Properties

Label 432.4.i.b.145.1
Level $432$
Weight $4$
Character 432.145
Analytic conductor $25.489$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,4,Mod(145,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.145");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.4888251225\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-35})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} - 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 145.1
Root \(2.81174 - 1.04601i\) of defining polynomial
Character \(\chi\) \(=\) 432.145
Dual form 432.4.i.b.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.93521 + 17.2083i) q^{5} +(-2.93521 - 5.08394i) q^{7} +(-9.37043 - 16.2301i) q^{11} +(-22.9352 + 39.7250i) q^{13} -16.8704 q^{17} +10.3521 q^{19} +(-24.9352 + 43.1891i) q^{23} +(-134.917 - 233.683i) q^{25} +(5.45351 + 9.44575i) q^{29} +(75.8056 - 131.299i) q^{31} +116.648 q^{35} +346.186 q^{37} +(132.370 - 229.272i) q^{41} +(-205.945 - 356.707i) q^{43} +(-236.028 - 408.813i) q^{47} +(154.269 - 267.202i) q^{49} -290.186 q^{53} +372.389 q^{55} +(-26.6296 + 46.1238i) q^{59} +(146.972 + 254.563i) q^{61} +(-455.732 - 789.352i) q^{65} +(-199.277 + 345.159i) q^{67} -647.854 q^{71} -478.279 q^{73} +(-55.0084 + 95.2773i) q^{77} +(187.158 + 324.167i) q^{79} +(-466.639 - 808.243i) q^{83} +(167.611 - 290.311i) q^{85} -368.817 q^{89} +269.279 q^{91} +(-102.851 + 178.143i) q^{95} +(-137.075 - 237.420i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 9 q^{5} + 19 q^{7} + 24 q^{11} - 61 q^{13} - 6 q^{17} - 266 q^{19} - 69 q^{23} - 263 q^{25} + 237 q^{29} + 211 q^{31} + 774 q^{35} + 524 q^{37} + 468 q^{41} - 86 q^{43} - 483 q^{47} + 33 q^{49} - 300 q^{53}+ \cdots + 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.93521 + 17.2083i −0.888632 + 1.53916i −0.0471396 + 0.998888i \(0.515011\pi\)
−0.841493 + 0.540268i \(0.818323\pi\)
\(6\) 0 0
\(7\) −2.93521 5.08394i −0.158487 0.274507i 0.775837 0.630934i \(-0.217328\pi\)
−0.934323 + 0.356427i \(0.883995\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −9.37043 16.2301i −0.256845 0.444868i 0.708550 0.705660i \(-0.249349\pi\)
−0.965395 + 0.260792i \(0.916016\pi\)
\(12\) 0 0
\(13\) −22.9352 + 39.7250i −0.489314 + 0.847517i −0.999924 0.0122953i \(-0.996086\pi\)
0.510610 + 0.859812i \(0.329420\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −16.8704 −0.240687 −0.120344 0.992732i \(-0.538400\pi\)
−0.120344 + 0.992732i \(0.538400\pi\)
\(18\) 0 0
\(19\) 10.3521 0.124997 0.0624985 0.998045i \(-0.480093\pi\)
0.0624985 + 0.998045i \(0.480093\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −24.9352 + 43.1891i −0.226059 + 0.391545i −0.956637 0.291284i \(-0.905917\pi\)
0.730578 + 0.682829i \(0.239251\pi\)
\(24\) 0 0
\(25\) −134.917 233.683i −1.07934 1.86946i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.45351 + 9.44575i 0.0349204 + 0.0604839i 0.882957 0.469453i \(-0.155549\pi\)
−0.848037 + 0.529937i \(0.822216\pi\)
\(30\) 0 0
\(31\) 75.8056 131.299i 0.439197 0.760711i −0.558431 0.829551i \(-0.688596\pi\)
0.997628 + 0.0688401i \(0.0219298\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 116.648 0.563345
\(36\) 0 0
\(37\) 346.186 1.53818 0.769089 0.639141i \(-0.220710\pi\)
