Properties

Label 162.10.c.k.55.2
Level $162$
Weight $10$
Character 162.55
Analytic conductor $83.436$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,10,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.4358054585\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{301})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 76x^{2} + 75x + 5625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.2
Root \(-4.08734 - 7.07948i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.10.c.k.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.00000 + 13.8564i) q^{2} +(-128.000 - 221.703i) q^{4} +(510.865 + 884.844i) q^{5} +(2112.96 - 3659.75i) q^{7} +4096.00 q^{8} -16347.7 q^{10} +(-25189.9 + 43630.2i) q^{11} +(-58001.5 - 100462. i) q^{13} +(33807.4 + 58556.1i) q^{14} +(-32768.0 + 56755.8i) q^{16} +182765. q^{17} +564433. q^{19} +(130781. - 226520. i) q^{20} +(-403038. - 698083. i) q^{22} +(24758.2 + 42882.5i) q^{23} +(454596. - 787384. i) q^{25} +1.85605e6 q^{26} -1.08184e6 q^{28} +(-2.96657e6 + 5.13825e6i) q^{29} +(-2.18089e6 - 3.77741e6i) q^{31} +(-524288. - 908093. i) q^{32} +(-1.46212e6 + 2.53247e6i) q^{34} +4.31775e6 q^{35} -1.15632e7 q^{37} +(-4.51546e6 + 7.82101e6i) q^{38} +(2.09250e6 + 3.62432e6i) q^{40} +(-1.32330e7 - 2.29202e7i) q^{41} +(6.71634e6 - 1.16330e7i) q^{43} +1.28972e7 q^{44} -792263. q^{46} +(-9.14532e6 + 1.58402e7i) q^{47} +(1.12476e7 + 1.94814e7i) q^{49} +(7.27354e6 + 1.25981e7i) q^{50} +(-1.48484e7 + 2.57181e7i) q^{52} +6.88018e7 q^{53} -5.14745e7 q^{55} +(8.65468e6 - 1.49904e7i) q^{56} +(-4.74651e7 - 8.22119e7i) q^{58} +(-3.60461e7 - 6.24337e7i) q^{59} +(-3.29083e7 + 5.69988e7i) q^{61} +6.97884e7 q^{62} +1.67772e7 q^{64} +(5.92618e7 - 1.02645e8i) q^{65} +(-8.06051e7 - 1.39612e8i) q^{67} +(-2.33940e7 - 4.05195e7i) q^{68} +(-3.45420e7 + 5.98285e7i) q^{70} -2.76757e8 q^{71} -4.22636e8 q^{73} +(9.25057e7 - 1.60225e8i) q^{74} +(-7.22474e7 - 1.25136e8i) q^{76} +(1.06450e8 + 1.84378e8i) q^{77} +(2.10077e8 - 3.63863e8i) q^{79} -6.69601e7 q^{80} +4.23456e8 q^{82} +(3.47123e8 - 6.01234e8i) q^{83} +(9.33684e7 + 1.61719e8i) q^{85} +(1.07461e8 + 1.86129e8i) q^{86} +(-1.03178e8 + 1.78709e8i) q^{88} +7.96299e8 q^{89} -4.90219e8 q^{91} +(6.33811e6 - 1.09779e7i) q^{92} +(-1.46325e8 - 2.53443e8i) q^{94} +(2.88349e8 + 4.99435e8i) q^{95} +(1.95814e8 - 3.39159e8i) q^{97} -3.59923e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} - 512 q^{4} - 1704 q^{5} - 6538 q^{7} + 16384 q^{8} + 54528 q^{10} - 14568 q^{11} - 37138 q^{13} - 104608 q^{14} - 131072 q^{16} - 175824 q^{17} + 1418300 q^{19} - 436224 q^{20} - 233088 q^{22}+ \cdots + 1696420992 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 + 13.8564i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −128.000 221.703i −0.250000 0.433013i
\(5\) 510.865 + 884.844i 0.365545 + 0.633143i 0.988863 0.148825i \(-0.0475492\pi\)
−0.623318 + 0.781968i \(0.714216\pi\)
\(6\) 0 0
\(7\) 2112.96 3659.75i 0.332621 0.576117i −0.650404 0.759589i \(-0.725400\pi\)
0.983025 + 0.183472i \(0.0587336\pi\)
\(8\) 4096.00 0.353553
\(9\) 0 0
\(10\) −16347.7 −0.516959
\(11\) −25189.9 + 43630.2i −0.518751 + 0.898504i 0.481011 + 0.876714i \(0.340270\pi\)
−0.999763 + 0.0217893i \(0.993064\pi\)
\(12\) 0 0
\(13\) −58001.5 100462.i −0.563241 0.975561i −0.997211 0.0746342i \(-0.976221\pi\)
0.433970 0.900927i \(-0.357112\pi\)
\(14\) 33807.4 + 58556.1i 0.235199 + 0.407376i
\(15\) 0 0
\(16\) −32768.0 + 56755.8i −0.125000 + 0.216506i
\(17\) 182765. 0.530730 0.265365 0.964148i \(-0.414508\pi\)
0.265365 + 0.964148i \(0.414508\pi\)
\(18\) 0 0
\(19\) 564433. 0.993622 0.496811 0.867859i \(-0.334504\pi\)
0.496811 + 0.867859i \(0.334504\pi\)
\(20\) 130781. 226520.i 0.182773 0.316571i
\(21\) 0 0
\(22\) −403038. 698083.i −0.366813 0.635338i
\(23\) 24758.2 + 42882.5i 0.0184478 + 0.0319525i 0.875102 0.483939i \(-0.160794\pi\)
−0.856654 + 0.515891i \(0.827461\pi\)
\(24\) 0 0
\(25\) 454596. 787384.i 0.232753 0.403141i
\(26\) 1.85605e6 0.796543
\(27\) 0 0
\(28\) −1.08184e6 −0.332621
\(29\) −2.96657e6 + 5.13825e6i −0.778867 + 1.34904i 0.153728 + 0.988113i \(0.450872\pi\)
−0.932595 + 0.360924i \(0.882461\pi\)
\(30\) 0 0
\(31\) −2.18089e6 3.77741e6i −0.424137 0.734626i 0.572203 0.820112i \(-0.306089\pi\)
−0.996339 + 0.0854859i \(0.972756\pi\)
\(32\) −524288. 908093.i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −1.46212e6 + 2.53247e6i −0.187641 + 0.325004i
\(35\) 4.31775e6 0.486353
\(36\) 0 0
\(37\) −1.15632e7 −1.01431 −0.507155 0.861855i \(-0.669303\pi\)
−0.507155 + 0.861855i \(0.669303\pi\)
\(38\) −4.51546e6 + 7.82101e6i −0.351298 + 0.608466i
\(39\) 0 0
\(40\) 2.09250e6 + 3.62432e6i 0.129240 + 0.223850i
\(41\) −1.32330e7 2.29202e7i −0.731359 1.26675i −0.956303 0.292379i \(-0.905553\pi\)
0.224944 0.974372i \(-0.427780\pi\)
\(42\) 0 0
\(43\) 6.71634e6 1.16330e7i 0.299588 0.518902i −0.676454 0.736485i \(-0.736484\pi\)
0.976042 + 0.217583i \(0.0698174\pi\)
\(44\) 1.28972e7 0.518751
\(45\) 0 0
\(46\) −792263. −0.0260891
\(47\) −9.14532e6 + 1.58402e7i −0.273375 + 0.473499i −0.969724 0.244204i \(-0.921473\pi\)
0.696349 + 0.717703i \(0.254807\pi\)
\(48\) 0 0
\(49\) 1.12476e7 + 1.94814e7i 0.278726 + 0.482768i
\(50\) 7.27354e6 + 1.25981e7i 0.164581 + 0.285064i
\(51\) 0 0
\(52\) −1.48484e7 + 2.57181e7i −0.281620 + 0.487781i
\(53\) 6.88018e7 1.19773 0.598864 0.800851i \(-0.295619\pi\)
0.598864 + 0.800851i \(0.295619\pi\)
\(54\) 0 0
\(55\) −5.14745e7 −0.758508
\(56\) 8.65468e6 1.49904e7i 0.117599 0.203688i
\(57\) 0 0
\(58\) −4.74651e7 8.22119e7i −0.550742 0.953913i
\(59\) −3.60461e7 6.24337e7i −0.387279 0.670788i 0.604803 0.796375i \(-0.293252\pi\)
−0.992083 + 0.125587i \(0.959918\pi\)
\(60\) 0 0
\(61\) −3.29083e7 + 5.69988e7i −0.304313 + 0.527086i −0.977108 0.212743i \(-0.931760\pi\)
0.672795 + 0.739829i \(0.265094\pi\)
\(62\) 6.97884e7 0.599820
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) 5.92618e7 1.02645e8i 0.411780 0.713224i
\(66\) 0 0
\(67\) −8.06051e7 1.39612e8i −0.488681 0.846421i 0.511234 0.859442i \(-0.329189\pi\)
−0.999915 + 0.0130207i \(0.995855\pi\)
\(68\) −2.33940e7 4.05195e7i −0.132683 0.229813i
\(69\) 0 0
\(70\) −3.45420e7 + 5.98285e7i −0.171952 + 0.297829i
