Properties

Label 162.10.c.k
Level $162$
Weight $10$
Character orbit 162.c
Analytic conductor $83.436$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,10,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.4358054585\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{301})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 76x^{2} + 75x + 5625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (16 \beta_1 - 16) q^{2} - 256 \beta_1 q^{4} + ( - \beta_{2} - 852 \beta_1) q^{5} + (4 \beta_{3} + 4 \beta_{2} + \cdots - 3269) q^{7} + 4096 q^{8} + ( - 16 \beta_{3} + 13632) q^{10} + ( - 23 \beta_{3} - 23 \beta_{2} + \cdots - 7284) q^{11}+ \cdots + ( - 418432 \beta_{3} + 424105248) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} - 512 q^{4} - 1704 q^{5} - 6538 q^{7} + 16384 q^{8} + 54528 q^{10} - 14568 q^{11} - 37138 q^{13} - 104608 q^{14} - 131072 q^{16} - 175824 q^{17} + 1418300 q^{19} - 436224 q^{20} - 233088 q^{22}+ \cdots + 1696420992 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 76x^{2} + 75x + 5625 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 76\nu^{2} - 76\nu + 5625 ) / 5700 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 9\nu^{3} - 684\nu^{2} + 103284\nu - 50625 ) / 475 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 54\nu^{3} + 6102 ) / 19 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 108\beta_1 ) / 216 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 16308\beta _1 - 16308 ) / 216 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 19\beta_{3} - 6102 ) / 54 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
4.58734 + 7.94550i
−4.08734 7.07948i
4.58734 7.94550i
−4.08734 + 7.07948i
−8.00000 + 13.8564i 0 −128.000 221.703i −1362.86 2360.55i 0 −5381.96 + 9321.83i 4096.00 0 43611.7
55.2 −8.00000 + 13.8564i 0 −128.000 221.703i 510.865 + 884.844i 0 2112.96 3659.75i 4096.00 0 −16347.7
109.1 −8.00000 13.8564i 0 −128.000 + 221.703i −1362.86 + 2360.55i 0 −5381.96 9321.83i 4096.00 0 43611.7
109.2 −8.00000 13.8564i 0 −128.000 + 221.703i 510.865 884.844i 0 2112.96 + 3659.75i 4096.00 0 −16347.7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.10.c.k 4
3.b odd 2 1 162.10.c.p 4
9.c even 3 1 54.10.a.h yes 2
9.c even 3 1 inner 162.10.c.k 4
9.d odd 6 1 54.10.a.e 2
9.d odd 6 1 162.10.c.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.10.a.e 2 9.d odd 6 1
54.10.a.h yes 2 9.c even 3 1
162.10.c.k 4 1.a even 1 1 trivial
162.10.c.k 4 9.c even 3 1 inner
162.10.c.p 4 3.b odd 2 1
162.10.c.p 4 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 1704T_{5}^{3} + 5688576T_{5}^{2} - 4745571840T_{5} + 7756002201600 \) acting on \(S_{10}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16 T + 256)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 7756002201600 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 20\!\cdots\!69 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 83\!\cdots\!25 \) Copy content Toggle raw display
$17$ \( (T^{2} + 87912 T - 49470429888)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 709150 T + 81683152609)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 92\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 67\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots + 204253599323425)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 49\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 22\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( (T^{2} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 19\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 20\!\cdots\!81 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 20\!\cdots\!41 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots - 10\!\cdots\!12)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots + 74\!\cdots\!45)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 33\!\cdots\!49 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 16\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots - 79\!\cdots\!92)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 25\!\cdots\!25 \) Copy content Toggle raw display
show more
show less