0.769089 + 0.639141i \(0.220710\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 132.370 229.272i 0.504214 0.873325i −0.495774 0.868452i \(-0.665115\pi\)
0.999988 0.00487314i \(-0.00155118\pi\)
\(42\) 0 0
\(43\) −205.945 356.707i −0.730380 1.26506i −0.956721 0.291007i \(-0.906010\pi\)
0.226341 0.974048i \(-0.427324\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −236.028 408.813i −0.732516 1.26875i −0.955805 0.294003i \(-0.905013\pi\)
0.223289 0.974752i \(-0.428321\pi\)
\(48\) 0 0
\(49\) 154.269 267.202i 0.449764 0.779014i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −290.186 −0.752078 −0.376039 0.926604i \(-0.622714\pi\)
−0.376039 + 0.926604i \(0.622714\pi\)
\(54\) 0 0
\(55\) 372.389 0.912962
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −26.6296 + 46.1238i −0.0587606 + 0.101776i −0.893909 0.448248i \(-0.852048\pi\)
0.835149 + 0.550024i \(0.185382\pi\)
\(60\) 0 0
\(61\) 146.972 + 254.563i 0.308489 + 0.534318i 0.978032 0.208455i \(-0.0668435\pi\)
−0.669543 + 0.742773i \(0.733510\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −455.732 789.352i −0.869641 1.50626i
\(66\) 0 0
\(67\) −199.277 + 345.159i −0.363367 + 0.629371i −0.988513 0.151138i \(-0.951706\pi\)
0.625145 + 0.780508i \(0.285040\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −647.854 −1.08290 −0.541451 0.840732i \(-0.682125\pi\)
−0.541451 + 0.840732i \(0.682125\pi\)
\(72\) 0 0
\(73\) −478.279 −0.766826 −0.383413 0.923577i \(-0.625251\pi\)
−0.383413 + 0.923577i \(0.625251\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −55.0084 + 95.2773i −0.0814128 + 0.141011i
\(78\) 0 0
\(79\) 187.158 + 324.167i 0.266543 + 0.461666i 0.967967 0.251079i \(-0.0807852\pi\)
−0.701424 + 0.712744i \(0.747452\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −466.639 808.243i −0.617112 1.06887i −0.990010 0.140998i \(-0.954969\pi\)
0.372897 0.927873i \(-0.378364\pi\)
\(84\) 0 0
\(85\) 167.611 290.311i 0.213882 0.370455i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −368.817 −0.439264 −0.219632 0.975583i \(-0.570486\pi\)
−0.219632 + 0.975583i \(0.570486\pi\)
\(90\) 0 0
\(91\) 269.279 0.310199
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −102.851 + 178.143i −0.111076 + 0.192390i
\(96\) 0 0
\(97\) −137.075 237.420i −0.143483 0.248519i 0.785323 0.619086i \(-0.212497\pi\)
−0.928806 + 0.370567i \(0.879163\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.78584 8.28931i −0.00471494 0.00816651i 0.863658 0.504078i \(-0.168167\pi\)
−0.868373 + 0.495911i \(0.834834\pi\)
\(102\) 0 0
\(103\) 985.752 1707.37i 0.943001 1.63332i 0.183295 0.983058i \(-0.441324\pi\)
0.759706 0.650267i \(-0.225343\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1441.13 1.30205 0.651025 0.759057i \(-0.274339\pi\)
0.651025 + 0.759057i \(0.274339\pi\)
\(108\) 0 0
\(109\) −90.3323 −0.0793786 −0.0396893 0.999212i \(-0.512637\pi\)
−0.0396893 + 0.999212i \(0.512637\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −825.364 + 1429.57i −0.687112 + 1.19011i 0.285656 + 0.958332i \(0.407789\pi\)
−0.972768 + 0.231781i \(0.925545\pi\)
\(114\) 0 0
\(115\) −495.473 858.185i −0.401766 0.695880i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 49.5183 + 85.7682i 0.0381457 + 0.0660702i
\(120\) 0 0