\(71\) −2.76757e8 −1.29251 −0.646257 0.763119i \(-0.723667\pi\)
−0.646257 + 0.763119i \(0.723667\pi\)
\(72\) 0 0
\(73\) −4.22636e8 −1.74186 −0.870932 0.491404i \(-0.836484\pi\)
−0.870932 + 0.491404i \(0.836484\pi\)
\(74\) 9.25057e7 1.60225e8i 0.358613 0.621136i
\(75\) 0 0
\(76\) −7.22474e7 1.25136e8i −0.248405 0.430251i
\(77\) 1.06450e8 + 1.84378e8i 0.345096 + 0.597723i
\(78\) 0 0
\(79\) 2.10077e8 3.63863e8i 0.606814 1.05103i −0.384947 0.922938i \(-0.625780\pi\)
0.991762 0.128095i \(-0.0408862\pi\)
\(80\) −6.69601e7 −0.182773
\(81\) 0 0
\(82\) 4.23456e8 1.03430
\(83\) 3.47123e8 6.01234e8i 0.802845 1.39057i −0.114892 0.993378i \(-0.536652\pi\)
0.917737 0.397190i \(-0.130014\pi\)
\(84\) 0 0
\(85\) 9.33684e7 + 1.61719e8i 0.194006 + 0.336028i
\(86\) 1.07461e8 + 1.86129e8i 0.211841 + 0.366919i
\(87\) 0 0
\(88\) −1.03178e8 + 1.78709e8i −0.183406 + 0.317669i
\(89\) 7.96299e8 1.34531 0.672653 0.739958i \(-0.265155\pi\)
0.672653 + 0.739958i \(0.265155\pi\)
\(90\) 0 0
\(91\) −4.90219e8 −0.749383
\(92\) 6.33811e6 1.09779e7i 0.00922389 0.0159763i
\(93\) 0 0
\(94\) −1.46325e8 2.53443e8i −0.193305 0.334815i
\(95\) 2.88349e8 + 4.99435e8i 0.363214 + 0.629104i
\(96\) 0 0
\(97\) 1.95814e8 3.39159e8i 0.224579 0.388983i −0.731614 0.681719i \(-0.761232\pi\)
0.956193 + 0.292736i \(0.0945658\pi\)
\(98\) −3.59923e8 −0.394178
\(99\) 0 0
\(100\) −2.32753e8 −0.232753
\(101\) 7.25589e8 1.25676e9i 0.693816 1.20172i −0.276762 0.960938i \(-0.589261\pi\)
0.970578 0.240786i \(-0.0774052\pi\)
\(102\) 0 0
\(103\) 6.22282e8 + 1.07782e9i 0.544778 + 0.943583i 0.998621 + 0.0525012i \(0.0167193\pi\)
−0.453843 + 0.891082i \(0.649947\pi\)
\(104\) −2.37574e8 4.11490e8i −0.199136 0.344913i
\(105\) 0 0
\(106\) −5.50414e8 + 9.53345e8i −0.423461 + 0.733455i
\(107\) 2.10008e9 1.54885 0.774425 0.632666i \(-0.218039\pi\)
0.774425 + 0.632666i \(0.218039\pi\)
\(108\) 0 0
\(109\) 1.22058e9 0.828219 0.414110 0.910227i \(-0.364093\pi\)
0.414110 + 0.910227i \(0.364093\pi\)
\(110\) 4.11796e8 7.13252e8i 0.268173 0.464490i
\(111\) 0 0
\(112\) 1.38475e8 + 2.39846e8i 0.0831553 + 0.144029i
\(113\) −2.89619e8 5.01635e8i −0.167099 0.289424i 0.770300 0.637682i \(-0.220107\pi\)
−0.937399 + 0.348258i \(0.886773\pi\)
\(114\) 0 0
\(115\) −2.52962e7 + 4.38143e7i −0.0134870 + 0.0233602i
\(116\) 1.51888e9 0.778867
\(117\) 0 0
\(118\) 1.15348e9 0.547696
\(119\) 3.86176e8 6.68876e8i 0.176532 0.305763i
\(120\) 0 0
\(121\) −9.00877e7 1.56037e8i −0.0382060 0.0661747i
\(122\) −5.26532e8 9.11980e8i −0.215182 0.372706i
\(123\) 0 0
\(124\) −5.58308e8 + 9.67017e8i −0.212068 + 0.367313i
\(125\) 2.92452e9 1.07142
\(126\) 0 0
\(127\) 3.49732e9 1.19294 0.596470 0.802635i \(-0.296569\pi\)
0.596470 + 0.802635i \(0.296569\pi\)
\(128\) −1.34218e8 + 2.32472e8i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 9.48190e8 + 1.64231e9i 0.291172 + 0.504325i
\(131\) −2.98414e9 5.16869e9i −0.885317 1.53341i −0.845350 0.534213i \(-0.820608\pi\)
−0.0399674 0.999201i \(-0.512725\pi\)
\(132\) 0 0
\(133\) 1.19262e9 2.06569e9i 0.330500 0.572442i
\(134\) 2.57936e9 0.691100
\(135\) 0 0
\(136\) 7.48607e8 0.187641
\(137\) 2.38898e9 4.13784e9i 0.579389 1.00353i −0.416160 0.909291i \(-0.636624\pi\)
0.995549 0.0942405i \(-0.0300423\pi\)
\(138\) 0 0
\(139\) −7.72545e8 1.33809e9i −0.175532 0.304031i 0.764813 0.644252i \(-0.222831\pi\)
−0.940345 + 0.340221i \(0.889498\pi\)
\(140\) −5.52672e8 9.57256e8i −0.121588 0.210597i
\(141\) 0 0
\(142\) 2.21405e9 3.83485e9i 0.456973 0.791501i
\(143\) 5.84420e9 1.16873
\(144\) 0 0
\(145\) −6.06206e9 −1.13884
\(146\) 3.38109e9 5.85622e9i 0.615842 1.06667i
\(147\) 0 0
\(148\) 1.48009e9 + 2.56359e9i 0.253578 + 0.439209i
\(149\) −1.76830e9 3.06279e9i −0.293913 0.509072i 0.680819 0.732452i \(-0.261624\pi\)
−0.974731 + 0.223380i \(0.928291\pi\)
\(150\) 0 0
\(151\) −4.77068e8 + 8.26305e8i −0.0746765 + 0.129343i −0.900946 0.433932i \(-0.857126\pi\)
0.826269 + 0.563276i \(0.190459\pi\)
\(152\) 2.31192e9 0.351298
\(153\) 0 0
\(154\) −3.40642e9 −0.488039
\(155\) 2.22828e9 3.85949e9i 0.310082 0.537078i
\(156\) 0 0
\(157\) −3.87003e9 6.70308e9i −0.508353 0.880493i −0.999953 0.00967224i \(-0.996921\pi\)
0.491600 0.870821i \(-0.336412\pi\)
\(158\) 3.36123e9 + 5.82182e9i 0.429083 + 0.743193i
\(159\) 0 0
\(160\) 5.35681e8 9.27826e8i 0.0646199 0.111925i
\(161\) 2.09253e8 0.0245445
\(162\) 0 0
\(163\) 9.86211e9 1.09427 0.547136 0.837044i \(-0.315718\pi\)
0.547136 + 0.837044i \(0.315718\pi\)
\(164\) −3.38764e9 + 5.86757e9i −0.365679 + 0.633375i
\(165\) 0 0
\(166\) 5.55396e9 + 9.61974e9i 0.567697 + 0.983280i
\(167\) 9.37490e9 + 1.62378e10i 0.932701 + 1.61549i 0.778683 + 0.627417i \(0.215888\pi\)
0.154018 + 0.988068i \(0.450779\pi\)
\(168\) 0 0
\(169\) −1.42609e9 + 2.47007e9i −0.134480 + 0.232926i
\(170\) −2.98779e9 −0.274366
\(171\) 0 0
\(172\) −3.43877e9 −0.299588
\(173\) 7.51420e9 1.30150e10i 0.637786 1.10468i −0.348131 0.937446i \(-0.613184\pi\)
0.985918 0.167232i \(-0.0534829\pi\)
\(174\) 0 0
\(175\) −1.92109e9 3.32742e9i −0.154837 0.268186i
\(176\) −1.65084e9 2.85935e9i −0.129688 0.224626i
\(177\) 0 0
\(178\) −6.37040e9 + 1.10338e10i −0.475638 + 0.823829i
\(179\) −4.69080e9 −0.341514 −0.170757 0.985313i \(-0.554621\pi\)
−0.170757 + 0.985313i \(0.554621\pi\)
\(180\) 0 0
\(181\) −4.99664e9 −0.346038 −0.173019 0.984918i \(-0.555352\pi\)
−0.173019 + 0.984918i \(0.555352\pi\)
\(182\) 3.92175e9 6.79268e9i 0.264947 0.458902i
\(183\) 0 0
\(184\) 1.01410e8 + 1.75647e8i 0.00652228 + 0.0112969i
\(185\) −5.90724e9 1.02316e10i −0.370776 0.642203i
\(186\) 0 0
\(187\) −4.60384e9 + 7.97408e9i −0.275317 + 0.476863i
\(188\) 4.68241e9 0.273375
\(189\) 0 0
\(190\) −9.22717e9 −0.513662
\(191\) −1.59536e9 + 2.76325e9i −0.0867380 + 0.150235i −0.906130 0.422998i \(-0.860978\pi\)
0.819392 + 0.573233i \(0.194311\pi\)
\(192\) 0 0
\(193\) −1.55949e10 2.70112e10i −0.809051 1.40132i −0.913522 0.406790i \(-0.866648\pi\)
0.104470 0.994528i \(-0.466685\pi\)
\(194\) 3.13302e9 + 5.42655e9i 0.158802 + 0.275053i
\(195\) 0 0
\(196\) 2.87939e9 4.98724e9i 0.139363 0.241384i
\(197\) −2.30042e10 −1.08820 −0.544102 0.839019i \(-0.683129\pi\)
−0.544102 + 0.839019i \(0.683129\pi\)
\(198\) 0 0
\(199\) −1.04467e10 −0.472217 −0.236109 0.971727i \(-0.575872\pi\)
