Properties

Label 162.4.a.f.1.1
Level $162$
Weight $4$
Character 162.1
Self dual yes
Analytic conductor $9.558$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{105}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.62348\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -19.8704 q^{5} -5.87043 q^{7} -8.00000 q^{8} +39.7409 q^{10} +18.7409 q^{11} +45.8704 q^{13} +11.7409 q^{14} +16.0000 q^{16} +16.8704 q^{17} -10.3521 q^{19} -79.4817 q^{20} -37.4817 q^{22} +49.8704 q^{23} +269.834 q^{25} -91.7409 q^{26} -23.4817 q^{28} +10.9070 q^{29} +151.611 q^{31} -32.0000 q^{32} -33.7409 q^{34} +116.648 q^{35} +346.186 q^{37} +20.7043 q^{38} +158.963 q^{40} +264.741 q^{41} -411.890 q^{43} +74.9634 q^{44} -99.7409 q^{46} +472.056 q^{47} -308.538 q^{49} -539.668 q^{50} +183.482 q^{52} +290.186 q^{53} -372.389 q^{55} +46.9634 q^{56} -21.8140 q^{58} +53.2591 q^{59} -293.944 q^{61} -303.223 q^{62} +64.0000 q^{64} -911.465 q^{65} -398.555 q^{67} +67.4817 q^{68} -233.296 q^{70} -647.854 q^{71} -478.279 q^{73} -692.372 q^{74} -41.4085 q^{76} -110.017 q^{77} +374.316 q^{79} -317.927 q^{80} -529.482 q^{82} +933.279 q^{83} -335.223 q^{85} +823.780 q^{86} -149.927 q^{88} +368.817 q^{89} -269.279 q^{91} +199.482 q^{92} -944.113 q^{94} +205.701 q^{95} +274.149 q^{97} +617.076 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 9 q^{5} + 19 q^{7} - 16 q^{8} + 18 q^{10} - 24 q^{11} + 61 q^{13} - 38 q^{14} + 32 q^{16} + 3 q^{17} + 133 q^{19} - 36 q^{20} + 48 q^{22} + 69 q^{23} + 263 q^{25} - 122 q^{26}+ \cdots + 66 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −19.8704 −1.77726 −0.888632 0.458620i \(-0.848344\pi\)
−0.888632 + 0.458620i \(0.848344\pi\)
\(6\) 0 0
\(7\) −5.87043 −0.316973 −0.158487 0.987361i \(-0.550661\pi\)
−0.158487 + 0.987361i \(0.550661\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 39.7409 1.25672
\(11\) 18.7409 0.513689 0.256845 0.966453i \(-0.417317\pi\)
0.256845 + 0.966453i \(0.417317\pi\)
\(12\) 0 0
\(13\) 45.8704 0.978628 0.489314 0.872108i \(-0.337247\pi\)
0.489314 + 0.872108i \(0.337247\pi\)
\(14\) 11.7409 0.224134
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 16.8704 0.240687 0.120344 0.992732i \(-0.461600\pi\)
0.120344 + 0.992732i \(0.461600\pi\)
\(18\) 0 0
\(19\) −10.3521 −0.124997 −0.0624985 0.998045i \(-0.519907\pi\)
−0.0624985 + 0.998045i \(0.519907\pi\)
\(20\) −79.4817 −0.888632
\(21\) 0 0
\(22\) −37.4817 −0.363233
\(23\) 49.8704 0.452118 0.226059 0.974114i \(-0.427416\pi\)
0.226059 + 0.974114i \(0.427416\pi\)
\(24\) 0 0
\(25\) 269.834 2.15867
\(26\) −91.7409 −0.691995
\(27\) 0 0
\(28\) −23.4817 −0.158487
\(29\) 10.9070 0.0698408 0.0349204 0.999390i \(-0.488882\pi\)
0.0349204 + 0.999390i \(0.488882\pi\)
\(30\) 0 0
\(31\) 151.611 0.878393 0.439197 0.898391i \(-0.355263\pi\)
0.439197 + 0.898391i \(0.355263\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −33.7409 −0.170191
\(35\) 116.648 0.563345
\(36\) 0 0
\(37\) 346.186 1.53818 0.769089 0.639141i \(-0.220710\pi\)
0.769089 + 0.639141i \(0.220710\pi\)
\(38\) 20.7043 0.0883862
\(39\) 0 0
\(40\) 158.963 0.628358
\(41\) 264.741 1.00843 0.504214 0.863579i \(-0.331782\pi\)
0.504214 + 0.863579i \(0.331782\pi\)
\(42\) 0 0
\(43\) −411.890 −1.46076 −0.730380 0.683041i \(-0.760657\pi\)
−0.730380 + 0.683041i \(0.760657\pi\)
\(44\) 74.9634 0.256845
\(45\) 0 0
\(46\) −99.7409 −0.319695
\(47\) 472.056 1.46503 0.732516 0.680750i \(-0.238346\pi\)
0.732516 + 0.680750i \(0.238346\pi\)
\(48\) 0 0
\(49\) −308.538 −0.899528
\(50\) −539.668 −1.52641
\(51\) 0 0
\(52\) 183.482 0.489314
\(53\) 290.186 0.752078 0.376039 0.926604i \(-0.377286\pi\)
0.376039 + 0.926604i \(0.377286\pi\)
\(54\) 0 0
\(55\) −372.389 −0.912962
\(56\) 46.9634 0.112067
\(57\) 0 0
\(58\) −21.8140 −0.0493849
\(59\) 53.2591 0.117521 0.0587606 0.998272i \(-0.481285\pi\)
0.0587606 + 0.998272i \(0.481285\pi\)
\(60\) 0 0
\(61\) −293.944 −0.616977 −0.308489 0.951228i \(-0.599823\pi\)
−0.308489 + 0.951228i \(0.599823\pi\)
\(62\) −303.223 −0.621118
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −911.465 −1.73928
\(66\) 0 0
\(67\) −398.555 −0.726735 −0.363367 0.931646i \(-0.618373\pi\)
−0.363367 + 0.931646i \(0.618373\pi\)
\(68\) 67.4817 0.120344
\(69\) 0 0
\(70\) −233.296 −0.398345
\(71\) −647.854 −1.08290 −0.541451 0.840732i \(-0.682125\pi\)
−0.541451 + 0.840732i \(0.682125\pi\)
\(72\) 0 0
\(73\) −478.279 −0.766826 −0.383413 0.923577i \(-0.625251\pi\)
−0.383413 + 0.923577i \(0.625251\pi\)
\(74\) −692.372 −1.08766
\(75\) 0 0
\(76\) −41.4085 −0.0624985