\(121\) 489.890 848.515i 0.368062 0.637502i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2877.91 2.05926
\(126\) 0 0
\(127\) −1997.45 −1.39563 −0.697814 0.716279i \(-0.745844\pi\)
−0.697814 + 0.716279i \(0.745844\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 61.8224 107.080i 0.0412324 0.0714167i −0.844673 0.535283i \(-0.820205\pi\)
0.885905 + 0.463866i \(0.153538\pi\)
\(132\) 0 0
\(133\) −30.3857 52.6296i −0.0198103 0.0343125i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 56.7028 + 98.2121i 0.0353609 + 0.0612469i 0.883164 0.469064i \(-0.155409\pi\)
−0.847803 + 0.530311i \(0.822075\pi\)
\(138\) 0 0
\(139\) −196.799 + 340.865i −0.120088 + 0.207999i −0.919802 0.392382i \(-0.871651\pi\)
0.799714 + 0.600381i \(0.204984\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 859.651 0.502711
\(144\) 0 0
\(145\) −216.727 −0.124126
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 753.606 1305.28i 0.414348 0.717671i −0.581012 0.813895i \(-0.697343\pi\)
0.995360 + 0.0962237i \(0.0306764\pi\)
\(150\) 0 0
\(151\) 1580.70 + 2737.85i 0.851890 + 1.47552i 0.879500 + 0.475899i \(0.157877\pi\)
−0.0276097 + 0.999619i \(0.508790\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1506.29 + 2608.97i 0.780569 + 1.35198i
\(156\) 0 0
\(157\) −687.806 + 1191.31i −0.349636 + 0.605587i −0.986185 0.165649i \(-0.947028\pi\)
0.636549 + 0.771237i \(0.280361\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 292.761 0.143309
\(162\) 0 0
\(163\) −542.073 −0.260481 −0.130241 0.991482i \(-0.541575\pi\)
−0.130241 + 0.991482i \(0.541575\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1564.81 + 2710.33i −0.725081 + 1.25588i 0.233860 + 0.972270i \(0.424864\pi\)
−0.958941 + 0.283607i \(0.908469\pi\)
\(168\) 0 0
\(169\) 46.4520 + 80.4572i 0.0211434 + 0.0366214i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1259.14 2180.89i −0.553355 0.958440i −0.998029 0.0627472i \(-0.980014\pi\)
0.444674 0.895692i \(-0.353320\pi\)
\(174\) 0 0
\(175\) −792.020 + 1371.82i −0.342120 + 0.592570i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2331.26 −0.973443 −0.486721 0.873557i \(-0.661807\pi\)
−0.486721 + 0.873557i \(0.661807\pi\)
\(180\) 0 0
\(181\) 734.969 0.301822 0.150911 0.988547i \(-0.451779\pi\)
0.150911 + 0.988547i \(0.451779\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3439.43 + 5957.27i −1.36688 + 2.36750i
\(186\) 0 0
\(187\) 158.083 + 273.808i 0.0618191 + 0.107074i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1808.88 3133.07i −0.685266 1.18692i −0.973353 0.229312i \(-0.926352\pi\)
0.288087 0.957604i \(-0.406981\pi\)
\(192\) 0 0
\(193\) −2170.56 + 3759.52i −0.809536 + 1.40216i 0.103649 + 0.994614i \(0.466948\pi\)
−0.913186 + 0.407544i \(0.866385\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3286.20 1.18849 0.594243 0.804285i \(-0.297452\pi\)
0.594243 + 0.804285i \(0.297452\pi\)
\(198\) 0 0
\(199\) −332.265 −0.118360 −0.0591800 0.998247i \(-0.518849\pi\)
−0.0591800 + 0.998247i \(0.518849\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 32.0144 55.4506i 0.0110688 0.0191718i
\(204\) 0 0
\(205\) 2630.26 + 4555.74i 0.896122 + 1.55213i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −97.0039 168.016i −0.0321048 0.0556071i
\(210\) 0 0
\(211\) −2871.24 + 4973.13i −0.936797 + 1.62258i −0.165398 + 0.986227i \(0.552891\pi\)