−0.236109 + 0.971727i \(0.575872\pi\)
\(200\) 1.86203e9 3.22513e9i 0.0822907 0.142532i
\(201\) 0 0
\(202\) 1.16094e10 + 2.01081e10i 0.490602 + 0.849748i
\(203\) 1.25365e10 + 2.17138e10i 0.518136 + 0.897437i
\(204\) 0 0
\(205\) 1.35205e10 2.34183e10i 0.534690 0.926109i
\(206\) −1.99130e10 −0.770432
\(207\) 0 0
\(208\) 7.60237e9 0.281620
\(209\) −1.42180e10 + 2.46263e10i −0.515443 + 0.892773i
\(210\) 0 0
\(211\) −2.41061e10 4.17530e10i −0.837253 1.45016i −0.892183 0.451674i \(-0.850827\pi\)
0.0549307 0.998490i \(-0.482506\pi\)
\(212\) −8.80662e9 1.52535e10i −0.299432 0.518631i
\(213\) 0 0
\(214\) −1.68007e10 + 2.90996e10i −0.547601 + 0.948473i
\(215\) 1.37246e10 0.438052
\(216\) 0 0
\(217\) −1.84325e10 −0.564308
\(218\) −9.76460e9 + 1.69128e10i −0.292820 + 0.507179i
\(219\) 0 0
\(220\) 6.58874e9 + 1.14120e10i 0.189627 + 0.328444i
\(221\) −1.06007e10 1.83609e10i −0.298929 0.517760i
\(222\) 0 0
\(223\) 2.39949e10 4.15604e10i 0.649751 1.12540i −0.333432 0.942774i \(-0.608207\pi\)
0.983182 0.182627i \(-0.0584601\pi\)
\(224\) −4.43120e9 −0.117599
\(225\) 0 0
\(226\) 9.26782e9 0.236314
\(227\) −2.81836e10 + 4.88154e10i −0.704498 + 1.22023i 0.262374 + 0.964966i \(0.415495\pi\)
−0.966872 + 0.255261i \(0.917839\pi\)
\(228\) 0 0
\(229\) 2.88693e10 + 5.00030e10i 0.693707 + 1.20154i 0.970615 + 0.240639i \(0.0773571\pi\)
−0.276907 + 0.960897i \(0.589310\pi\)
\(230\) −4.04740e8 7.01029e8i −0.00953675 0.0165181i
\(231\) 0 0
\(232\) −1.21511e10 + 2.10463e10i −0.275371 + 0.476957i
\(233\) 2.54451e10 0.565592 0.282796 0.959180i \(-0.408738\pi\)
0.282796 + 0.959180i \(0.408738\pi\)
\(234\) 0 0
\(235\) −1.86881e10 −0.399724
\(236\) −9.22780e9 + 1.59830e10i −0.193640 + 0.335394i
\(237\) 0 0
\(238\) 6.17881e9 + 1.07020e10i 0.124827 + 0.216207i
\(239\) −1.86944e10 3.23797e10i −0.370614 0.641922i 0.619046 0.785354i \(-0.287519\pi\)
−0.989660 + 0.143433i \(0.954186\pi\)
\(240\) 0 0
\(241\) 2.80968e10 4.86650e10i 0.536512 0.929266i −0.462576 0.886579i \(-0.653075\pi\)
0.999089 0.0426868i \(-0.0135918\pi\)
\(242\) 2.88281e9 0.0540314
\(243\) 0 0
\(244\) 1.68490e10 0.304313
\(245\) −1.14920e10 + 1.99048e10i −0.203774 + 0.352947i
\(246\) 0 0
\(247\) −3.27379e10 5.67038e10i −0.559648 0.969339i
\(248\) −8.93292e9 1.54723e10i −0.149955 0.259730i
\(249\) 0 0
\(250\) −2.33961e10 + 4.05233e10i −0.378803 + 0.656107i
\(251\) −7.14751e10 −1.13664 −0.568320 0.822807i \(-0.692407\pi\)
−0.568320 + 0.822807i \(0.692407\pi\)
\(252\) 0 0
\(253\) −2.49463e9 −0.0382793
\(254\) −2.79786e10 + 4.84603e10i −0.421768 + 0.730524i
\(255\) 0 0
\(256\) −2.14748e9 3.71955e9i −0.0312500 0.0541266i
\(257\) 1.01810e10 + 1.76340e10i 0.145576 + 0.252146i 0.929588 0.368601i \(-0.120163\pi\)
−0.784011 + 0.620746i \(0.786830\pi\)
\(258\) 0 0
\(259\) −2.44326e10 + 4.23185e10i −0.337381 + 0.584362i
\(260\) −3.03421e10 −0.411780
\(261\) 0 0
\(262\) 9.54926e10 1.25203
\(263\) −4.31385e10 + 7.47180e10i −0.555986 + 0.962996i 0.441840 + 0.897094i \(0.354326\pi\)
−0.997826 + 0.0659019i \(0.979008\pi\)
\(264\) 0 0
\(265\) 3.51484e10 + 6.08788e10i 0.437824 + 0.758333i
\(266\) 1.90820e10 + 3.30510e10i 0.233699 + 0.404778i
\(267\) 0 0
\(268\) −2.06349e10 + 3.57407e10i −0.244341 + 0.423210i
\(269\) −9.80326e10 −1.14152 −0.570762 0.821115i \(-0.693352\pi\)
−0.570762 + 0.821115i \(0.693352\pi\)
\(270\) 0 0
\(271\) 9.35838e10 1.05400 0.526998 0.849867i \(-0.323318\pi\)
0.526998 + 0.849867i \(0.323318\pi\)
\(272\) −5.98885e9 + 1.03730e10i −0.0663413 + 0.114906i
\(273\) 0 0
\(274\) 3.82237e10 + 6.62054e10i 0.409690 + 0.709604i
\(275\) 2.29025e10 + 3.96682e10i 0.241482 + 0.418260i
\(276\) 0 0
\(277\) 5.04765e10 8.74279e10i 0.515146 0.892259i −0.484699 0.874681i \(-0.661071\pi\)
0.999845 0.0175783i \(-0.00559564\pi\)
\(278\) 2.47214e10 0.248240
\(279\) 0 0
\(280\) 1.76855e10 0.171952
\(281\) −5.11334e10 + 8.85657e10i −0.489245 + 0.847398i −0.999923 0.0123744i \(-0.996061\pi\)
0.510678 + 0.859772i \(0.329394\pi\)
\(282\) 0 0
\(283\) −1.09960e10 1.90457e10i −0.101905 0.176505i 0.810564 0.585650i \(-0.199161\pi\)
−0.912470 + 0.409144i \(0.865827\pi\)
\(284\) 3.54249e10 + 6.13577e10i 0.323129 + 0.559675i
\(285\) 0 0
\(286\) −4.67536e10 + 8.09797e10i −0.413208 + 0.715696i
\(287\) −1.11843e11 −0.973062
\(288\) 0 0
\(289\) −8.51847e10 −0.718326
\(290\) 4.84965e10 8.39984e10i 0.402642 0.697397i
\(291\) 0 0
\(292\) 5.40975e10 + 9.36995e10i 0.435466 + 0.754249i
\(293\) 4.07586e10 + 7.05960e10i 0.323084 + 0.559598i 0.981123 0.193386i \(-0.0619470\pi\)
−0.658039 + 0.752984i \(0.728614\pi\)
\(294\) 0 0
\(295\) 3.68294e10 6.37904e10i 0.283136 0.490406i
\(296\) −4.73629e10 −0.358613
\(297\) 0 0
\(298\) 5.65857e10 0.415656
\(299\) 2.87203e9 4.97450e9i 0.0207811 0.0359939i
\(300\) 0 0
\(301\) −2.83827e10 4.91603e10i −0.199299 0.345196i
\(302\) −7.63308e9 1.32209e10i −0.0528042 0.0914596i
\(303\) 0 0
\(304\) −1.84953e10 + 3.20349e10i −0.124203 + 0.215125i
\(305\) −6.72467e10 −0.444961
\(306\) 0 0
\(307\) −2.76415e10 −0.177598 −0.0887991 0.996050i \(-0.528303\pi\)
−0.0887991 + 0.996050i \(0.528303\pi\)
\(308\) 2.72513e10 4.72007e10i 0.172548 0.298862i
\(309\) 0 0
\(310\) 3.56525e10 + 6.17519e10i 0.219261 + 0.379772i
\(311\) 1.33228e9 + 2.30757e9i 0.00807557 + 0.0139873i 0.870035 0.492990i \(-0.164096\pi\)
−0.861959 + 0.506977i \(0.830763\pi\)
\(312\) 0 0
\(313\) 1.22662e11 2.12456e11i 0.722370 1.25118i −0.237678 0.971344i \(-0.576386\pi\)
0.960048 0.279837i \(-0.0902803\pi\)
\(314\) 1.23841e11 0.718920
\(315\) 0 0
\(316\) −1.07559e11 −0.606814
\(317\) 1.61358e11 2.79481e11i 0.897480 1.55448i 0.0667752 0.997768i \(-0.478729\pi\)
0.830705 0.556713i \(-0.187938\pi\)
\(318\) 0 0
\(319\) −1.49455e11 2.58864e11i −0.808077 1.39963i
\(320\) 8.57089e9 + 1.48452e10i 0.0456932 + 0.0791429i
\(321\) 0 0
\(322\) −1.67402e9 + 2.89949e9i −0.00867779 + 0.0150304i
\(323\) 1.03159e11 0.527345
\(324\) 0 0
\(325\) −1.05469e11 −0.524385
\(326\) −7.88969e10 + 1.36653e11i −0.386884 + 0.670102i
\(327\) 0 0
\(328\) −5.42023e10 9.38812e10i −0.258574 0.447864i
\(329\) 3.86474e10 + 6.69393e10i 0.181861 + 0.314992i
\(330\) 0 0
\(331\) −1.31822e11 + 2.28322e11i −0.603617 + 1.04550i 0.388651 + 0.921385i \(0.372941\pi\)
−0.992268 + 0.124111i \(0.960392\pi\)