\(77\) −110.017 −0.162826
\(78\) 0 0
\(79\) 374.316 0.533086 0.266543 0.963823i \(-0.414119\pi\)
0.266543 + 0.963823i \(0.414119\pi\)
\(80\) −317.927 −0.444316
\(81\) 0 0
\(82\) −529.482 −0.713067
\(83\) 933.279 1.23422 0.617112 0.786875i \(-0.288302\pi\)
0.617112 + 0.786875i \(0.288302\pi\)
\(84\) 0 0
\(85\) −335.223 −0.427765
\(86\) 823.780 1.03291
\(87\) 0 0
\(88\) −149.927 −0.181617
\(89\) 368.817 0.439264 0.219632 0.975583i \(-0.429514\pi\)
0.219632 + 0.975583i \(0.429514\pi\)
\(90\) 0 0
\(91\) −269.279 −0.310199
\(92\) 199.482 0.226059
\(93\) 0 0
\(94\) −944.113 −1.03593
\(95\) 205.701 0.222153
\(96\) 0 0
\(97\) 274.149 0.286965 0.143483 0.989653i \(-0.454170\pi\)
0.143483 + 0.989653i \(0.454170\pi\)
\(98\) 617.076 0.636062
\(99\) 0 0
\(100\) 1079.34 1.07934
\(101\) −9.57168 −0.00942987 −0.00471494 0.999989i \(-0.501501\pi\)
−0.00471494 + 0.999989i \(0.501501\pi\)
\(102\) 0 0
\(103\) 1971.50 1.88600 0.943001 0.332791i \(-0.107990\pi\)
0.943001 + 0.332791i \(0.107990\pi\)
\(104\) −366.963 −0.345997
\(105\) 0 0
\(106\) −580.372 −0.531799
\(107\) 1441.13 1.30205 0.651025 0.759057i \(-0.274339\pi\)
0.651025 + 0.759057i \(0.274339\pi\)
\(108\) 0 0
\(109\) −90.3323 −0.0793786 −0.0396893 0.999212i \(-0.512637\pi\)
−0.0396893 + 0.999212i \(0.512637\pi\)
\(110\) 744.777 0.645561
\(111\) 0 0
\(112\) −93.9268 −0.0792433
\(113\) −1650.73 −1.37422 −0.687112 0.726551i \(-0.741122\pi\)
−0.687112 + 0.726551i \(0.741122\pi\)
\(114\) 0 0
\(115\) −990.947 −0.803533
\(116\) 43.6281 0.0349204
\(117\) 0 0
\(118\) −106.518 −0.0831000
\(119\) −99.0366 −0.0762913
\(120\) 0 0
\(121\) −979.780 −0.736124
\(122\) 587.887 0.436269
\(123\) 0 0
\(124\) 606.445 0.439197
\(125\) −2877.91 −2.05926
\(126\) 0 0
\(127\) 1997.45 1.39563 0.697814 0.716279i \(-0.254156\pi\)
0.697814 + 0.716279i \(0.254156\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 1822.93 1.22986
\(131\) −123.645 −0.0824649 −0.0412324 0.999150i \(-0.513128\pi\)
−0.0412324 + 0.999150i \(0.513128\pi\)
\(132\) 0 0
\(133\) 60.7714 0.0396207
\(134\) 797.110 0.513879
\(135\) 0 0
\(136\) −134.963 −0.0850957
\(137\) 113.406 0.0707218 0.0353609 0.999375i \(-0.488742\pi\)
0.0353609 + 0.999375i \(0.488742\pi\)
\(138\) 0 0
\(139\) −393.598 −0.240176 −0.120088 0.992763i \(-0.538318\pi\)
−0.120088 + 0.992763i \(0.538318\pi\)
\(140\) 466.591 0.281673
\(141\) 0 0
\(142\) 1295.71 0.765728
\(143\) 859.651 0.502711
\(144\) 0 0
\(145\) −216.727 −0.124126
\(146\) 956.558 0.542228
\(147\) 0 0
\(148\) 1384.74 0.769089
\(149\) 1507.21 0.828695 0.414348 0.910119i \(-0.364010\pi\)
0.414348 + 0.910119i \(0.364010\pi\)
\(150\) 0 0
\(151\) 3161.40 1.70378 0.851890 0.523720i \(-0.175456\pi\)
0.851890 + 0.523720i \(0.175456\pi\)
\(152\) 82.8170 0.0441931
\(153\) 0 0
\(154\) 220.034 0.115135
\(155\) −3012.58 −1.56114
\(156\) 0 0
\(157\) 1375.61 0.699272 0.349636 0.936886i \(-0.386305\pi\)
0.349636 + 0.936886i \(0.386305\pi\)
\(158\) −748.631 −0.376949
\(159\) 0 0
\(160\) 635.854 0.314179
\(161\) −292.761 −0.143309
\(162\) 0 0
\(163\) 542.073 0.260481 0.130241 0.991482i \(-0.458425\pi\)
0.130241 + 0.991482i \(0.458425\pi\)
\(164\) 1058.96 0.504214
\(165\) 0 0
\(166\) −1866.56 −0.872729
\(167\) 3129.62 1.45016 0.725081 0.688664i \(-0.241802\pi\)
0.725081 + 0.688664i \(0.241802\pi\)
\(168\) 0 0
\(169\) −92.9040 −0.0422868
\(170\) 670.445 0.302475
\(171\) 0 0
\(172\) −1647.56 −0.730380
\(173\) −2518.28 −1.10671 −0.553355 0.832945i \(-0.686653\pi\)
−0.553355 + 0.832945i \(0.686653\pi\)
\(174\) 0 0
\(175\) −1584.04 −0.684241
\(176\) 299.854 0.128422
\(177\) 0 0
\(178\) −737.634 −0.310607
\(179\) −2331.26 −0.973443 −0.486721 0.873557i \(-0.661807\pi\)
−0.486721 + 0.873557i \(0.661807\pi\)
\(180\) 0 0
\(181\) 734.969 0.301822 0.150911 0.988547i \(-0.451779\pi\)
0.150911 + 0.988547i \(0.451779\pi\)
\(182\) 538.558 0.219344
\(183\) 0 0
\(184\) −398.963 −0.159848
\(185\) −6878.86 −2.73375
\(186\) 0 0
\(187\) 316.166 0.123638
\(188\) 1888.23 0.732516
\(189\) 0 0
\(190\) −411.402 −0.157086
\(191\) 3617.76 1.37053 0.685266 0.728293i \(-0.259686\pi\)
0.685266 + 0.728293i \(0.259686\pi\)
\(192\) 0 0
\(193\) 4341.12 1.61907 0.809536 0.587070i \(-0.199719\pi\)
0.809536 + 0.587070i \(0.199719\pi\)
\(194\) −548.299 −0.202915
\(195\) 0 0
\(196\) −1234.15 −0.449764
\(197\) −3286.20 −1.18849 −0.594243 0.804285i \(-0.702548\pi\)
−0.594243 + 0.804285i \(0.702548\pi\)
\(198\) 0 0
\(199\) 332.265 0.118360 0.0591800 0.998247i \(-0.481151\pi\)
0.0591800 + 0.998247i \(0.481151\pi\)
\(200\) −2158.67 −0.763205