−0.771398 + 0.636353i \(0.780442\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8184.43 2.59616
\(216\) 0 0
\(217\) −890.023 −0.278427
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 386.927 670.177i 0.117772 0.203986i
\(222\) 0 0
\(223\) −1231.31 2132.69i −0.369751 0.640427i 0.619776 0.784779i \(-0.287224\pi\)
−0.989526 + 0.144352i \(0.953890\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1399.67 2424.30i −0.409248 0.708838i 0.585558 0.810631i \(-0.300876\pi\)
−0.994806 + 0.101792i \(0.967542\pi\)
\(228\) 0 0
\(229\) −706.423 + 1223.56i −0.203850 + 0.353079i −0.949766 0.312961i \(-0.898679\pi\)
0.745915 + 0.666041i \(0.232012\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2033.81 −0.571843 −0.285922 0.958253i \(-0.592300\pi\)
−0.285922 + 0.958253i \(0.592300\pi\)
\(234\) 0 0
\(235\) 9379.96 2.60375
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 260.806 451.729i 0.0705863 0.122259i −0.828572 0.559882i \(-0.810846\pi\)
0.899158 + 0.437623i \(0.144180\pi\)
\(240\) 0 0
\(241\) −2957.82 5123.10i −0.790582 1.36933i −0.925607 0.378486i \(-0.876445\pi\)
0.135025 0.990842i \(-0.456888\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3065.39 + 5309.41i 0.799350 + 1.38451i
\(246\) 0 0
\(247\) −237.428 + 411.238i −0.0611628 + 0.105937i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 710.127 0.178577 0.0892884 0.996006i \(-0.471541\pi\)
0.0892884 + 0.996006i \(0.471541\pi\)
\(252\) 0 0
\(253\) 934.614 0.232248
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3150.50 5456.83i 0.764681 1.32447i −0.175734 0.984438i \(-0.556230\pi\)
0.940415 0.340028i \(-0.110437\pi\)
\(258\) 0 0
\(259\) −1016.13 1759.99i −0.243781 0.422241i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2460.91 + 4262.42i 0.576981 + 0.999361i 0.995823 + 0.0913017i \(0.0291028\pi\)
−0.418842 + 0.908059i \(0.637564\pi\)
\(264\) 0 0
\(265\) 2883.06 4993.61i 0.668320 1.15757i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5454.50 1.23631 0.618154 0.786057i \(-0.287881\pi\)
0.618154 + 0.786057i \(0.287881\pi\)
\(270\) 0 0
\(271\) −2797.10 −0.626981 −0.313491 0.949591i \(-0.601498\pi\)
−0.313491 + 0.949591i \(0.601498\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2528.46 + 4379.42i −0.554443 + 0.960323i
\(276\) 0 0
\(277\) 1072.59 + 1857.77i 0.232655 + 0.402970i 0.958589 0.284794i \(-0.0919254\pi\)
−0.725934 + 0.687765i \(0.758592\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2754.88 4771.60i −0.584849 1.01299i −0.994894 0.100923i \(-0.967820\pi\)
0.410045 0.912065i \(-0.365513\pi\)
\(282\) 0 0
\(283\) 2003.92 3470.89i 0.420921 0.729056i −0.575109 0.818077i \(-0.695040\pi\)
0.996030 + 0.0890206i \(0.0283737\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1554.14 −0.319645
\(288\) 0 0
\(289\) −4628.39 −0.942070
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2904.62 + 5030.95i −0.579146 + 1.00311i 0.416432 + 0.909167i \(0.363280\pi\)
−0.995578 + 0.0939429i \(0.970053\pi\)
\(294\) 0 0
\(295\) −529.141 916.499i −0.104433 0.180884i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1143.79 1981.10i −0.221227 0.383177i
\(300\) 0 0
\(301\) −1208.99 + 2094.02i −0.231511 + 0.400989i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5840.78 −1.09653
