629384\pi\)
−0.395372 + 0.918521i \(0.629384\pi\)
\(770\) −9.48602 −0.341852
\(771\) 29.5408 1.06389
\(772\) 19.3091 0.694951
\(773\) 14.0498 0.505337 0.252668 0.967553i \(-0.418692\pi\)
0.252668 + 0.967553i \(0.418692\pi\)
\(774\) −1.64774 −0.0592269
\(775\) 51.4123 1.84679
\(776\) −4.67710 −0.167898
\(777\) 8.25070 0.295992
\(778\) 24.4142 0.875290
\(779\) 2.65418 0.0950958
\(780\) 14.7946 0.529733
\(781\) −53.7734 −1.92416
\(782\) 33.6699 1.20403
\(783\) 2.15583 0.0770429
\(784\) −6.37901 −0.227822
\(785\) 70.6475 2.52152
\(786\) 3.81000 0.135898
\(787\) −37.6158 −1.34086 −0.670429 0.741973i \(-0.733890\pi\)
−0.670429 + 0.741973i \(0.733890\pi\)
\(788\) −14.3110 −0.509809
\(789\) −20.8720 −0.743062
\(790\) 13.6342 0.485084
\(791\) −11.6864 −0.415519
\(792\) 3.71321 0.131943
\(793\) −42.7535 −1.51822
\(794\) 4.91361 0.174377
\(795\) 31.2242 1.10741
\(796\) −17.8313 −0.632012
\(797\) 42.9565 1.52160 0.760798 0.648988i \(-0.224808\pi\)
0.760798 + 0.648988i \(0.224808\pi\)
\(798\) −0.208610 −0.00738472
\(799\) −18.3222 −0.648192
\(800\) −5.50946 −0.194789
\(801\) 7.12840 0.251870
\(802\) −30.0274 −1.06030
\(803\) −18.8109 −0.663823
\(804\) 14.7199 0.519132
\(805\) 12.7719 0.450151
\(806\) 42.5865 1.50005
\(807\) −1.00000 −0.0352017
\(808\) 9.10834 0.320430
\(809\) 18.4410 0.648352 0.324176 0.945997i \(-0.394913\pi\)
0.324176 + 0.945997i \(0.394913\pi\)
\(810\) 3.24183 0.113906
\(811\) 44.0833 1.54797 0.773987 0.633201i \(-0.218259\pi\)
0.773987 + 0.633201i \(0.218259\pi\)
\(812\) 1.69886 0.0596183
\(813\) −4.95607 −0.173817
\(814\) 38.8773 1.36265
\(815\) −24.1659 −0.846494
\(816\) 6.73472 0.235762
\(817\) 0.436195 0.0152605
\(818\) −3.62462 −0.126732
\(819\) −3.59632 −0.125666
\(820\) −32.5034 −1.13507
\(821\) 32.4550 1.13269 0.566344 0.824169i \(-0.308357\pi\)
0.566344 + 0.824169i \(0.308357\pi\)
\(822\) −16.2799 −0.567825
\(823\) 29.9978 1.04566 0.522829 0.852438i \(-0.324877\pi\)
0.522829 + 0.852438i \(0.324877\pi\)
\(824\) 7.42243 0.258573
\(825\) −20.4578 −0.712249
\(826\) 10.9052 0.379442
\(827\) 8.12753 0.282622 0.141311 0.989965i \(-0.454868\pi\)
0.141311 + 0.989965i \(0.454868\pi\)
\(828\) −4.99945 −0.173743
\(829\) 24.1830 0.839909 0.419954 0.907545i \(-0.362046\pi\)
0.419954 + 0.907545i \(0.362046\pi\)
\(830\) 4.23982 0.147166
\(831\) −13.4047 −0.465002
\(832\) −4.56367 −0.158217
\(833\) −42.9608 −1.48850
\(834\) −9.94125 −0.344237
\(835\) −77.1201 −2.66885
\(836\) −0.982972 −0.0339968
\(837\) 9.33164 0.322549
\(838\) 17.4582 0.603082
\(839\) −7.89858 −0.272689 −0.136345 0.990661i \(-0.543535\pi\)
−0.136345 + 0.990661i \(0.543535\pi\)
\(840\) 2.55467 0.0881444
\(841\) −24.3524 −0.839738
\(842\) −30.3284 −1.04519
\(843\) −15.3640 −0.529163
\(844\) 21.9781 0.756518
\(845\) −25.3741 −0.872895
\(846\) 2.72055 0.0935346
\(847\) 2.19698 0.0754891
\(848\) −9.63165 −0.330752
\(849\) −29.1980 −1.00207