\(201\) 0 0
\(202\) 19.1434 0.00666793
\(203\) −64.0288 −0.0221377
\(204\) 0 0
\(205\) −5260.51 −1.79224
\(206\) −3943.01 −1.33360
\(207\) 0 0
\(208\) 733.927 0.244657
\(209\) −194.008 −0.0642096
\(210\) 0 0
\(211\) −5742.47 −1.87359 −0.936797 0.349874i \(-0.886224\pi\)
−0.936797 + 0.349874i \(0.886224\pi\)
\(212\) 1160.74 0.376039
\(213\) 0 0
\(214\) −2882.26 −0.920688
\(215\) 8184.43 2.59616
\(216\) 0 0
\(217\) −890.023 −0.278427
\(218\) 180.665 0.0561291
\(219\) 0 0
\(220\) −1489.55 −0.456481
\(221\) 773.854 0.235543
\(222\) 0 0
\(223\) −2462.61 −0.739502 −0.369751 0.929131i \(-0.620557\pi\)
−0.369751 + 0.929131i \(0.620557\pi\)
\(224\) 187.854 0.0560335
\(225\) 0 0
\(226\) 3301.45 0.971723
\(227\) 2799.34 0.818496 0.409248 0.912423i \(-0.365791\pi\)
0.409248 + 0.912423i \(0.365791\pi\)
\(228\) 0 0
\(229\) 1412.85 0.407701 0.203850 0.979002i \(-0.434654\pi\)
0.203850 + 0.979002i \(0.434654\pi\)
\(230\) 1981.89 0.568183
\(231\) 0 0
\(232\) −87.2561 −0.0246924
\(233\) 2033.81 0.571843 0.285922 0.958253i \(-0.407700\pi\)
0.285922 + 0.958253i \(0.407700\pi\)
\(234\) 0 0
\(235\) −9379.96 −2.60375
\(236\) 213.037 0.0587606
\(237\) 0 0
\(238\) 198.073 0.0539461
\(239\) −521.611 −0.141173 −0.0705863 0.997506i \(-0.522487\pi\)
−0.0705863 + 0.997506i \(0.522487\pi\)
\(240\) 0 0
\(241\) 5915.65 1.58116 0.790582 0.612356i \(-0.209778\pi\)
0.790582 + 0.612356i \(0.209778\pi\)
\(242\) 1959.56 0.520518
\(243\) 0 0
\(244\) −1175.77 −0.308489
\(245\) 6130.78 1.59870
\(246\) 0 0
\(247\) −474.857 −0.122326
\(248\) −1212.89 −0.310559
\(249\) 0 0
\(250\) 5755.82 1.45612
\(251\) 710.127 0.178577 0.0892884 0.996006i \(-0.471541\pi\)
0.0892884 + 0.996006i \(0.471541\pi\)
\(252\) 0 0
\(253\) 934.614 0.232248
\(254\) −3994.90 −0.986859
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 6301.01 1.52936 0.764681 0.644409i \(-0.222897\pi\)
0.764681 + 0.644409i \(0.222897\pi\)
\(258\) 0 0
\(259\) −2032.26 −0.487562
\(260\) −3645.86 −0.869641
\(261\) 0 0
\(262\) 247.290 0.0583115
\(263\) −4921.82 −1.15396 −0.576981 0.816757i \(-0.695769\pi\)
−0.576981 + 0.816757i \(0.695769\pi\)
\(264\) 0 0
\(265\) −5766.12 −1.33664
\(266\) −121.543 −0.0280161
\(267\) 0 0
\(268\) −1594.22 −0.363367
\(269\) −5454.50 −1.23631 −0.618154 0.786057i \(-0.712119\pi\)
−0.618154 + 0.786057i \(0.712119\pi\)
\(270\) 0 0
\(271\) 2797.10 0.626981 0.313491 0.949591i \(-0.398502\pi\)
0.313491 + 0.949591i \(0.398502\pi\)
\(272\) 269.927 0.0601718
\(273\) 0 0
\(274\) −226.811 −0.0500079
\(275\) 5056.92 1.10889
\(276\) 0 0
\(277\) −2145.17 −0.465310 −0.232655 0.972559i \(-0.574741\pi\)
−0.232655 + 0.972559i \(0.574741\pi\)
\(278\) 787.195 0.169830
\(279\) 0 0
\(280\) −933.183 −0.199173
\(281\) −5509.77 −1.16970 −0.584849 0.811142i \(-0.698846\pi\)
−0.584849 + 0.811142i \(0.698846\pi\)
\(282\) 0 0
\(283\) 4007.84 0.841842 0.420921 0.907097i \(-0.361707\pi\)
0.420921 + 0.907097i \(0.361707\pi\)
\(284\) −2591.41 −0.541451
\(285\) 0 0
\(286\) −1719.30 −0.355470
\(287\) −1554.14 −0.319645
\(288\) 0 0
\(289\) −4628.39 −0.942070
\(290\) 433.454 0.0877700
\(291\) 0 0
\(292\) −1913.12 −0.383413
\(293\) −5809.24 −1.15829 −0.579146 0.815224i \(-0.696614\pi\)
−0.579146 + 0.815224i \(0.696614\pi\)
\(294\) 0 0
\(295\) −1058.28 −0.208866
\(296\) −2769.49 −0.543828
\(297\) 0 0
\(298\) −3014.42 −0.585976
\(299\) 2287.58 0.442455
\(300\) 0 0
\(301\) 2417.97 0.463022
\(302\) −6322.80 −1.20475
\(303\) 0 0
\(304\) −165.634 −0.0312492
\(305\) 5840.78 1.09653
\(306\) 0 0
\(307\) 8688.30 1.61520 0.807602 0.589728i \(-0.200765\pi\)
0.807602 + 0.589728i \(0.200765\pi\)
\(308\) −440.067 −0.0814128
\(309\) 0 0
\(310\) 6025.16 1.10389
\(311\) 1432.01 0.261099 0.130550 0.991442i \(-0.458326\pi\)
0.130550 + 0.991442i \(0.458326\pi\)
\(312\) 0 0
\(313\) 6614.52 1.19449 0.597244 0.802059i \(-0.296262\pi\)
0.597244 + 0.802059i \(0.296262\pi\)
\(314\) −2751.22 −0.494460
\(315\) 0 0
\(316\) 1497.26 0.266543
\(317\) 1424.09 0.252318 0.126159 0.992010i \(-0.459735\pi\)
0.126159 + 0.992010i \(0.459735\pi\)
\(318\) 0 0
\(319\) 204.407 0.0358764
\(320\) −1271.71 −0.222158
\(321\) 0 0
\(322\) 585.521 0.101335
\(323\) −174.645 −0.0300851
\(324\) 0 0
\(325\) 12377.4 2.11254
\(326\) −1084.15 −0.184188
\(327\) 0 0
\(328\) −2117.93 −0.356533
\(329\) −2771.17 −0.464376
\(330\) 0 0
\(331\) 3537.65 0.587453 0.293726 0.955890i \(-0.405105\pi\)
0.293726 + 0.955890i \(0.405105\pi\)
\(332\) 3733.12 0.617112
\(333\) 0 0
\(334\) −6259.23 −1.02542
\(335\) 7919.46 1.29160
\(336\) 0 0