\(306\) 0 0
\(307\) −8688.30 −1.61520 −0.807602 0.589728i \(-0.799235\pi\)
−0.807602 + 0.589728i \(0.799235\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −716.005 + 1240.16i −0.130550 + 0.226119i −0.923889 0.382662i \(-0.875008\pi\)
0.793339 + 0.608780i \(0.208341\pi\)
\(312\) 0 0
\(313\) −3307.26 5728.34i −0.597244 1.03446i −0.993226 0.116199i \(-0.962929\pi\)
0.395982 0.918258i \(-0.370404\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 712.045 + 1233.30i 0.126159 + 0.218514i 0.922185 0.386748i \(-0.126402\pi\)
−0.796026 + 0.605262i \(0.793068\pi\)
\(318\) 0 0
\(319\) 102.203 177.021i 0.0179382 0.0310699i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −174.645 −0.0300851
\(324\) 0 0
\(325\) 12377.4 2.11254
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1385.59 + 2399.91i −0.232188 + 0.402161i
\(330\) 0 0
\(331\) 1768.83 + 3063.70i 0.293726 + 0.508749i 0.974688 0.223570i \(-0.0717712\pi\)
−0.680961 + 0.732319i \(0.738438\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3959.73 6858.45i −0.645800 1.11856i
\(336\) 0 0
\(337\) 880.140 1524.45i 0.142268 0.246415i −0.786082 0.618122i \(-0.787894\pi\)
0.928350 + 0.371706i \(0.121227\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2841.32 −0.451221
\(342\) 0 0
\(343\) −3824.81 −0.602099
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 802.720 1390.35i 0.124185 0.215095i −0.797229 0.603677i \(-0.793702\pi\)
0.921414 + 0.388582i \(0.127035\pi\)
\(348\) 0 0
\(349\) 3320.94 + 5752.04i 0.509358 + 0.882235i 0.999941 + 0.0108400i \(0.00345056\pi\)
−0.490583 + 0.871395i \(0.663216\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1528.13 2646.81i −0.230409 0.399080i 0.727520 0.686087i \(-0.240673\pi\)
−0.957929 + 0.287007i \(0.907340\pi\)
\(354\) 0 0
\(355\) 6436.56 11148.5i 0.962302 1.66676i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2489.46 −0.365985 −0.182993 0.983114i \(-0.558578\pi\)
−0.182993 + 0.983114i \(0.558578\pi\)
\(360\) 0 0
\(361\) −6751.83 −0.984376
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4751.80 8230.36i 0.681427 1.18027i
\(366\) 0 0
\(367\) 1177.52 + 2039.53i 0.167483 + 0.290089i 0.937534 0.347893i \(-0.113103\pi\)
−0.770051 + 0.637982i \(0.779769\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 851.758 + 1475.29i 0.119194 + 0.206450i
\(372\) 0 0
\(373\) 1378.51 2387.65i 0.191358 0.331443i −0.754342 0.656481i \(-0.772044\pi\)
0.945701 + 0.325039i \(0.105377\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −500.310 −0.0683481
\(378\) 0 0
\(379\) −246.459 −0.0334030 −0.0167015 0.999861i \(-0.505317\pi\)
−0.0167015 + 0.999861i \(0.505317\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −325.287 + 563.414i −0.0433979 + 0.0751674i −0.886908 0.461945i \(-0.847152\pi\)
0.843511 + 0.537113i \(0.180485\pi\)
\(384\) 0 0
\(385\) −1093.04 1893.20i −0.144692 0.250614i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5123.08 8873.44i −0.667739 1.15656i −0.978535 0.206082i \(-0.933929\pi\)
0.310795 0.950477i \(-0.399405\pi\)
\(390\) 0 0
\(391\) 420.668 728.618i 0.0544094 0.0942399i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7437.81 −0.947435
\(396\) 0 0
\(397\) −9453.68 −1.19513 −0.597565 0.801820i \(-0.703865\pi\)