\(850\) −37.1047 −1.27268
\(851\) −52.3442 −1.79434
\(852\) 14.4817 0.496133
\(853\) 48.7105 1.66781 0.833907 0.551904i \(-0.186099\pi\)
0.833907 + 0.551904i \(0.186099\pi\)
\(854\) −7.38246 −0.252623
\(855\) −0.858187 −0.0293494
\(856\) −15.4018 −0.526423
\(857\) 32.2924 1.10309 0.551543 0.834146i \(-0.314039\pi\)
0.551543 + 0.834146i \(0.314039\pi\)
\(858\) −16.9459 −0.578522
\(859\) 39.4010 1.34435 0.672173 0.740394i \(-0.265361\pi\)
0.672173 + 0.740394i \(0.265361\pi\)
\(860\) −5.34170 −0.182151
\(861\) 7.90100 0.269265
\(862\) −21.5434 −0.733770
\(863\) −12.3482 −0.420339 −0.210169 0.977665i \(-0.567402\pi\)
−0.210169 + 0.977665i \(0.567402\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −69.0514 −2.34782
\(866\) −16.3157 −0.554430
\(867\) 28.3565 0.963037
\(868\) 7.35363 0.249599
\(869\) −15.6167 −0.529761
\(870\) 6.98882 0.236943
\(871\) −67.1769 −2.27620
\(872\) −5.10716 −0.172950
\(873\) 4.67710 0.158296
\(874\) 1.32347 0.0447670
\(875\) −1.30151 −0.0439992
\(876\) 5.06594 0.171162
\(877\) 20.8690 0.704697 0.352349 0.935869i \(-0.385383\pi\)
0.352349 + 0.935869i \(0.385383\pi\)
\(878\) 13.5738 0.458093
\(879\) −15.7324 −0.530639
\(880\) 12.0376 0.405787
\(881\) 40.4750 1.36364 0.681819 0.731521i \(-0.261189\pi\)
0.681819 + 0.731521i \(0.261189\pi\)
\(882\) 6.37901 0.214792
\(883\) −2.38651 −0.0803126 −0.0401563 0.999193i \(-0.512786\pi\)
−0.0401563 + 0.999193i \(0.512786\pi\)
\(884\) −30.7351 −1.03373
\(885\) 44.8623 1.50803
\(886\) 6.63518 0.222913
\(887\) 23.7608 0.797811 0.398905 0.916992i \(-0.369390\pi\)
0.398905 + 0.916992i \(0.369390\pi\)
\(888\) −10.4700 −0.351350
\(889\) −7.94530 −0.266477
\(890\) 23.1091 0.774617
\(891\) −3.71321 −0.124397
\(892\) −5.97781 −0.200152
\(893\) −0.720193 −0.0241004
\(894\) −2.19925 −0.0735539
\(895\) −50.2423 −1.67942
\(896\) −0.788032 −0.0263263
\(897\) 22.8158 0.761798
\(898\) 9.47509 0.316188
\(899\) 20.1174 0.670953
\(900\) 5.50946 0.183649
\(901\) −64.8665 −2.16102
\(902\) 37.2296 1.23961
\(903\) 1.29847 0.0432105
\(904\) 14.8298 0.493232
\(905\) 24.3443 0.809231
\(906\) 18.2565 0.606533
\(907\) 12.0737 0.400900 0.200450 0.979704i \(-0.435760\pi\)
0.200450 + 0.979704i \(0.435760\pi\)
\(908\) −24.6256 −0.817230
\(909\) −9.10834 −0.302104
\(910\) −11.6587 −0.386481
\(911\) 17.1151 0.567047 0.283524 0.958965i \(-0.408497\pi\)
0.283524 + 0.958965i \(0.408497\pi\)
\(912\) 0.264723 0.00876585
\(913\) −4.85631 −0.160720
\(914\) 16.5364 0.546976
\(915\) −30.3702 −1.00401
\(916\) −0.638337 −0.0210912
\(917\) −3.00240 −0.0991480
\(918\) −6.73472 −0.222279
\(919\) 21.9454 0.723911 0.361956 0.932195i \(-0.382109\pi\)
0.361956 + 0.932195i \(0.382109\pi\)
\(920\) −16.2074 −0.534341
\(921\) 13.2383 0.436218
\(922\) −36.0311 −1.18662
\(923\) −66.0895 −2.17536
\(924\) −2.92613 −0.0962626
\(925\) 57.6841 1.89664
\(926\) 22.1663 0.728430
\(927\) −7.42243 −0.243785
\(928\) −2.15583 −0.0707685