\(337\) −1760.28 −0.284536 −0.142268 0.989828i \(-0.545439\pi\)
−0.142268 + 0.989828i \(0.545439\pi\)
\(338\) 185.808 0.0299013
\(339\) 0 0
\(340\) −1340.89 −0.213882
\(341\) 2841.32 0.451221
\(342\) 0 0
\(343\) 3824.81 0.602099
\(344\) 3295.12 0.516457
\(345\) 0 0
\(346\) 5036.55 0.782563
\(347\) −1605.44 −0.248370 −0.124185 0.992259i \(-0.539632\pi\)
−0.124185 + 0.992259i \(0.539632\pi\)
\(348\) 0 0
\(349\) −6641.89 −1.01872 −0.509358 0.860555i \(-0.670117\pi\)
−0.509358 + 0.860555i \(0.670117\pi\)
\(350\) 3168.08 0.483831
\(351\) 0 0
\(352\) −599.707 −0.0908083
\(353\) −3056.27 −0.460818 −0.230409 0.973094i \(-0.574006\pi\)
−0.230409 + 0.973094i \(0.574006\pi\)
\(354\) 0 0
\(355\) 12873.1 1.92460
\(356\) 1475.27 0.219632
\(357\) 0 0
\(358\) 4662.51 0.688328
\(359\) −2489.46 −0.365985 −0.182993 0.983114i \(-0.558578\pi\)
−0.182993 + 0.983114i \(0.558578\pi\)
\(360\) 0 0
\(361\) −6751.83 −0.984376
\(362\) −1469.94 −0.213421
\(363\) 0 0
\(364\) −1077.12 −0.155099
\(365\) 9503.61 1.36285
\(366\) 0 0
\(367\) 2355.05 0.334966 0.167483 0.985875i \(-0.446436\pi\)
0.167483 + 0.985875i \(0.446436\pi\)
\(368\) 797.927 0.113029
\(369\) 0 0
\(370\) 13757.7 1.93305
\(371\) −1703.52 −0.238388
\(372\) 0 0
\(373\) −2757.03 −0.382717 −0.191358 0.981520i \(-0.561289\pi\)
−0.191358 + 0.981520i \(0.561289\pi\)
\(374\) −632.332 −0.0874255
\(375\) 0 0
\(376\) −3776.45 −0.517967
\(377\) 500.310 0.0683481
\(378\) 0 0
\(379\) 246.459 0.0334030 0.0167015 0.999861i \(-0.494683\pi\)
0.0167015 + 0.999861i \(0.494683\pi\)
\(380\) 822.805 0.111076
\(381\) 0 0
\(382\) −7235.52 −0.969113
\(383\) 650.575 0.0867959 0.0433979 0.999058i \(-0.486182\pi\)
0.0433979 + 0.999058i \(0.486182\pi\)
\(384\) 0 0
\(385\) 2186.08 0.289384
\(386\) −8682.25 −1.14486
\(387\) 0 0
\(388\) 1096.60 0.143483
\(389\) −10246.2 −1.33548 −0.667739 0.744395i \(-0.732738\pi\)
−0.667739 + 0.744395i \(0.732738\pi\)
\(390\) 0 0
\(391\) 841.335 0.108819
\(392\) 2468.30 0.318031
\(393\) 0 0
\(394\) 6572.40 0.840387
\(395\) −7437.81 −0.947435
\(396\) 0 0
\(397\) −9453.68 −1.19513 −0.597565 0.801820i \(-0.703865\pi\)
−0.597565 + 0.801820i \(0.703865\pi\)
\(398\) −664.530 −0.0836932
\(399\) 0 0
\(400\) 4317.34 0.539668
\(401\) 270.723 0.0337138 0.0168569 0.999858i \(-0.494634\pi\)
0.0168569 + 0.999858i \(0.494634\pi\)
\(402\) 0 0
\(403\) 6954.47 0.859620
\(404\) −38.2867 −0.00471494
\(405\) 0 0
\(406\) 128.058 0.0156537
\(407\) 6487.82 0.790146
\(408\) 0 0
\(409\) −11586.2 −1.40073 −0.700366 0.713784i \(-0.746980\pi\)
−0.700366 + 0.713784i \(0.746980\pi\)
\(410\) 10521.0 1.26731
\(411\) 0 0
\(412\) 7886.02 0.943001
\(413\) −312.654 −0.0372511
\(414\) 0 0
\(415\) −18544.7 −2.19354
\(416\) −1467.85 −0.172999
\(417\) 0 0
\(418\) 388.016 0.0454030
\(419\) −16133.7 −1.88111 −0.940554 0.339644i \(-0.889693\pi\)
−0.940554 + 0.339644i \(0.889693\pi\)
\(420\) 0 0
\(421\) 4991.93 0.577890 0.288945 0.957346i \(-0.406696\pi\)
0.288945 + 0.957346i \(0.406696\pi\)
\(422\) 11484.9 1.32483
\(423\) 0 0
\(424\) −2321.49 −0.265900
\(425\) 4552.21 0.519564
\(426\) 0 0
\(427\) 1725.57 0.195565
\(428\) 5764.52 0.651025
\(429\) 0 0
\(430\) −16368.9 −1.83576
\(431\) 8184.74 0.914722 0.457361 0.889281i \(-0.348795\pi\)
0.457361 + 0.889281i \(0.348795\pi\)
\(432\) 0 0
\(433\) 8663.17 0.961490 0.480745 0.876860i \(-0.340366\pi\)
0.480745 + 0.876860i \(0.340366\pi\)
\(434\) 1780.05 0.196878
\(435\) 0 0
\(436\) −361.329 −0.0396893
\(437\) −516.265 −0.0565133
\(438\) 0 0
\(439\) −15864.3 −1.72474 −0.862371 0.506277i \(-0.831021\pi\)
−0.862371 + 0.506277i \(0.831021\pi\)
\(440\) 2979.11 0.322781
\(441\) 0 0
\(442\) −1547.71 −0.166554
\(443\) −399.641 −0.0428612 −0.0214306 0.999770i \(-0.506822\pi\)
−0.0214306 + 0.999770i \(0.506822\pi\)
\(444\) 0 0
\(445\) −7328.55 −0.780689
\(446\) 4925.23 0.522907
\(447\) 0 0
\(448\) −375.707 −0.0396217
\(449\) 5924.51 0.622706 0.311353 0.950294i \(-0.399218\pi\)
0.311353 + 0.950294i \(0.399218\pi\)
\(450\) 0 0
\(451\) 4961.47 0.518019
\(452\) −6602.91 −0.687112
\(453\) 0 0
\(454\) −5598.68 −0.578764
\(455\) 5350.69 0.551306
\(456\) 0 0
\(457\) −7891.14 −0.807728 −0.403864 0.914819i \(-0.632333\pi\)
−0.403864 + 0.914819i \(0.632333\pi\)
\(458\) −2825.69 −0.288288
\(459\) 0 0
\(460\) −3963.79 −0.401766
\(461\) −3262.18 −0.329577 −0.164789 0.986329i \(-0.552694\pi\)
−0.164789 + 0.986329i \(0.552694\pi\)
\(462\) 0 0
\(463\) 3690.40 0.370427 0.185213 0.982698i \(-0.440702\pi\)
0.185213 + 0.982698i \(0.440702\pi\)
\(464\) 174.512 0.0174602
\(465\) 0 0
\(466\) −4067.62 −0.404354