−0.597565 + 0.801820i \(0.703865\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 135.361 234.453i 0.0168569 0.0291970i −0.857474 0.514527i \(-0.827967\pi\)
0.874331 + 0.485330i \(0.161301\pi\)
\(402\) 0 0
\(403\) 3477.24 + 6022.75i 0.429810 + 0.744453i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3243.91 5618.62i −0.395073 0.684286i
\(408\) 0 0
\(409\) 5793.08 10033.9i 0.700366 1.21307i −0.267972 0.963427i \(-0.586354\pi\)
0.968338 0.249642i \(-0.0803130\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 312.654 0.0372511
\(414\) 0 0
\(415\) 18544.7 2.19354
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8066.87 13972.2i 0.940554 1.62909i 0.176137 0.984366i \(-0.443640\pi\)
0.764417 0.644722i \(-0.223027\pi\)
\(420\) 0 0
\(421\) −2495.96 4323.14i −0.288945 0.500467i 0.684613 0.728907i \(-0.259971\pi\)
−0.973558 + 0.228439i \(0.926638\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2276.11 + 3942.33i 0.259782 + 0.449956i
\(426\) 0 0
\(427\) 862.787 1494.39i 0.0977827 0.169365i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8184.74 0.914722 0.457361 0.889281i \(-0.348795\pi\)
0.457361 + 0.889281i \(0.348795\pi\)
\(432\) 0 0
\(433\) 8663.17 0.961490 0.480745 0.876860i \(-0.340366\pi\)
0.480745 + 0.876860i \(0.340366\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −258.133 + 447.099i −0.0282567 + 0.0489420i
\(438\) 0 0
\(439\) −7932.15 13738.9i −0.862371 1.49367i −0.869634 0.493697i \(-0.835645\pi\)
0.00726314 0.999974i \(-0.497688\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 199.820 + 346.099i 0.0214306 + 0.0371189i 0.876542 0.481326i \(-0.159845\pi\)
−0.855111 + 0.518445i \(0.826511\pi\)
\(444\) 0 0
\(445\) 3664.28 6346.71i 0.390345 0.676097i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5924.51 −0.622706 −0.311353 0.950294i \(-0.600782\pi\)
−0.311353 + 0.950294i \(0.600782\pi\)
\(450\) 0 0
\(451\) −4961.47 −0.518019
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2675.34 + 4633.83i −0.275653 + 0.477445i
\(456\) 0 0
\(457\) 3945.57 + 6833.93i 0.403864 + 0.699513i 0.994189 0.107653i \(-0.0343335\pi\)
−0.590324 + 0.807166i \(0.701000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1631.09 2825.13i −0.164789 0.285422i 0.771792 0.635876i \(-0.219361\pi\)
−0.936580 + 0.350453i \(0.886028\pi\)
\(462\) 0 0
\(463\) 1845.20 3195.98i 0.185213 0.320799i −0.758435 0.651749i \(-0.774036\pi\)
0.943648 + 0.330950i \(0.107369\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10193.2 −1.01003 −0.505017 0.863110i \(-0.668514\pi\)
−0.505017 + 0.863110i \(0.668514\pi\)
\(468\) 0 0
\(469\) 2339.69 0.230355
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3859.59 + 6685.00i −0.375188 + 0.649845i
\(474\) 0 0
\(475\) −1396.68 2419.12i −0.134914 0.233677i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −420.034 727.521i −0.0400665 0.0693972i 0.845297 0.534297i \(-0.179424\pi\)
−0.885363 + 0.464900i \(0.846090\pi\)
\(480\) 0 0
\(481\) −7939.85 + 13752.2i −0.752653 + 1.30363i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5447.46 0.510014
\(486\) 0 0
\(487\) 3367.28 0.313319 0.156659 0.987653i \(-0.449928\pi\)
0.156659 + 0.987653i \(0.449928\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9434.55 16341.1i 0.867160 1.50196i 0.00227283 0.999997i \(-0.499277\pi\)