\(332\) −1.77727e11 −0.802845
\(333\) 0 0
\(334\) −2.99997e11 −1.31904
\(335\) 8.23566e10 1.42646e11i 0.357270 0.618810i
\(336\) 0 0
\(337\) −3.08775e8 5.34815e8i −0.00130409 0.00225875i 0.865373 0.501129i \(-0.167082\pi\)
−0.866677 + 0.498870i \(0.833748\pi\)
\(338\) −2.28175e10 3.95211e10i −0.0950917 0.164704i
\(339\) 0 0
\(340\) 2.39023e10 4.14000e10i 0.0970029 0.168014i
\(341\) 2.19745e11 0.880086
\(342\) 0 0
\(343\) 2.65594e11 1.03608
\(344\) 2.75101e10 4.76490e10i 0.105920 0.183460i
\(345\) 0 0
\(346\) 1.20227e11 + 2.08239e11i 0.450983 + 0.781125i
\(347\) −1.34265e11 2.32553e11i −0.497141 0.861073i 0.502854 0.864371i \(-0.332283\pi\)
−0.999995 + 0.00329862i \(0.998950\pi\)
\(348\) 0 0
\(349\) 3.66403e10 6.34628e10i 0.132204 0.228984i −0.792322 0.610103i \(-0.791128\pi\)
0.924526 + 0.381119i \(0.124461\pi\)
\(350\) 6.14748e10 0.218973
\(351\) 0 0
\(352\) 5.28270e10 0.183406
\(353\) −8.78842e10 + 1.52220e11i −0.301248 + 0.521778i −0.976419 0.215884i \(-0.930737\pi\)
0.675171 + 0.737662i \(0.264070\pi\)
\(354\) 0 0
\(355\) −1.41385e11 2.44887e11i −0.472473 0.818347i
\(356\) −1.01926e11 1.76542e11i −0.336327 0.582535i
\(357\) 0 0
\(358\) 3.75264e10 6.49977e10i 0.120743 0.209134i
\(359\) 2.63152e11 0.836146 0.418073 0.908413i \(-0.362706\pi\)
0.418073 + 0.908413i \(0.362706\pi\)
\(360\) 0 0
\(361\) −4.10336e9 −0.0127162
\(362\) 3.99731e10 6.92354e10i 0.122343 0.211904i
\(363\) 0 0
\(364\) 6.27481e10 + 1.08683e11i 0.187346 + 0.324493i
\(365\) −2.15910e11 3.73967e11i −0.636730 1.10285i
\(366\) 0 0
\(367\) −1.83601e11 + 3.18006e11i −0.528296 + 0.915036i 0.471159 + 0.882048i \(0.343836\pi\)
−0.999456 + 0.0329881i \(0.989498\pi\)
\(368\) −3.24511e9 −0.00922389
\(369\) 0 0
\(370\) 1.89032e11 0.524357
\(371\) 1.45375e11 2.51797e11i 0.398390 0.690031i
\(372\) 0 0
\(373\) −1.18671e11 2.05543e11i −0.317434 0.549812i 0.662518 0.749046i \(-0.269488\pi\)
−0.979952 + 0.199234i \(0.936154\pi\)
\(374\) −7.36614e10 1.27585e11i −0.194678 0.337193i
\(375\) 0 0
\(376\) −3.74593e10 + 6.48813e10i −0.0966527 + 0.167407i
\(377\) 6.88261e11 1.75476
\(378\) 0 0
\(379\) −3.00656e11 −0.748504 −0.374252 0.927327i \(-0.622100\pi\)
−0.374252 + 0.927327i \(0.622100\pi\)
\(380\) 7.38173e10 1.27855e11i 0.181607 0.314552i
\(381\) 0 0
\(382\) −2.55258e10 4.42120e10i −0.0613330 0.106232i
\(383\) 1.10343e11 + 1.91120e11i 0.262030 + 0.453849i 0.966781 0.255605i \(-0.0822747\pi\)
−0.704751 + 0.709455i \(0.748941\pi\)
\(384\) 0 0
\(385\) −1.08764e11 + 1.88384e11i −0.252296 + 0.436990i
\(386\) 4.99038e11 1.14417
\(387\) 0 0
\(388\) −1.00257e11 −0.224579
\(389\) −4.05914e10 + 7.03064e10i −0.0898795 + 0.155676i −0.907460 0.420138i \(-0.861982\pi\)
0.817581 + 0.575814i \(0.195315\pi\)
\(390\) 0 0
\(391\) 4.52494e9 + 7.83743e9i 0.00979079 + 0.0169582i
\(392\) 4.60702e10 + 7.97959e10i 0.0985446 + 0.170684i
\(393\) 0 0
\(394\) 1.84034e11 3.18756e11i 0.384738 0.666386i
\(395\) 4.29283e11 0.887272
\(396\) 0 0
\(397\) −3.51282e11 −0.709739 −0.354870 0.934916i \(-0.615475\pi\)
−0.354870 + 0.934916i \(0.615475\pi\)
\(398\) 8.35739e10 1.44754e11i 0.166954 0.289173i
\(399\) 0 0
\(400\) 2.97924e10 + 5.16020e10i 0.0581883 + 0.100785i
\(401\) 1.86045e11 + 3.22239e11i 0.359309 + 0.622342i 0.987846 0.155438i \(-0.0496790\pi\)
−0.628536 + 0.777780i \(0.716346\pi\)
\(402\) 0 0
\(403\) −2.52990e11 + 4.38191e11i −0.477782 + 0.827543i
\(404\) −3.71501e11 −0.693816
\(405\) 0 0
\(406\) −4.01167e11 −0.732754
\(407\) 2.91276e11 5.04505e11i 0.526175 0.911362i
\(408\) 0 0
\(409\) 4.06034e11 + 7.03272e11i 0.717476 + 1.24271i 0.961997 + 0.273061i \(0.0880362\pi\)
−0.244520 + 0.969644i \(0.578630\pi\)
\(410\) 2.16329e11 + 3.74692e11i 0.378083 + 0.654858i
\(411\) 0 0
\(412\) 1.59304e11 2.75923e11i 0.272389 0.471791i
\(413\) −3.04656e11 −0.515270
\(414\) 0 0
\(415\) 7.09331e11 1.17390
\(416\) −6.08190e10 + 1.05342e11i −0.0995678 + 0.172457i
\(417\) 0 0
\(418\) −2.27488e11 3.94021e11i −0.364473 0.631286i
\(419\) −6.49581e10 1.12511e11i −0.102960 0.178333i 0.809943 0.586509i \(-0.199498\pi\)
−0.912903 + 0.408176i \(0.866165\pi\)
\(420\) 0 0
\(421\) 6.09043e11 1.05489e12i 0.944884 1.63659i 0.188899 0.981996i \(-0.439508\pi\)
0.755984 0.654590i \(-0.227159\pi\)
\(422\) 7.71396e11 1.18405
\(423\) 0 0
\(424\) 2.81812e11 0.423461
\(425\) 8.30845e10 1.43907e11i 0.123529 0.213959i
\(426\) 0 0
\(427\) 1.39068e11 + 2.40872e11i 0.202442 + 0.350640i
\(428\) −2.68811e11 4.65593e11i −0.387212 0.670672i
\(429\) 0 0
\(430\) −1.09797e11 + 1.90173e11i −0.154875 + 0.268251i
\(431\) −1.33990e11 −0.187036 −0.0935179 0.995618i \(-0.529811\pi\)
−0.0935179 + 0.995618i \(0.529811\pi\)
\(432\) 0 0
\(433\) −4.46482e10 −0.0610392 −0.0305196 0.999534i \(-0.509716\pi\)
−0.0305196 + 0.999534i \(0.509716\pi\)
\(434\) 1.47460e11 2.55409e11i 0.199513 0.345566i
\(435\) 0 0
\(436\) −1.56234e11 2.70605e11i −0.207055 0.358630i
\(437\) 1.39744e10 + 2.42043e10i 0.0183301 + 0.0317487i
\(438\) 0 0
\(439\) 1.14481e11 1.98286e11i 0.147110 0.254801i −0.783048 0.621961i \(-0.786336\pi\)
0.930158 + 0.367159i \(0.119670\pi\)
\(440\) −2.10840e11 −0.268173
\(441\) 0 0
\(442\) 3.39221e11 0.422749
\(443\) 4.19646e11 7.26849e11i 0.517686 0.896659i −0.482103 0.876115i \(-0.660127\pi\)
0.999789 0.0205442i \(-0.00653987\pi\)
\(444\) 0 0
\(445\) 4.06801e11 + 7.04601e11i 0.491770 + 0.851771i
\(446\) 3.83918e11 + 6.64966e11i 0.459443 + 0.795779i
\(447\) 0 0
\(448\) 3.54496e10 6.14005e10i 0.0415777 0.0720146i
\(449\) −1.21847e12 −1.41484 −0.707420 0.706793i \(-0.750141\pi\)
−0.707420 + 0.706793i \(0.750141\pi\)
\(450\) 0 0
\(451\) 1.33335e12 1.51757
\(452\) −7.41425e10 + 1.28419e11i −0.0835496 + 0.144712i
\(453\) 0 0
\(454\) −4.50938e11 7.81047e11i −0.498156 0.862831i
\(455\) −2.50436e11 4.33768e11i −0.273934 0.474467i
\(456\) 0 0
\(457\) −4.95467e11 + 8.58174e11i −0.531364 + 0.920349i 0.467966 + 0.883746i \(0.344987\pi\)
−0.999330 + 0.0366026i \(0.988346\pi\)
\(458\) −9.23817e11 −0.981050
\(459\) 0 0
\(460\) 1.29517e10 0.0134870
\(461\) 4.15501e11 7.19669e11i 0.428468 0.742128i −0.568270 0.822842i \(-0.692387\pi\)
0.996737 + 0.0807148i \(0.0257203\pi\)
\(462\) 0 0
\(463\) −1.50482e9 2.60643e9i −0.00152185 0.00263592i 0.865263 0.501317i \(-0.167151\pi\)