\(467\) −10193.2 −1.01003 −0.505017 0.863110i \(-0.668514\pi\)
−0.505017 + 0.863110i \(0.668514\pi\)
\(468\) 0 0
\(469\) 2339.69 0.230355
\(470\) 18759.9 1.84113
\(471\) 0 0
\(472\) −426.073 −0.0415500
\(473\) −7719.17 −0.750376
\(474\) 0 0
\(475\) −2793.36 −0.269827
\(476\) −396.146 −0.0381457
\(477\) 0 0
\(478\) 1043.22 0.0998240
\(479\) 840.068 0.0801330 0.0400665 0.999197i \(-0.487243\pi\)
0.0400665 + 0.999197i \(0.487243\pi\)
\(480\) 0 0
\(481\) 15879.7 1.50531
\(482\) −11831.3 −1.11805
\(483\) 0 0
\(484\) −3919.12 −0.368062
\(485\) −5447.46 −0.510014
\(486\) 0 0
\(487\) −3367.28 −0.313319 −0.156659 0.987653i \(-0.550072\pi\)
−0.156659 + 0.987653i \(0.550072\pi\)
\(488\) 2351.55 0.218134
\(489\) 0 0
\(490\) −12261.6 −1.13045
\(491\) −18869.1 −1.73432 −0.867160 0.498030i \(-0.834057\pi\)
−0.867160 + 0.498030i \(0.834057\pi\)
\(492\) 0 0
\(493\) 184.006 0.0168098
\(494\) 949.713 0.0864972
\(495\) 0 0
\(496\) 2425.78 0.219598
\(497\) 3803.18 0.343251
\(498\) 0 0
\(499\) −14566.0 −1.30674 −0.653371 0.757038i \(-0.726646\pi\)
−0.653371 + 0.757038i \(0.726646\pi\)
\(500\) −11511.6 −1.02963
\(501\) 0 0
\(502\) −1420.25 −0.126273
\(503\) −17361.6 −1.53900 −0.769499 0.638648i \(-0.779494\pi\)
−0.769499 + 0.638648i \(0.779494\pi\)
\(504\) 0 0
\(505\) 190.193 0.0167594
\(506\) −1869.23 −0.164224
\(507\) 0 0
\(508\) 7989.79 0.697814
\(509\) 13933.3 1.21332 0.606661 0.794961i \(-0.292509\pi\)
0.606661 + 0.794961i \(0.292509\pi\)
\(510\) 0 0
\(511\) 2807.70 0.243063
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −12602.0 −1.08142
\(515\) −39174.6 −3.35192
\(516\) 0 0
\(517\) 8846.74 0.752571
\(518\) 4064.52 0.344758
\(519\) 0 0
\(520\) 7291.72 0.614929
\(521\) 5024.22 0.422486 0.211243 0.977434i \(-0.432249\pi\)
0.211243 + 0.977434i \(0.432249\pi\)
\(522\) 0 0
\(523\) 16008.7 1.33845 0.669226 0.743059i \(-0.266626\pi\)
0.669226 + 0.743059i \(0.266626\pi\)
\(524\) −494.579 −0.0412324
\(525\) 0 0
\(526\) 9843.63 0.815975
\(527\) 2557.75 0.211418
\(528\) 0 0
\(529\) −9679.94 −0.795590
\(530\) 11532.2 0.945148
\(531\) 0 0
\(532\) 243.086 0.0198103
\(533\) 12143.8 0.986877
\(534\) 0 0
\(535\) −28635.9 −2.31409
\(536\) 3188.44 0.256940
\(537\) 0 0
\(538\) 10909.0 0.874202
\(539\) −5782.27 −0.462078
\(540\) 0 0
\(541\) −10094.1 −0.802179 −0.401089 0.916039i \(-0.631368\pi\)
−0.401089 + 0.916039i \(0.631368\pi\)
\(542\) −5594.21 −0.443343
\(543\) 0 0
\(544\) −539.854 −0.0425479
\(545\) 1794.94 0.141077
\(546\) 0 0
\(547\) −6060.54 −0.473730 −0.236865 0.971543i \(-0.576120\pi\)
−0.236865 + 0.971543i \(0.576120\pi\)
\(548\) 453.622 0.0353609
\(549\) 0 0
\(550\) −10113.8 −0.784100
\(551\) −112.911 −0.00872988
\(552\) 0 0
\(553\) −2197.39 −0.168974
\(554\) 4290.34 0.329024
\(555\) 0 0
\(556\) −1574.39 −0.120088
\(557\) 13688.4 1.04128 0.520642 0.853775i \(-0.325693\pi\)
0.520642 + 0.853775i \(0.325693\pi\)
\(558\) 0 0
\(559\) −18893.6 −1.42954
\(560\) 1866.37 0.140836
\(561\) 0 0
\(562\) 11019.5 0.827102
\(563\) 22346.6 1.67282 0.836411 0.548103i \(-0.184650\pi\)
0.836411 + 0.548103i \(0.184650\pi\)
\(564\) 0 0
\(565\) 32800.7 2.44236
\(566\) −8015.67 −0.595272
\(567\) 0 0
\(568\) 5182.83 0.382864
\(569\) 8117.94 0.598105 0.299052 0.954237i \(-0.403329\pi\)
0.299052 + 0.954237i \(0.403329\pi\)
\(570\) 0 0
\(571\) 6982.97 0.511783 0.255892 0.966705i \(-0.417631\pi\)
0.255892 + 0.966705i \(0.417631\pi\)
\(572\) 3438.60 0.251355
\(573\) 0 0
\(574\) 3108.28 0.226023
\(575\) 13456.7 0.975973
\(576\) 0 0
\(577\) 13972.4 1.00811 0.504055 0.863671i \(-0.331841\pi\)
0.504055 + 0.863671i \(0.331841\pi\)
\(578\) 9256.78 0.666144
\(579\) 0 0
\(580\) −866.908 −0.0620628
\(581\) −5478.75 −0.391216
\(582\) 0 0
\(583\) 5438.33 0.386334
\(584\) 3826.23 0.271114
\(585\) 0 0
\(586\) 11618.5 0.819036
\(587\) −1509.51 −0.106140 −0.0530701 0.998591i \(-0.516901\pi\)
−0.0530701 + 0.998591i \(0.516901\pi\)
\(588\) 0 0
\(589\) −1569.50 −0.109796
\(590\) 2116.56 0.147691
\(591\) 0 0
\(592\) 5538.98 0.384545
\(593\) −21495.3 −1.48854 −0.744270 0.667879i \(-0.767202\pi\)
−0.744270 + 0.667879i \(0.767202\pi\)
\(594\) 0 0
\(595\) 1967.90 0.135590
\(596\) 6028.85 0.414348
\(597\) 0 0
\(598\) −4575.16 −0.312863
\(599\) 10104.9 0.689272 0.344636 0.938736i \(-0.388002\pi\)
0.344636 + 0.938736i \(0.388002\pi\)
\(600\) 0 0
\(601\) −11008.2 −0.747143 −0.373572 0.927601i \(-0.621867\pi\)
−0.373572 + 0.927601i \(0.621867\pi\)
\(602\) −4835.94 −0.327406
\(603\) 0 0
\(604\) 12645.6 0.851890
\(605\) 19468.7 1.30829
\(606\) 0 0
