Properties

Label 54.10.a.h
Level $54$
Weight $10$
Character orbit 54.a
Self dual yes
Analytic conductor $27.812$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,10,Mod(1,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.8119351528\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{301}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 75 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 108\sqrt{301}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 16 q^{2} + 256 q^{4} + ( - \beta + 852) q^{5} + ( - 4 \beta + 3269) q^{7} + 4096 q^{8} + ( - 16 \beta + 13632) q^{10} + (23 \beta + 7284) q^{11} + (52 \beta + 18569) q^{13} + ( - 64 \beta + 52304) q^{14}+ \cdots + ( - 418432 \beta + 424105248) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{2} + 512 q^{4} + 1704 q^{5} + 6538 q^{7} + 8192 q^{8} + 27264 q^{10} + 14568 q^{11} + 37138 q^{13} + 104608 q^{14} + 131072 q^{16} - 87912 q^{17} + 709150 q^{19} + 436224 q^{20} + 233088 q^{22}+ \cdots + 848210496 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
9.17468
−8.17468
16.0000 0 256.000 −1021.73 0 −4225.92 4096.00 0 −16347.7
1.2 16.0000 0 256.000 2725.73 0 10763.9 4096.00 0 43611.7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 54.10.a.h yes 2
3.b odd 2 1 54.10.a.e 2
9.c even 3 2 162.10.c.k 4
9.d odd 6 2 162.10.c.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.10.a.e 2 3.b odd 2 1
54.10.a.h yes 2 1.a even 1 1 trivial
162.10.c.k 4 9.c even 3 2
162.10.c.p 4 9.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 1704T_{5} - 2784960 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(54))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 1704 T - 2784960 \) Copy content Toggle raw display
$7$ \( T^{2} - 6538 T - 45487463 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 1804190400 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 9148568495 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 49470429888 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 81683152609 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 9609580224 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 25952676544512 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 31973126774000 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 204253599323425 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 231052412436480 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 222721258133056 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 472525879987008 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 44\!\cdots\!52 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 45\!\cdots\!59 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 45\!\cdots\!71 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 10\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 74\!\cdots\!45 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 18\!\cdots\!07 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 41\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 79\!\cdots\!92 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 50\!\cdots\!65 \) Copy content Toggle raw display
show more
show less