−0.866785 + 0.498681i \(0.833818\pi\)
\(464\) −1.94417e11 3.36740e11i −0.194717 0.337259i
\(465\) 0 0
\(466\) −2.03561e11 + 3.52578e11i −0.199967 + 0.346353i
\(467\) −3.46119e10 −0.0336743 −0.0168372 0.999858i \(-0.505360\pi\)
−0.0168372 + 0.999858i \(0.505360\pi\)
\(468\) 0 0
\(469\) −6.81261e11 −0.650183
\(470\) 1.49505e11 2.58950e11i 0.141324 0.244780i
\(471\) 0 0
\(472\) −1.47645e11 2.55728e11i −0.136924 0.237159i
\(473\) 3.38368e11 + 5.86070e11i 0.310824 + 0.538362i
\(474\) 0 0
\(475\) 2.56589e11 4.44425e11i 0.231269 0.400569i
\(476\) −1.97722e11 −0.176532
\(477\) 0 0
\(478\) 5.98221e11 0.524127
\(479\) −8.31890e11 + 1.44088e12i −0.722031 + 1.25059i 0.238153 + 0.971228i \(0.423458\pi\)
−0.960184 + 0.279367i \(0.909875\pi\)
\(480\) 0 0
\(481\) 6.70684e11 + 1.16166e12i 0.571301 + 0.989522i
\(482\) 4.49548e11 + 7.78640e11i 0.379371 + 0.657090i
\(483\) 0 0
\(484\) −2.30625e10 + 3.99454e10i −0.0191030 + 0.0330874i
\(485\) 4.00137e11 0.328376
\(486\) 0 0
\(487\) −1.18819e12 −0.957203 −0.478601 0.878032i \(-0.658856\pi\)
−0.478601 + 0.878032i \(0.658856\pi\)
\(488\) −1.34792e11 + 2.33467e11i −0.107591 + 0.186353i
\(489\) 0 0
\(490\) −1.83872e11 3.18476e11i −0.144090 0.249571i
\(491\) 3.38983e10 + 5.87136e10i 0.0263215 + 0.0455902i 0.878886 0.477032i \(-0.158287\pi\)
−0.852565 + 0.522622i \(0.824954\pi\)
\(492\) 0 0
\(493\) −5.42186e11 + 9.39093e11i −0.413368 + 0.715975i
\(494\) 1.04761e12 0.791462
\(495\) 0 0
\(496\) 2.85853e11 0.212068
\(497\) −5.84776e11 + 1.01286e12i −0.429918 + 0.744640i
\(498\) 0 0
\(499\) 1.05094e12 + 1.82029e12i 0.758800 + 1.31428i 0.943463 + 0.331478i \(0.107547\pi\)
−0.184663 + 0.982802i \(0.559119\pi\)
\(500\) −3.74338e11 6.48373e11i −0.267854 0.463938i
\(501\) 0 0
\(502\) 5.71801e11 9.90388e11i 0.401863 0.696047i
\(503\) −1.66977e12 −1.16306 −0.581528 0.813527i \(-0.697545\pi\)
−0.581528 + 0.813527i \(0.697545\pi\)
\(504\) 0 0
\(505\) 1.48271e12 1.01448
\(506\) 1.99570e10 3.45666e10i 0.0135338 0.0234412i
\(507\) 0 0
\(508\) −4.47657e11 7.75365e11i −0.298235 0.516558i
\(509\) −1.38057e10 2.39121e10i −0.00911648 0.0157902i 0.861431 0.507874i \(-0.169569\pi\)
−0.870548 + 0.492084i \(0.836235\pi\)
\(510\) 0 0
\(511\) −8.93014e11 + 1.54675e12i −0.579381 + 1.00352i
\(512\) 6.87195e10 0.0441942
\(513\) 0 0
\(514\) −3.25792e11 −0.205876
\(515\) −6.35804e11 + 1.10124e12i −0.398282 + 0.689844i
\(516\) 0 0
\(517\) −4.60740e11 7.98024e11i −0.283627 0.491257i
\(518\) −3.90922e11 6.77096e11i −0.238565 0.413206i
\(519\) 0 0
\(520\) 2.42737e11 4.20432e11i 0.145586 0.252163i
\(521\) 1.30088e12 0.773511 0.386756 0.922182i \(-0.373596\pi\)
0.386756 + 0.922182i \(0.373596\pi\)
\(522\) 0 0
\(523\) −1.91657e12 −1.12013 −0.560063 0.828450i \(-0.689223\pi\)
−0.560063 + 0.828450i \(0.689223\pi\)
\(524\) −7.63941e11 + 1.32318e12i −0.442659 + 0.766707i
\(525\) 0 0
\(526\) −6.90215e11 1.19549e12i −0.393141 0.680941i
\(527\) −3.98591e11 6.90380e11i −0.225102 0.389888i
\(528\) 0 0
\(529\) 8.99350e11 1.55772e12i 0.499319 0.864846i
\(530\) −1.12475e12 −0.619176
\(531\) 0 0
\(532\) −6.10623e11 −0.330500
\(533\) −1.53507e12 + 2.65881e12i −0.823862 + 1.42697i
\(534\) 0 0
\(535\) 1.07286e12 + 1.85825e12i 0.566175 + 0.980643i
\(536\) −3.30158e11 5.71851e11i −0.172775 0.299255i
\(537\) 0 0
\(538\) 7.84261e11 1.35838e12i 0.403590 0.699038i
\(539\) −1.13330e12 −0.578358
\(540\) 0 0
\(541\) 7.15583e10 0.0359147 0.0179573 0.999839i \(-0.494284\pi\)
0.0179573 + 0.999839i \(0.494284\pi\)
\(542\) −7.48671e11 + 1.29674e12i −0.372644 + 0.645438i
\(543\) 0 0
\(544\) −9.58217e10 1.65968e11i −0.0469104 0.0812511i
\(545\) 6.23549e11 + 1.08002e12i 0.302752 + 0.524381i
\(546\) 0 0
\(547\) −7.44479e11 + 1.28948e12i −0.355557 + 0.615843i −0.987213 0.159406i \(-0.949042\pi\)
0.631656 + 0.775249i \(0.282376\pi\)
\(548\) −1.22316e12 −0.579389
\(549\) 0 0
\(550\) −7.32879e11 −0.341508
\(551\) −1.67443e12 + 2.90019e12i −0.773899 + 1.34043i
\(552\) 0 0
\(553\) −8.87767e11 1.53766e12i −0.403679 0.699192i
\(554\) 8.07624e11 + 1.39885e12i 0.364263 + 0.630922i
\(555\) 0 0
\(556\) −1.97771e11 + 3.42550e11i −0.0877661 + 0.152015i
\(557\) 2.89221e11 0.127315 0.0636577 0.997972i \(-0.479723\pi\)
0.0636577 + 0.997972i \(0.479723\pi\)
\(558\) 0 0
\(559\) −1.55823e12 −0.674961
\(560\) −1.41484e11 + 2.45057e11i −0.0607941 + 0.105298i
\(561\) 0 0
\(562\) −8.18135e11 1.41705e12i −0.345949 0.599201i
\(563\) 6.06414e11 + 1.05034e12i 0.254379 + 0.440598i 0.964727 0.263253i \(-0.0847955\pi\)
−0.710347 + 0.703851i \(0.751462\pi\)
\(564\) 0 0
\(565\) 2.95913e11 5.12536e11i 0.122165 0.211595i
\(566\) 3.51873e11 0.144116
\(567\) 0 0
\(568\) −1.13360e12 −0.456973
\(569\) 7.48882e11 1.29710e12i 0.299508 0.518763i −0.676516 0.736428i \(-0.736511\pi\)
0.976023 + 0.217666i \(0.0698442\pi\)
\(570\) 0 0
\(571\) −1.78403e12 3.09003e12i −0.702327 1.21647i −0.967647 0.252306i \(-0.918811\pi\)
0.265320 0.964160i \(-0.414522\pi\)
\(572\) −7.48058e11 1.29567e12i −0.292182 0.506074i
\(573\) 0 0
\(574\) 8.94745e11 1.54974e12i 0.344029 0.595877i
\(575\) 4.50200e10 0.0171751
\(576\) 0 0
\(577\) 1.09711e12 0.412060 0.206030 0.978546i \(-0.433946\pi\)
0.206030 + 0.978546i \(0.433946\pi\)
\(578\) 6.81478e11 1.18035e12i 0.253966 0.439883i
\(579\) 0 0
\(580\) 7.75944e11 + 1.34397e12i 0.284711 + 0.493134i
\(581\) −1.46691e12 2.54077e12i −0.534086 0.925065i
\(582\) 0 0
\(583\) −1.73311e12 + 3.00183e12i −0.621323 + 1.07616i
\(584\) −1.73112e12 −0.615842
\(585\) 0 0
\(586\) −1.30428e12 −0.456910
\(587\) 6.48821e11 1.12379e12i 0.225556 0.390674i −0.730930 0.682452i \(-0.760914\pi\)
0.956486 + 0.291778i \(0.0942469\pi\)
\(588\) 0 0
\(589\) −1.23097e12 2.13209e12i −0.421431 0.729941i
\(590\) 5.89270e11 + 1.02065e12i 0.200208 + 0.346770i
\(591\) 0 0
\(592\) 3.78903e11 6.56280e11i 0.126789 0.219605i
\(593\) −4.72631e12 −1.56955 −0.784777 0.619778i \(-0.787223\pi\)
−0.784777 + 0.619778i \(0.787223\pi\)
\(594\) 0 0
\(595\) 7.89135e11 0.258122
\(596\) −4.52686e11 + 7.84075e11i −0.146956 + 0.254536i
\(597\) 0 0
\(598\) 4.59524e10 + 7.95920e10i 0.0146944 + 0.0254515i
\(599\) 1.57135e12 + 2.72166e12i 0.498715 + 0.863799i 0.999999 0.00148367i \(-0.000472268\pi\)
−0.501284 + 0.865283i \(0.667139\pi\)
\(600\) 0 0