\(607\) 14680.2 0.981629 0.490815 0.871264i \(-0.336699\pi\)
0.490815 + 0.871264i \(0.336699\pi\)
\(608\) 331.268 0.0220965
\(609\) 0 0
\(610\) −11681.6 −0.775365
\(611\) 21653.4 1.43372
\(612\) 0 0
\(613\) 235.863 0.0155407 0.00777033 0.999970i \(-0.497527\pi\)
0.00777033 + 0.999970i \(0.497527\pi\)
\(614\) −17376.6 −1.14212
\(615\) 0 0
\(616\) 880.134 0.0575676
\(617\) 18313.1 1.19490 0.597452 0.801904i \(-0.296180\pi\)
0.597452 + 0.801904i \(0.296180\pi\)
\(618\) 0 0
\(619\) 6849.46 0.444755 0.222377 0.974961i \(-0.428618\pi\)
0.222377 + 0.974961i \(0.428618\pi\)
\(620\) −12050.3 −0.780569
\(621\) 0 0
\(622\) −2864.02 −0.184625
\(623\) −2165.11 −0.139235
\(624\) 0 0
\(625\) 23456.1 1.50119
\(626\) −13229.0 −0.844631
\(627\) 0 0
\(628\) 5502.45 0.349636
\(629\) 5840.30 0.370220
\(630\) 0 0
\(631\) 22464.3 1.41726 0.708629 0.705581i \(-0.249314\pi\)
0.708629 + 0.705581i \(0.249314\pi\)
\(632\) −2994.52 −0.188474
\(633\) 0 0
\(634\) −2848.18 −0.178416
\(635\) −39690.1 −2.48040
\(636\) 0 0
\(637\) −14152.8 −0.880303
\(638\) −408.814 −0.0253685
\(639\) 0 0
\(640\) 2543.41 0.157090
\(641\) 18888.8 1.16390 0.581952 0.813223i \(-0.302289\pi\)
0.581952 + 0.813223i \(0.302289\pi\)
\(642\) 0 0
\(643\) 6793.95 0.416683 0.208342 0.978056i \(-0.433193\pi\)
0.208342 + 0.978056i \(0.433193\pi\)
\(644\) −1171.04 −0.0716546
\(645\) 0 0
\(646\) 349.290 0.0212734
\(647\) 5277.92 0.320706 0.160353 0.987060i \(-0.448737\pi\)
0.160353 + 0.987060i \(0.448737\pi\)
\(648\) 0 0
\(649\) 998.122 0.0603694
\(650\) −24754.8 −1.49379
\(651\) 0 0
\(652\) 2168.29 0.130241
\(653\) −16564.2 −0.992659 −0.496330 0.868134i \(-0.665319\pi\)
−0.496330 + 0.868134i \(0.665319\pi\)
\(654\) 0 0
\(655\) 2456.88 0.146562
\(656\) 4235.85 0.252107
\(657\) 0 0
\(658\) 5542.34 0.328363
\(659\) −3301.02 −0.195128 −0.0975641 0.995229i \(-0.531105\pi\)
−0.0975641 + 0.995229i \(0.531105\pi\)
\(660\) 0 0
\(661\) 12990.3 0.764395 0.382198 0.924081i \(-0.375167\pi\)
0.382198 + 0.924081i \(0.375167\pi\)
\(662\) −7075.30 −0.415392
\(663\) 0 0
\(664\) −7466.23 −0.436364
\(665\) −1207.55 −0.0704164
\(666\) 0 0
\(667\) 543.938 0.0315762
\(668\) 12518.5 0.725081
\(669\) 0 0
\(670\) −15838.9 −0.913299
\(671\) −5508.75 −0.316935
\(672\) 0 0
\(673\) 18514.3 1.06044 0.530219 0.847861i \(-0.322110\pi\)
0.530219 + 0.847861i \(0.322110\pi\)
\(674\) 3520.56 0.201197
\(675\) 0 0
\(676\) −371.616 −0.0211434
\(677\) −6099.99 −0.346295 −0.173148 0.984896i \(-0.555394\pi\)
−0.173148 + 0.984896i \(0.555394\pi\)
\(678\) 0 0
\(679\) −1609.37 −0.0909604
\(680\) 2681.78 0.151238
\(681\) 0 0
\(682\) −5682.65 −0.319061
\(683\) −22630.0 −1.26781 −0.633905 0.773411i \(-0.718549\pi\)
−0.633905 + 0.773411i \(0.718549\pi\)
\(684\) 0 0
\(685\) −2253.42 −0.125691
\(686\) −7649.61 −0.425749
\(687\) 0 0
\(688\) −6590.24 −0.365190
\(689\) 13311.0 0.736004
\(690\) 0 0
\(691\) 22986.8 1.26550 0.632750 0.774356i \(-0.281926\pi\)
0.632750 + 0.774356i \(0.281926\pi\)
\(692\) −10073.1 −0.553355
\(693\) 0 0
\(694\) 3210.88 0.175624
\(695\) 7820.95 0.426857
\(696\) 0 0
\(697\) 4466.29 0.242716
\(698\) 13283.8 0.720342
\(699\) 0 0
\(700\) −6336.16 −0.342120
\(701\) 27015.5 1.45558 0.727790 0.685800i \(-0.240548\pi\)
0.727790 + 0.685800i \(0.240548\pi\)
\(702\) 0 0
\(703\) −3583.76 −0.192268
\(704\) 1199.41 0.0642111
\(705\) 0 0
\(706\) 6112.54 0.325848
\(707\) 56.1898 0.00298902
\(708\) 0 0
\(709\) −19177.3 −1.01582 −0.507912 0.861409i \(-0.669583\pi\)
−0.507912 + 0.861409i \(0.669583\pi\)
\(710\) −25746.3 −1.36090
\(711\) 0 0
\(712\) −2950.54 −0.155303
\(713\) 7560.92 0.397137
\(714\) 0 0
\(715\) −17081.6 −0.893450
\(716\) −9325.02 −0.486721
\(717\) 0 0
\(718\) 4978.92 0.258791
\(719\) 25931.8 1.34505 0.672526 0.740073i \(-0.265209\pi\)
0.672526 + 0.740073i \(0.265209\pi\)
\(720\) 0 0
\(721\) −11573.6 −0.597812
\(722\) 13503.7 0.696059
\(723\) 0 0
\(724\) 2939.88 0.150911
\(725\) 2943.08 0.150763
\(726\) 0 0
\(727\) 5830.50 0.297443 0.148722 0.988879i \(-0.452484\pi\)
0.148722 + 0.988879i \(0.452484\pi\)
\(728\) 2154.23 0.109672
\(729\) 0 0
\(730\) −19007.2 −0.963683
\(731\) −6948.76 −0.351586
\(732\) 0 0
\(733\) −23154.6 −1.16676 −0.583379 0.812200i \(-0.698270\pi\)
−0.583379 + 0.812200i \(0.698270\pi\)
\(734\) −4710.09 −0.236857
\(735\) 0 0
\(736\) −1595.85 −0.0799238
\(737\) −7469.26 −0.373316
\(738\) 0 0
\(739\) −27085.8 −1.34827 −0.674133 0.738610i \(-0.735483\pi\)
−0.674133 + 0.738610i \(0.735483\pi\)
\(740\) −27515.5 −1.36688
\(741\) 0 0
\(742\) 3407.03 0.168566
\(743\) 32187.6 1.58930 0.794650 0.607068i \(-0.207655\pi\)