\(929\) 21.5639 0.707489 0.353744 0.935342i \(-0.384908\pi\)
0.353744 + 0.935342i \(0.384908\pi\)
\(930\) 30.2516 0.991989
\(931\) −1.68867 −0.0553439
\(932\) 22.3358 0.731635
\(933\) 0.988862 0.0323739
\(934\) 9.92491 0.324753
\(935\) 81.0699 2.65127
\(936\) 4.56367 0.149168
\(937\) 5.66686 0.185128 0.0925641 0.995707i \(-0.470494\pi\)
0.0925641 + 0.995707i \(0.470494\pi\)
\(938\) −11.5998 −0.378746
\(939\) 10.8424 0.353830
\(940\) 8.81958 0.287663
\(941\) 41.6995 1.35937 0.679683 0.733506i \(-0.262117\pi\)
0.679683 + 0.733506i \(0.262117\pi\)
\(942\) 21.7925 0.710037
\(943\) −50.1257 −1.63232
\(944\) −13.8386 −0.450407
\(945\) −2.55467 −0.0831033
\(946\) 6.11842 0.198927
\(947\) −32.8763 −1.06834 −0.534168 0.845378i \(-0.679375\pi\)
−0.534168 + 0.845378i \(0.679375\pi\)
\(948\) 4.20572 0.136595
\(949\) −23.1193 −0.750484
\(950\) −1.45848 −0.0473194
\(951\) 1.55022 0.0502692
\(952\) −5.30718 −0.172007
\(953\) −31.0422 −1.00556 −0.502778 0.864415i \(-0.667689\pi\)
−0.502778 + 0.864415i \(0.667689\pi\)
\(954\) 9.63165 0.311836
\(955\) −40.8654 −1.32237
\(956\) 13.6030 0.439952
\(957\) −8.00504 −0.258766
\(958\) −34.4376 −1.11263
\(959\) 12.8291 0.414272
\(960\) −3.24183 −0.104630
\(961\) 56.0795 1.80902
\(962\) 47.7816 1.54054
\(963\) 15.4018 0.496316
\(964\) 9.10154 0.293141
\(965\) −62.5969 −2.01507
\(966\) 3.93972 0.126759
\(967\) −2.30245 −0.0740417 −0.0370208 0.999314i \(-0.511787\pi\)
−0.0370208 + 0.999314i \(0.511787\pi\)
\(968\) −2.78793 −0.0896075
\(969\) 1.78284 0.0572729
\(970\) 15.1624 0.486834
\(971\) 9.76703 0.313439 0.156720 0.987643i \(-0.449908\pi\)
0.156720 + 0.987643i \(0.449908\pi\)
\(972\) 1.00000 0.0320750
\(973\) 7.83403 0.251147
\(974\) −7.07833 −0.226804
\(975\) −25.1434 −0.805233
\(976\) 9.36822 0.299870
\(977\) 1.66403 0.0532369 0.0266185 0.999646i \(-0.491526\pi\)
0.0266185 + 0.999646i \(0.491526\pi\)
\(978\) −7.45439 −0.238365
\(979\) −26.4692 −0.845961
\(980\) 20.6797 0.660587
\(981\) 5.10716 0.163059
\(982\) 10.6411 0.339571
\(983\) −29.4908 −0.940611 −0.470306 0.882504i \(-0.655856\pi\)
−0.470306 + 0.882504i \(0.655856\pi\)
\(984\) −10.0262 −0.319625
\(985\) 46.3939 1.47823
\(986\) −14.5189 −0.462376
\(987\) −2.14388 −0.0682406
\(988\) −1.20811 −0.0384350
\(989\) −8.23780 −0.261947
\(990\) −12.0376 −0.382580
\(991\) −40.9572 −1.30105 −0.650525 0.759485i \(-0.725451\pi\)
−0.650525 + 0.759485i \(0.725451\pi\)
\(992\) −9.33164 −0.296280
\(993\) 8.69747 0.276006
\(994\) −11.4120 −0.361967
\(995\) 57.8059 1.83257
\(996\) 1.30785 0.0414407
\(997\) 5.40962 0.171324 0.0856622 0.996324i \(-0.472699\pi\)
0.0856622 + 0.996324i \(0.472699\pi\)
\(998\) 33.9900 1.07594
\(999\) 10.4700 0.331256
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1614.2.a.i.1.2 8
3.2 odd 2 4842.2.a.q.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1614.2.a.i.1.2 8 1.1 even 1 trivial
4842.2.a.q.1.7 8 3.2 odd 2