\(601\) −1.74874e12 + 3.02891e12i −0.546752 + 0.947002i 0.451743 + 0.892148i \(0.350802\pi\)
−0.998494 + 0.0548534i \(0.982531\pi\)
\(602\) 9.08247e11 0.281851
\(603\) 0 0
\(604\) 2.44259e11 0.0746765
\(605\) 9.20453e10 1.59427e11i 0.0279320 0.0483797i
\(606\) 0 0
\(607\) 1.57652e12 + 2.73060e12i 0.471356 + 0.816413i 0.999463 0.0327652i \(-0.0104314\pi\)
−0.528107 + 0.849178i \(0.677098\pi\)
\(608\) −2.95925e11 5.12558e11i −0.0878246 0.152117i
\(609\) 0 0
\(610\) 5.37974e11 9.31798e11i 0.157317 0.272482i
\(611\) 2.12177e12 0.615904
\(612\) 0 0
\(613\) 6.51322e12 1.86304 0.931522 0.363684i \(-0.118481\pi\)
0.931522 + 0.363684i \(0.118481\pi\)
\(614\) 2.21132e11 3.83012e11i 0.0627905 0.108756i
\(615\) 0 0
\(616\) 4.36021e11 + 7.55211e11i 0.122010 + 0.211327i
\(617\) −1.41102e12 2.44395e12i −0.391966 0.678905i 0.600743 0.799443i \(-0.294872\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(618\) 0 0
\(619\) 4.22132e11 7.31154e11i 0.115569 0.200171i −0.802438 0.596735i \(-0.796464\pi\)
0.918007 + 0.396564i \(0.129798\pi\)
\(620\) −1.14088e12 −0.310082
\(621\) 0 0
\(622\) −4.26329e10 −0.0114206
\(623\) 1.68255e12 2.91426e12i 0.447478 0.775054i
\(624\) 0 0
\(625\) 6.06149e11 + 1.04988e12i 0.158898 + 0.275220i
\(626\) 1.96259e12 + 3.39930e12i 0.510792 + 0.884718i
\(627\) 0 0
\(628\) −9.90727e11 + 1.71599e12i −0.254177 + 0.440247i
\(629\) −2.11336e12 −0.538325
\(630\) 0 0
\(631\) −5.28923e12 −1.32819 −0.664095 0.747648i \(-0.731183\pi\)
−0.664095 + 0.747648i \(0.731183\pi\)
\(632\) 8.60474e11 1.49038e12i 0.214541 0.371596i
\(633\) 0 0
\(634\) 2.58173e12 + 4.47169e12i 0.634614 + 1.09918i
\(635\) 1.78666e12 + 3.09458e12i 0.436074 + 0.755302i
\(636\) 0 0
\(637\) 1.30476e12 2.25990e12i 0.313980 0.543829i
\(638\) 4.78256e12 1.14279
\(639\) 0 0
\(640\) −2.74269e11 −0.0646199
\(641\) 1.96187e12 3.39807e12i 0.458997 0.795006i −0.539911 0.841722i \(-0.681542\pi\)
0.998908 + 0.0467156i \(0.0148755\pi\)
\(642\) 0 0
\(643\) 6.09246e11 + 1.05524e12i 0.140554 + 0.243447i 0.927705 0.373313i \(-0.121778\pi\)
−0.787151 + 0.616760i \(0.788445\pi\)
\(644\) −2.67843e10 4.63918e10i −0.00613613 0.0106281i
\(645\) 0 0
\(646\) −8.25270e11 + 1.42941e12i −0.186445 + 0.322931i
\(647\) −3.90059e12 −0.875107 −0.437554 0.899192i \(-0.644155\pi\)
−0.437554 + 0.899192i \(0.644155\pi\)
\(648\) 0 0
\(649\) 3.63199e12 0.803607
\(650\) 8.43753e11 1.46142e12i 0.185398 0.321119i
\(651\) 0 0
\(652\) −1.26235e12 2.18645e12i −0.273568 0.473834i
\(653\) 1.59642e12 + 2.76508e12i 0.343587 + 0.595111i 0.985096 0.172005i \(-0.0550245\pi\)
−0.641509 + 0.767116i \(0.721691\pi\)
\(654\) 0 0
\(655\) 3.04899e12 5.28100e12i 0.647247 1.12106i
\(656\) 1.73447e12 0.365679
\(657\) 0 0
\(658\) −1.23672e12 −0.257190
\(659\) 5.42899e10 9.40328e10i 0.0112133 0.0194220i −0.860364 0.509680i \(-0.829764\pi\)
0.871578 + 0.490258i \(0.163097\pi\)
\(660\) 0 0
\(661\) 1.04451e12 + 1.80914e12i 0.212816 + 0.368608i 0.952595 0.304242i \(-0.0984032\pi\)
−0.739779 + 0.672850i \(0.765070\pi\)
\(662\) −2.10915e12 3.65316e12i −0.426822 0.739277i
\(663\) 0 0
\(664\) 1.42181e12 2.46265e12i 0.283848 0.491640i
\(665\) 2.43708e12 0.483250
\(666\) 0 0
\(667\) −2.93788e11 −0.0574735
\(668\) 2.39997e12 4.15688e12i 0.466351 0.807743i
\(669\) 0 0
\(670\) 1.31771e12 + 2.28233e12i 0.252628 + 0.437565i
\(671\) −1.65791e12 2.87159e12i −0.315726 0.546853i
\(672\) 0 0
\(673\) −2.54285e12 + 4.40434e12i −0.477807 + 0.827585i −0.999676 0.0254399i \(-0.991901\pi\)
0.521870 + 0.853025i \(0.325235\pi\)
\(674\) 9.88081e9 0.00184426
\(675\) 0 0
\(676\) 7.30160e11 0.134480
\(677\) 8.71741e11 1.50990e12i 0.159492 0.276248i −0.775194 0.631724i \(-0.782348\pi\)
0.934686 + 0.355476i \(0.115681\pi\)
\(678\) 0 0
\(679\) −8.27493e11 1.43326e12i −0.149400 0.258768i
\(680\) 3.82437e11 + 6.62400e11i 0.0685914 + 0.118804i
\(681\) 0 0
\(682\) −1.75796e12 + 3.04488e12i −0.311157 + 0.538940i
\(683\) 9.07541e12 1.59578 0.797890 0.602803i \(-0.205950\pi\)
0.797890 + 0.602803i \(0.205950\pi\)
\(684\) 0 0
\(685\) 4.88179e12 0.847172
\(686\) −2.12475e12 + 3.68018e12i −0.366311 + 0.634469i
\(687\) 0 0
\(688\) 4.40162e11 + 7.62383e11i 0.0748971 + 0.129725i
\(689\) −3.99060e12 6.91193e12i −0.674609 1.16846i
\(690\) 0 0
\(691\) 1.75389e12 3.03782e12i 0.292651 0.506887i −0.681784 0.731553i \(-0.738796\pi\)
0.974436 + 0.224666i \(0.0721291\pi\)
\(692\) −3.84727e12 −0.637786
\(693\) 0 0
\(694\) 4.29647e12 0.703063
\(695\) 7.89332e11 1.36716e12i 0.128330 0.222274i
\(696\) 0 0
\(697\) −2.41853e12 4.18902e12i −0.388154 0.672303i
\(698\) 5.86244e11 + 1.01540e12i 0.0934822 + 0.161916i
\(699\) 0 0
\(700\) −4.91799e11 + 8.51820e11i −0.0774187 + 0.134093i
\(701\) 7.26347e12 1.13609 0.568045 0.822997i \(-0.307700\pi\)
0.568045 + 0.822997i \(0.307700\pi\)
\(702\) 0 0
\(703\) −6.52666e12 −1.00784
\(704\) −4.22616e11 + 7.31993e11i −0.0648439 + 0.112313i
\(705\) 0 0
\(706\) −1.40615e12 2.43552e12i −0.213015 0.368953i
\(707\) −3.06628e12 5.31095e12i −0.461556 0.799438i
\(708\) 0 0
\(709\) 4.41297e12 7.64348e12i 0.655877 1.13601i −0.325796 0.945440i \(-0.605632\pi\)
0.981673 0.190572i \(-0.0610344\pi\)
\(710\) 4.52433e12 0.668177
\(711\) 0 0
\(712\) 3.26164e12 0.475638
\(713\) 1.07990e11 1.87044e11i 0.0156488 0.0271045i
\(714\) 0 0
\(715\) 2.98560e12 + 5.17121e12i 0.427223 + 0.739971i
\(716\) 6.00423e11 + 1.03996e12i 0.0853785 + 0.147880i
\(717\) 0 0
\(718\) −2.10522e12 + 3.64635e12i −0.295622 + 0.512033i
\(719\) 9.15261e12 1.27722 0.638609 0.769532i \(-0.279510\pi\)
0.638609 + 0.769532i \(0.279510\pi\)
\(720\) 0 0
\(721\) 5.25942e12 0.724819
\(722\) 3.28269e10 5.68578e10i 0.00449586 0.00778705i
\(723\) 0 0
\(724\) 6.39569e11 + 1.10777e12i 0.0865096 + 0.149839i
\(725\) 2.69718e12 + 4.67166e12i 0.362568 + 0.627986i
\(726\) 0 0
\(727\) −2.23846e12 + 3.87713e12i −0.297197 + 0.514760i −0.975494 0.220028i \(-0.929385\pi\)
0.678297 + 0.734788i \(0.262719\pi\)
\(728\) −2.00794e12 −0.264947
\(729\) 0 0
\(730\) 6.90912e12 0.900472
\(731\) 1.22751e12 2.12612e12i 0.159000 0.275397i
\(732\) 0 0
\(733\) −3.93655e12 6.81830e12i −0.503672 0.872385i −0.999991 0.00424498i \(-0.998649\pi\)
0.496319 0.868140i \(-0.334685\pi\)
\(734\) −2.93762e12 5.08810e12i −0.373562 0.647028i