0.794650 + 0.607068i \(0.207655\pi\)
\(744\) 0 0
\(745\) −29948.9 −1.47281
\(746\) 5514.05 0.270622
\(747\) 0 0
\(748\) 1264.66 0.0618191
\(749\) −8460.04 −0.412715
\(750\) 0 0
\(751\) −2732.93 −0.132791 −0.0663954 0.997793i \(-0.521150\pi\)
−0.0663954 + 0.997793i \(0.521150\pi\)
\(752\) 7552.90 0.366258
\(753\) 0 0
\(754\) −1000.62 −0.0483294
\(755\) −62818.3 −3.02807
\(756\) 0 0
\(757\) −6315.62 −0.303230 −0.151615 0.988440i \(-0.548447\pi\)
−0.151615 + 0.988440i \(0.548447\pi\)
\(758\) −492.918 −0.0236195
\(759\) 0 0
\(760\) −1645.61 −0.0785428
\(761\) 31481.3 1.49960 0.749801 0.661663i \(-0.230149\pi\)
0.749801 + 0.661663i \(0.230149\pi\)
\(762\) 0 0
\(763\) 530.289 0.0251609
\(764\) 14471.0 0.685266
\(765\) 0 0
\(766\) −1301.15 −0.0613739
\(767\) 2443.02 0.115010
\(768\) 0 0
\(769\) −27296.6 −1.28003 −0.640014 0.768363i \(-0.721071\pi\)
−0.640014 + 0.768363i \(0.721071\pi\)
\(770\) −4372.16 −0.204626
\(771\) 0 0
\(772\) 17364.5 0.809536
\(773\) 24025.2 1.11789 0.558943 0.829206i \(-0.311207\pi\)
0.558943 + 0.829206i \(0.311207\pi\)
\(774\) 0 0
\(775\) 40909.9 1.89616
\(776\) −2193.20 −0.101458
\(777\) 0 0
\(778\) 20492.3 0.944326
\(779\) −2740.63 −0.126050
\(780\) 0 0
\(781\) −12141.3 −0.556275
\(782\) −1682.67 −0.0769465
\(783\) 0 0
\(784\) −4936.61 −0.224882
\(785\) −27334.0 −1.24279
\(786\) 0 0
\(787\) −10558.9 −0.478251 −0.239125 0.970989i \(-0.576861\pi\)
−0.239125 + 0.970989i \(0.576861\pi\)
\(788\) −13144.8 −0.594243
\(789\) 0 0
\(790\) 14875.6 0.669938
\(791\) 9690.47 0.435592
\(792\) 0 0
\(793\) −13483.3 −0.603792
\(794\) 18907.4 0.845084
\(795\) 0 0
\(796\) 1329.06 0.0591800
\(797\) −26889.1 −1.19506 −0.597529 0.801847i \(-0.703851\pi\)
−0.597529 + 0.801847i \(0.703851\pi\)
\(798\) 0 0
\(799\) 7963.79 0.352614
\(800\) −8634.68 −0.381603
\(801\) 0 0
\(802\) −541.446 −0.0238393
\(803\) −8963.36 −0.393910
\(804\) 0 0
\(805\) 5817.28 0.254698
\(806\) −13908.9 −0.607843
\(807\) 0 0
\(808\) 76.5734 0.00333396
\(809\) −18643.8 −0.810236 −0.405118 0.914264i \(-0.632770\pi\)
−0.405118 + 0.914264i \(0.632770\pi\)
\(810\) 0 0
\(811\) −23870.8 −1.03356 −0.516781 0.856118i \(-0.672870\pi\)
−0.516781 + 0.856118i \(0.672870\pi\)
\(812\) −256.115 −0.0110688
\(813\) 0 0
\(814\) −12975.6 −0.558717
\(815\) −10771.2 −0.462944
\(816\) 0 0
\(817\) 4263.94 0.182590
\(818\) 23172.3 0.990467
\(819\) 0 0
\(820\) −21042.1 −0.896122
\(821\) 14533.0 0.617791 0.308895 0.951096i \(-0.400041\pi\)
0.308895 + 0.951096i \(0.400041\pi\)
\(822\) 0 0
\(823\) 8868.42 0.375618 0.187809 0.982206i \(-0.439861\pi\)
0.187809 + 0.982206i \(0.439861\pi\)
\(824\) −15772.0 −0.666802
\(825\) 0 0
\(826\) 625.308 0.0263405
\(827\) 25059.3 1.05369 0.526843 0.849963i \(-0.323376\pi\)
0.526843 + 0.849963i \(0.323376\pi\)
\(828\) 0 0
\(829\) −22556.3 −0.945009 −0.472505 0.881328i \(-0.656650\pi\)
−0.472505 + 0.881328i \(0.656650\pi\)
\(830\) 37089.3 1.55107
\(831\) 0 0
\(832\) 2935.71 0.122329
\(833\) −5205.17 −0.216505
\(834\) 0 0
\(835\) −62186.8 −2.57732
\(836\) −776.031 −0.0321048
\(837\) 0 0
\(838\) 32267.5 1.33014
\(839\) 21209.6 0.872748 0.436374 0.899765i \(-0.356262\pi\)
0.436374 + 0.899765i \(0.356262\pi\)
\(840\) 0 0
\(841\) −24270.0 −0.995122
\(842\) −9983.86 −0.408630
\(843\) 0 0
\(844\) −22969.9 −0.936797
\(845\) 1846.04 0.0751548
\(846\) 0 0
\(847\) 5751.73 0.233331
\(848\) 4642.98 0.188019
\(849\) 0 0
\(850\) −9104.42 −0.367387
\(851\) 17264.4 0.695438
\(852\) 0 0
\(853\) 28116.2 1.12858 0.564292 0.825576i \(-0.309149\pi\)
0.564292 + 0.825576i \(0.309149\pi\)
\(854\) −3451.15 −0.138286
\(855\) 0 0
\(856\) −11529.0 −0.460344
\(857\) −9477.64 −0.377771 −0.188886 0.981999i \(-0.560488\pi\)
−0.188886 + 0.981999i \(0.560488\pi\)
\(858\) 0 0
\(859\) 29545.8 1.17356 0.586780 0.809746i \(-0.300395\pi\)
0.586780 + 0.809746i \(0.300395\pi\)
\(860\) 32737.7 1.29808
\(861\) 0 0
\(862\) −16369.5 −0.646806
\(863\) 9932.53 0.391781 0.195891 0.980626i \(-0.437240\pi\)
0.195891 + 0.980626i \(0.437240\pi\)
\(864\) 0 0
\(865\) 50039.2 1.96692
\(866\) −17326.3 −0.679876
\(867\) 0 0
\(868\) −3560.09 −0.139214
\(869\) 7014.99 0.273840
\(870\) 0 0
\(871\) −18281.9 −0.711203
\(872\) 722.659 0.0280646
\(873\) 0 0
\(874\) 1032.53 0.0399609
\(875\) 16894.6 0.652732
\(876\) 0 0
\(877\) −27025.5 −1.04058 −0.520288 0.853991i \(-0.674175\pi\)
−0.520288 + 0.853991i \(0.674175\pi\)
\(878\) 31728.6 1.21958
\(879\) 0 0
\(880\) −5958.22 −0.228240
\(881\) −12798.1 −0.489422 −0.244711 0.969596i \(-0.578693\pi\)
−0.244711 + 0.969596i \(0.578693\pi\)
\(882\) 0 0
\(883\) 27016.7 1.02965 0.514826 0.857294i \(-0.327856\pi\)
0.514826 + 0.857294i \(0.327856\pi\)
\(884\) 3095.41 0.117772
\(885\) 0 0
\(886\) 799.281 0.0303074
\(887\) −20150.1 −0.762768 −0.381384 0.924417i \(-0.624552\pi\)
−0.381384 + 0.924417i \(0.624552\pi\)
\(888\) 0 0
\(889\) −11725.9 −0.442377
\(890\) 14657.1 0.552031
\(891\) 0 0
\(892\) −9850.46 −0.369751
\(893\) −4886.79 −0.183124
\(894\) 0 0
\(895\) 46323.1 1.73007
\(896\) 751.415 0.0280167
\(897\) 0 0
\(898\) −11849.0 −0.440320
\(899\) 1653.63 0.0613477
\(900\) 0 0
\(901\) 4895.56 0.181015
\(902\) −9922.94 −0.366295
\(903\) 0 0
\(904\) 13205.8 0.485862
\(905\) −14604.2 −0.536418
\(906\) 0 0
\(907\) 9279.91 0.339729 0.169865 0.985467i \(-0.445667\pi\)
0.169865 + 0.985467i \(0.445667\pi\)
\(908\) 11197.4 0.409248
\(909\) 0 0
\(910\) −10701.4 −0.389832
\(911\) 16400.6 0.596461 0.298231 0.954494i \(-0.403604\pi\)
0.298231 + 0.954494i \(0.403604\pi\)
\(912\) 0 0
\(913\) 17490.4 0.634008
\(914\) 15782.3 0.571150
\(915\) 0 0
\(916\) 5651.38 0.203850
\(917\) 725.848 0.0261392
\(918\) 0 0
\(919\) −11704.6 −0.420128 −0.210064 0.977688i \(-0.567367\pi\)
−0.210064 + 0.977688i \(0.567367\pi\)
\(920\) 7927.57 0.284092
\(921\) 0 0
\(922\) 6524.37 0.233046
\(923\) −29717.3 −1.05976
\(924\) 0 0
\(925\) 93412.7 3.32042
\(926\) −7380.81 −0.261931
\(927\) 0 0
\(928\) −349.025 −0.0123462
\(929\) 16324.4 0.576520 0.288260 0.957552i \(-0.406923\pi\)
0.288260 + 0.957552i \(0.406923\pi\)
\(930\) 0 0
\(931\) 3194.03 0.112438
\(932\) 8135.25 0.285922
\(933\) 0 0
\(934\) 20386.4 0.714201
\(935\) −6282.36 −0.219738
\(936\) 0 0
\(937\) −7397.79 −0.257925 −0.128962 0.991649i \(-0.541165\pi\)
−0.128962 + 0.991649i \(0.541165\pi\)
\(938\) −4679.37 −0.162886
\(939\) 0 0
\(940\) −37519.8 −1.30187
\(941\) 7426.88 0.257289 0.128645 0.991691i \(-0.458937\pi\)
0.128645 + 0.991691i \(0.458937\pi\)
\(942\) 0 0
\(943\) 13202.7 0.455928
\(944\) 852.146 0.0293803
\(945\) 0 0
\(946\) 15438.3 0.530596
\(947\) −23051.9 −0.791011 −0.395505 0.918464i \(-0.629430\pi\)
−0.395505 + 0.918464i \(0.629430\pi\)
\(948\) 0 0
\(949\) −21938.9 −0.750438
\(950\) 5586.71 0.190797
\(951\) 0 0
\(952\) 792.293 0.0269731
\(953\) −23445.7 −0.796936 −0.398468 0.917182i \(-0.630458\pi\)
−0.398468 + 0.917182i \(0.630458\pi\)
\(954\) 0 0
\(955\) −71886.4 −2.43580
\(956\) −2086.45 −0.0705863
\(957\) 0 0
\(958\) −1680.14 −0.0566626
\(959\) −665.739 −0.0224169
\(960\) 0 0
\(961\) −6805.02 −0.228425
\(962\) −31759.4 −1.06441
\(963\) 0 0
\(964\) 23662.6 0.790582
\(965\) −86260.0 −2.87752
\(966\) 0 0
\(967\) −16741.9 −0.556756 −0.278378 0.960472i \(-0.589797\pi\)
−0.278378 + 0.960472i \(0.589797\pi\)
\(968\) 7838.24 0.260259
\(969\) 0 0
\(970\) 10894.9 0.360634
\(971\) −43037.7 −1.42240 −0.711198 0.702992i \(-0.751847\pi\)
−0.711198 + 0.702992i \(0.751847\pi\)
\(972\) 0 0
\(973\) 2310.59 0.0761295
\(974\) 6734.57 0.221550
\(975\) 0 0
\(976\) −4703.10 −0.154244
\(977\) −17899.8 −0.586147 −0.293074 0.956090i \(-0.594678\pi\)
−0.293074 + 0.956090i \(0.594678\pi\)
\(978\) 0 0
\(979\) 6911.95 0.225645
\(980\) 24523.1 0.799350
\(981\) 0 0
\(982\) 37738.2 1.22635
\(983\) −46300.3 −1.50229 −0.751144 0.660138i \(-0.770498\pi\)
−0.751144 + 0.660138i \(0.770498\pi\)
\(984\) 0 0
\(985\) 65298.2 2.11226
\(986\) −368.012 −0.0118863
\(987\) 0 0
\(988\) −1899.43 −0.0611628
\(989\) −20541.1 −0.660435
\(990\) 0 0
\(991\) 4621.74 0.148148 0.0740739 0.997253i \(-0.476400\pi\)
0.0740739 + 0.997253i \(0.476400\pi\)
\(992\) −4851.56 −0.155279
\(993\) 0 0
\(994\) −7606.35 −0.242715
\(995\) −6602.25 −0.210357
\(996\) 0 0
\(997\) 19944.9 0.633561 0.316780 0.948499i \(-0.397398\pi\)
0.316780 + 0.948499i \(0.397398\pi\)
\(998\) 29132.0 0.924006
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.4.a.f.1.1 2
3.2 odd 2 162.4.a.g.1.2 2
4.3 odd 2 1296.4.a.l.1.1 2
9.2 odd 6 54.4.c.b.37.1 4
9.4 even 3 18.4.c.b.7.1 4
9.5 odd 6 54.4.c.b.19.1 4
9.7 even 3 18.4.c.b.13.1 yes 4
12.11 even 2 1296.4.a.r.1.2 2
36.7 odd 6 144.4.i.b.49.2 4
36.11 even 6 432.4.i.b.145.1 4
36.23 even 6 432.4.i.b.289.1 4
36.31 odd 6 144.4.i.b.97.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.4.c.b.7.1 4 9.4 even 3
18.4.c.b.13.1 yes 4 9.7 even 3
54.4.c.b.19.1 4 9.5 odd 6
54.4.c.b.37.1 4 9.2 odd 6
144.4.i.b.49.2 4 36.7 odd 6
144.4.i.b.97.2 4 36.31 odd 6
162.4.a.f.1.1 2 1.1 even 1 trivial
162.4.a.g.1.2 2 3.2 odd 2
432.4.i.b.145.1 4 36.11 even 6
432.4.i.b.289.1 4 36.23 even 6
1296.4.a.l.1.1 2 4.3 odd 2
1296.4.a.r.1.2 2 12.11 even 2