\(735\) 0 0
\(736\) 2.59609e10 4.49656e10i 0.00326114 0.00564846i
\(737\) 8.12173e12 1.01402
\(738\) 0 0
\(739\) −1.32902e13 −1.63919 −0.819597 0.572941i \(-0.805803\pi\)
−0.819597 + 0.572941i \(0.805803\pi\)
\(740\) −1.51225e12 + 2.61930e12i −0.185388 + 0.321102i
\(741\) 0 0
\(742\) 2.32601e12 + 4.02876e12i 0.281704 + 0.487926i
\(743\) 3.92044e12 + 6.79041e12i 0.471939 + 0.817422i 0.999485 0.0321047i \(-0.0102210\pi\)
−0.527546 + 0.849527i \(0.676888\pi\)
\(744\) 0 0
\(745\) 1.80673e12 3.12935e12i 0.214877 0.372178i
\(746\) 3.79746e12 0.448919
\(747\) 0 0
\(748\) 2.35717e12 0.275317
\(749\) 4.43739e12 7.68578e12i 0.515180 0.892319i
\(750\) 0 0
\(751\) −2.36410e12 4.09473e12i −0.271197 0.469727i 0.697971 0.716126i \(-0.254086\pi\)
−0.969169 + 0.246398i \(0.920753\pi\)
\(752\) −5.99348e11 1.03810e12i −0.0683437 0.118375i
\(753\) 0 0
\(754\) −5.50609e12 + 9.53683e12i −0.620401 + 1.07457i
\(755\) −9.74869e11 −0.109190
\(756\) 0 0
\(757\) −7.45548e12 −0.825171 −0.412586 0.910919i \(-0.635374\pi\)
−0.412586 + 0.910919i \(0.635374\pi\)
\(758\) 2.40525e12 4.16602e12i 0.264636 0.458363i
\(759\) 0 0
\(760\) 1.18108e12 + 2.04569e12i 0.128415 + 0.222422i
\(761\) 7.26577e10 + 1.25847e11i 0.00785328 + 0.0136023i 0.869925 0.493183i \(-0.164167\pi\)
−0.862072 + 0.506786i \(0.830834\pi\)
\(762\) 0 0
\(763\) 2.57903e12 4.46701e12i 0.275483 0.477151i
\(764\) 8.16826e11 0.0867380
\(765\) 0 0
\(766\) −3.53098e12 −0.370566
\(767\) −4.18146e12 + 7.24249e12i −0.436263 + 0.755630i
\(768\) 0 0
\(769\) −5.43002e12 9.40507e12i −0.559929 0.969825i −0.997502 0.0706422i \(-0.977495\pi\)
0.437573 0.899183i \(-0.355838\pi\)
\(770\) −1.74022e12 3.01415e12i −0.178400 0.308998i
\(771\) 0 0
\(772\) −3.99231e12 + 6.91488e12i −0.404526 + 0.700659i
\(773\) −2.92938e12 −0.295099 −0.147550 0.989055i \(-0.547139\pi\)
−0.147550 + 0.989055i \(0.547139\pi\)
\(774\) 0 0
\(775\) −3.96570e12 −0.394877
\(776\) 8.02052e11 1.38920e12i 0.0794008 0.137526i
\(777\) 0 0
\(778\) −6.49462e11 1.12490e12i −0.0635544 0.110079i
\(779\) −7.46913e12 1.29369e13i −0.726694 1.25867i
\(780\) 0 0
\(781\) 6.97147e12 1.20749e13i 0.670494 1.16133i
\(782\) −1.44798e11 −0.0138463
\(783\) 0 0
\(784\) −1.47425e12 −0.139363
\(785\) 3.95412e12 6.84874e12i 0.371652 0.643720i
\(786\) 0 0
\(787\) 4.04102e12 + 6.99925e12i 0.375496 + 0.650377i 0.990401 0.138223i \(-0.0441392\pi\)
−0.614906 + 0.788601i \(0.710806\pi\)
\(788\) 2.94454e12 + 5.10010e12i 0.272051 + 0.471206i
\(789\) 0 0
\(790\) −3.43427e12 + 5.94832e12i −0.313698 + 0.543341i
\(791\) −2.44782e12 −0.222323
\(792\) 0 0
\(793\) 7.63491e12 0.685606
\(794\) 2.81026e12 4.86751e12i 0.250931 0.434625i
\(795\) 0 0
\(796\) 1.33718e12 + 2.31607e12i 0.118054 + 0.204476i
\(797\) 2.23779e12 + 3.87597e12i 0.196452 + 0.340265i 0.947376 0.320124i \(-0.103725\pi\)
−0.750923 + 0.660389i \(0.770391\pi\)
\(798\) 0 0
\(799\) −1.67145e12 + 2.89503e12i −0.145088 + 0.251300i
\(800\) −9.53358e11 −0.0822907
\(801\) 0 0
\(802\) −5.95344e12 −0.508140
\(803\) 1.06462e13 1.84397e13i 0.903594 1.56507i
\(804\) 0 0
\(805\) 1.06900e11 + 1.85156e11i 0.00897213 + 0.0155402i
\(806\) −4.04783e12 7.01105e12i −0.337843 0.585161i
\(807\) 0 0
\(808\) 2.97201e12 5.14767e12i 0.245301 0.424874i
\(809\) −8.92004e12 −0.732147 −0.366074 0.930586i \(-0.619298\pi\)
−0.366074 + 0.930586i \(0.619298\pi\)
\(810\) 0 0
\(811\) −3.57780e12 −0.290417 −0.145208 0.989401i \(-0.546385\pi\)
−0.145208 + 0.989401i \(0.546385\pi\)
\(812\) 3.20934e12 5.55874e12i 0.259068 0.448719i
\(813\) 0 0
\(814\) 4.66042e12 + 8.07208e12i 0.372062 + 0.644430i
\(815\) 5.03821e12 + 8.72643e12i 0.400006 + 0.692831i
\(816\) 0 0
\(817\) 3.79092e12 6.56607e12i 0.297677 0.515592i
\(818\) −1.29931e13 −1.01466
\(819\) 0 0
\(820\) −6.92252e12 −0.534690
\(821\) −1.12798e13 + 1.95372e13i −0.866480 + 1.50079i −0.000910006 1.00000i \(0.500290\pi\)
−0.865570 + 0.500788i \(0.833044\pi\)
\(822\) 0 0
\(823\) 2.30210e12 + 3.98735e12i 0.174914 + 0.302960i 0.940132 0.340812i \(-0.110702\pi\)
−0.765217 + 0.643772i \(0.777369\pi\)
\(824\) 2.54887e12 + 4.41476e12i 0.192608 + 0.333607i
\(825\) 0 0
\(826\) 2.43725e12 4.22144e12i 0.182175 0.315537i
\(827\) −1.99344e13 −1.48193 −0.740964 0.671544i \(-0.765631\pi\)
−0.740964 + 0.671544i \(0.765631\pi\)
\(828\) 0 0
\(829\) −7.17277e12 −0.527462 −0.263731 0.964596i \(-0.584953\pi\)
−0.263731 + 0.964596i \(0.584953\pi\)
\(830\) −5.67465e12 + 9.82878e12i −0.415038 + 0.718866i
\(831\) 0 0
\(832\) −9.73103e11 1.68546e12i −0.0704051 0.121945i
\(833\) 2.05567e12 + 3.56053e12i 0.147928 + 0.256219i
\(834\) 0 0
\(835\) −9.57861e12 + 1.65906e13i −0.681889 + 1.18107i
\(836\) 7.27962e12 0.515443
\(837\) 0 0
\(838\) 2.07866e12 0.145608
\(839\) −5.75903e12 + 9.97493e12i −0.401255 + 0.694994i −0.993878 0.110486i \(-0.964759\pi\)
0.592623 + 0.805480i \(0.298093\pi\)
\(840\) 0 0
\(841\) −1.03475e13 1.79224e13i −0.713268 1.23542i
\(842\) 9.74468e12 + 1.68783e13i 0.668134 + 1.15724i
\(843\) 0 0
\(844\) −6.17117e12 + 1.06888e13i −0.418626 + 0.725082i
\(845\) −2.91416e12 −0.196634
\(846\) 0 0
\(847\) −7.61407e11 −0.0508325
\(848\) −2.25450e12 + 3.90490e12i −0.149716 + 0.259316i
\(849\) 0 0
\(850\) 1.32935e12 + 2.30250e12i 0.0873483 + 0.151292i
\(851\) −2.86285e11 4.95860e11i −0.0187118 0.0324098i
\(852\) 0 0
\(853\) 9.19812e12 1.59316e13i 0.594878 1.03036i −0.398686 0.917088i \(-0.630533\pi\)
0.993564 0.113272i \(-0.0361332\pi\)
\(854\) −4.45016e12 −0.286296
\(855\) 0 0
\(856\) 8.60194e12 0.547601
\(857\) −5.35024e12 + 9.26689e12i −0.338813 + 0.586841i −0.984210 0.177007i \(-0.943359\pi\)
0.645397 + 0.763847i \(0.276692\pi\)
\(858\) 0 0
\(859\) −1.04183e13 1.80451e13i −0.652873 1.13081i −0.982423 0.186671i \(-0.940230\pi\)
0.329550 0.944138i \(-0.393103\pi\)
\(860\) −1.75675e12 3.04277e12i −0.109513 0.189682i
\(861\) 0 0
\(862\) 1.07192e12 1.85662e12i 0.0661271 0.114536i
\(863\) −3.16653e13 −1.94328 −0.971641 0.236463i \(-0.924012\pi\)
−0.971641 + 0.236463i \(0.924012\pi\)
\(864\) 0 0
\(865\) 1.53550e13 0.932559
\(866\) 3.57186e11 6.18664e11i 0.0215806 0.0373787i
\(867\) 0 0
\(868\) 2.35936e12 + 4.08654e12i 0.141077 + 0.244352i
\(869\) 1.05836e13 + 1.83314e13i 0.629572 + 1.09045i
\(870\) 0 0
\(871\) −9.35043e12 + 1.61954e13i −0.550490 + 0.953477i
\(872\) 4.99948e12 0.292820
\(873\) 0 0
\(874\) −4.47179e11 −0.0259227
\(875\) 6.17939e12 1.07030e13i 0.356376 0.617262i
\(876\) 0 0
\(877\) −1.00962e13 1.74872e13i −0.576316 0.998209i −0.995897 0.0904913i \(-0.971156\pi\)
0.419581 0.907718i \(-0.362177\pi\)
\(878\) 1.83169e12 + 3.17258e12i 0.104022 + 0.180172i
\(879\) 0 0
\(880\) 1.68672e12 2.92148e12i 0.0948135 0.164222i
\(881\) 1.79064e13 1.00142 0.500709 0.865616i \(-0.333073\pi\)
0.500709 + 0.865616i \(0.333073\pi\)
\(882\) 0 0
\(883\) −8.66103e12 −0.479453 −0.239727 0.970840i \(-0.577058\pi\)
−0.239727 + 0.970840i \(0.577058\pi\)
\(884\) −2.71377e12 + 4.70039e12i −0.149464 + 0.258880i
\(885\) 0 0
\(886\) 6.71434e12 + 1.16296e13i 0.366059 + 0.634034i
\(887\) −1.26421e13 2.18967e13i −0.685745 1.18774i −0.973202 0.229951i \(-0.926143\pi\)
0.287458 0.957793i \(-0.407190\pi\)
\(888\) 0 0
\(889\) 7.38970e12 1.27993e13i 0.396797 0.687273i
\(890\) −1.30176e13 −0.695469
\(891\) 0 0
\(892\) −1.22854e13 −0.649751
\(893\) −5.16192e12 + 8.94071e12i −0.271631 + 0.470479i
\(894\) 0 0
\(895\) −2.39637e12 4.15063e12i −0.124839 0.216227i
\(896\) 5.67193e11 + 9.82408e11i 0.0293998 + 0.0509220i
\(897\) 0 0
\(898\) 9.74778e12 1.68837e13i 0.500221 0.866409i
\(899\) 2.58790e13 1.32138
\(900\) 0 0
\(901\) 1.25746e13 0.635670
\(902\) −1.06668e13 + 1.84754e13i −0.536543 + 0.929320i
\(903\) 0 0
\(904\) −1.18628e12 2.05470e12i −0.0590785 0.102327i
\(905\) −2.55261e12 4.42124e12i −0.126493 0.219092i
\(906\) 0 0
\(907\) −9.66450e12 + 1.67394e13i −0.474184 + 0.821311i −0.999563 0.0295576i \(-0.990590\pi\)
0.525379 + 0.850868i \(0.323923\pi\)
\(908\) 1.44300e13 0.704498
\(909\) 0 0
\(910\) 8.01395e12 0.387400
\(911\) −1.39808e13 + 2.42154e13i −0.672509 + 1.16482i 0.304682 + 0.952454i \(0.401450\pi\)
−0.977190 + 0.212365i \(0.931883\pi\)
\(912\) 0 0
\(913\) 1.74880e13 + 3.02900e13i 0.832953 + 1.44272i
\(914\) −7.92747e12 1.37308e13i −0.375731 0.650785i
\(915\) 0 0
\(916\) 7.39053e12 1.28008e13i 0.346854 0.600768i
\(917\) −2.52215e13 −1.17790
\(918\) 0 0
\(919\) 2.44191e13 1.12930 0.564650 0.825331i \(-0.309011\pi\)
0.564650 + 0.825331i \(0.309011\pi\)
\(920\) −1.03613e11 + 1.79464e11i −0.00476837 + 0.00825907i
\(921\) 0 0
\(922\) 6.64802e12 + 1.15147e13i 0.302972 + 0.524763i
\(923\) 1.60523e13 + 2.78034e13i 0.727997 + 1.26093i
\(924\) 0 0
\(925\) −5.25660e12 + 9.10469e12i −0.236084 + 0.408910i
\(926\) 4.81543e10 0.00215222
\(927\) 0 0
\(928\) 6.22134e12 0.275371
\(929\) −2.23938e13 + 3.87872e13i −0.986410 + 1.70851i −0.350915 + 0.936407i \(0.614129\pi\)
−0.635495 + 0.772105i \(0.719204\pi\)
\(930\) 0 0
\(931\) 6.34852e12 + 1.09960e13i 0.276948 + 0.479688i
\(932\) −3.25698e12 5.64125e12i −0.141398 0.244908i
\(933\) 0 0
\(934\) 2.76895e11 4.79596e11i 0.0119057 0.0206212i
\(935\) −9.40776e12 −0.402563
\(936\) 0 0
\(937\) 1.82556e13 0.773693 0.386846 0.922144i \(-0.373564\pi\)
0.386846 + 0.922144i \(0.373564\pi\)
\(938\) 5.45009e12 9.43983e12i 0.229875 0.398154i
\(939\) 0 0
\(940\) 2.39208e12 + 4.14320e12i 0.0999309 + 0.173085i
\(941\) −1.49048e13 2.58159e13i −0.619688 1.07333i −0.989543 0.144242i \(-0.953926\pi\)
0.369854 0.929090i \(-0.379408\pi\)
\(942\) 0 0
\(943\) 6.55251e11 1.13493e12i 0.0269839 0.0467375i
\(944\) 4.72464e12 0.193640
\(945\) 0 0
\(946\) −1.08278e13 −0.439571
\(947\) −1.99044e13 + 3.44755e13i −0.804219 + 1.39295i 0.112598 + 0.993641i \(0.464083\pi\)
−0.916817 + 0.399308i \(0.869250\pi\)
\(948\) 0 0
\(949\) 2.45135e13 + 4.24587e13i 0.981088 + 1.69929i
\(950\) 4.10543e12 + 7.11081e12i 0.163532 + 0.283245i
\(951\) 0 0
\(952\) 1.58178e12 2.73972e12i 0.0624135 0.108103i
\(953\) −2.35374e13 −0.924358 −0.462179 0.886787i \(-0.652932\pi\)
−0.462179 + 0.886787i \(0.652932\pi\)
\(954\) 0 0
\(955\) −3.26006e12 −0.126827
\(956\) −4.78577e12 + 8.28920e12i −0.185307 + 0.320961i
\(957\) 0 0
\(958\) −1.33102e13 2.30540e13i −0.510553 0.884304i
\(959\) −1.00957e13 1.74862e13i −0.385435 0.667592i
\(960\) 0 0
\(961\) 3.70726e12 6.42116e12i 0.140216 0.242861i
\(962\) −2.14619e13 −0.807941
\(963\) 0 0
\(964\) −1.43855e13 −0.536512
\(965\) 1.59338e13 2.75982e13i 0.591490 1.02449i
\(966\) 0 0
\(967\) 5.57666e12 + 9.65906e12i 0.205095 + 0.355235i 0.950163 0.311754i \(-0.100916\pi\)
−0.745068 + 0.666988i \(0.767583\pi\)
\(968\) −3.68999e11 6.39126e11i −0.0135079 0.0233963i
\(969\) 0 0
\(970\) −3.20110e12 + 5.54446e12i −0.116098 + 0.201088i
\(971\) 2.52461e13 0.911397 0.455699 0.890134i \(-0.349389\pi\)
0.455699 + 0.890134i \(0.349389\pi\)
\(972\) 0 0
\(973\) −6.52942e12 −0.233543
\(974\) 9.50549e12 1.64640e13i 0.338422 0.586165i
\(975\) 0 0
\(976\) −2.15668e12 3.73547e12i −0.0760783 0.131771i
\(977\) 2.21080e12 + 3.82922e12i 0.0776290 + 0.134457i 0.902227 0.431262i \(-0.141932\pi\)
−0.824597 + 0.565720i \(0.808598\pi\)
\(978\) 0 0
\(979\) −2.00587e13 + 3.47427e13i −0.697880 + 1.20876i
\(980\) 5.88391e12 0.203774
\(981\) 0 0
\(982\) −1.08475e12 −0.0372243
\(983\) 5.01789e12 8.69124e12i 0.171408 0.296887i −0.767505 0.641044i \(-0.778502\pi\)
0.938912 + 0.344157i \(0.111835\pi\)
\(984\) 0 0
\(985\) −1.17521e13 2.03552e13i −0.397788 0.688988i
\(986\) −8.67497e12 1.50255e13i −0.292295 0.506270i
\(987\) 0 0
\(988\) −8.38091e12 + 1.45162e13i −0.279824 + 0.484669i
\(989\) 6.65139e11 0.0221070
\(990\) 0 0
\(991\) −2.59687e13 −0.855300 −0.427650 0.903944i \(-0.640658\pi\)
−0.427650 + 0.903944i \(0.640658\pi\)
\(992\) −2.28683e12 + 3.96090e12i −0.0749775 + 0.129865i
\(993\) 0 0
\(994\) −9.35641e12 1.62058e13i −0.303998 0.526540i
\(995\) −5.33687e12 9.24373e12i −0.172617 0.298981i
\(996\) 0 0
\(997\) 2.48168e13 4.29839e13i 0.795457 1.37777i −0.127091 0.991891i \(-0.540564\pi\)
0.922548 0.385881i \(-0.126103\pi\)
\(998\) −3.36302e13 −1.07311
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.10.c.k.55.2 4
3.2 odd 2 162.10.c.p.55.1 4
9.2 odd 6 54.10.a.e.1.2 2
9.4 even 3 inner 162.10.c.k.109.2 4
9.5 odd 6 162.10.c.p.109.1 4
9.7 even 3 54.10.a.h.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.10.a.e.1.2 2 9.2 odd 6
54.10.a.h.1.1 yes 2 9.7 even 3
162.10.c.k.55.2 4 1.1 even 1 trivial
162.10.c.k.109.2 4 9.4 even 3 inner
162.10.c.p.55.1 4 3.2 odd 2
162.10.c.p.109.1 4 9.5 odd 6