0.864887 0.501967i \(-0.167390\pi\)
\(492\) 0 0
\(493\) −92.0030 159.354i −0.00840488 0.0145577i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1901.59 + 3293.65i 0.171626 + 0.297264i
\(498\) 0 0
\(499\) −7283.00 + 12614.5i −0.653371 + 1.13167i 0.328929 + 0.944355i \(0.393312\pi\)
−0.982300 + 0.187317i \(0.940021\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17361.6 −1.53900 −0.769499 0.638648i \(-0.779494\pi\)
−0.769499 + 0.638648i \(0.779494\pi\)
\(504\) 0 0
\(505\) 190.193 0.0167594
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6966.63 12066.6i 0.606661 1.05077i −0.385126 0.922864i \(-0.625842\pi\)
0.991787 0.127903i \(-0.0408247\pi\)
\(510\) 0 0
\(511\) 1403.85 + 2431.54i 0.121532 + 0.210499i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19587.3 + 33926.2i 1.67596 + 2.90285i
\(516\) 0 0
\(517\) −4423.37 + 7661.50i −0.376285 + 0.651745i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5024.22 −0.422486 −0.211243 0.977434i \(-0.567751\pi\)
−0.211243 + 0.977434i \(0.567751\pi\)
\(522\) 0 0
\(523\) −16008.7 −1.33845 −0.669226 0.743059i \(-0.733374\pi\)
−0.669226 + 0.743059i \(0.733374\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1278.87 + 2215.07i −0.105709 + 0.183093i
\(528\) 0 0
\(529\) 4839.97 + 8383.07i 0.397795 + 0.689001i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6071.89 + 10516.8i 0.493438 + 0.854660i
\(534\) 0 0
\(535\) −14317.9 + 24799.4i −1.15704 + 2.00406i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5782.27 −0.462078
\(540\) 0 0
\(541\) −10094.1 −0.802179 −0.401089 0.916039i \(-0.631368\pi\)
−0.401089 + 0.916039i \(0.631368\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 897.471 1554.47i 0.0705384 0.122176i
\(546\) 0 0
\(547\) −3030.27 5248.58i −0.236865 0.410262i 0.722948 0.690902i \(-0.242787\pi\)
−0.959813 + 0.280640i \(0.909453\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 56.4554 + 97.7837i 0.00436494 + 0.00756030i
\(552\) 0 0
\(553\) 1098.70 1903.00i 0.0844870 0.146336i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13688.4 −1.04128 −0.520642 0.853775i \(-0.674307\pi\)
−0.520642 + 0.853775i \(0.674307\pi\)
\(558\) 0 0
\(559\) 18893.6 1.42954
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −11173.3 + 19352.8i −0.836411 + 1.44871i 0.0564662 + 0.998405i \(0.482017\pi\)
−0.892877 + 0.450301i \(0.851317\pi\)
\(564\) 0 0
\(565\) −16400.3 28406.2i −1.22118 2.11515i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4058.97 + 7030.34i 0.299052 + 0.517974i 0.975919 0.218131i \(-0.0699961\pi\)
−0.676867 + 0.736105i \(0.736663\pi\)
\(570\) 0 0
\(571\) 3491.49 6047.43i 0.255892 0.443217i −0.709246 0.704961i \(-0.750964\pi\)
0.965137 + 0.261744i \(0.0842976\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13456.7 0.975973
\(576\) 0 0
\(577\) 13972.4 1.00811 0.504055 0.863671i \(-0.331841\pi\)
0.504055 + 0.863671i \(0.331841\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2739.37 + 4744.73i −0.195608 + 0.338803i
\(582\) 0 0
\(583\) 2719.17 + 4709.73i 0.193167 + 0.334575i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 754.756 + 1307.28i 0.0530701 + 0.0919200i 0.891340 0.453335i \(-0.149766\pi\)
−0.838270 + 0.545255i \(0.816433\pi\)
\(588\) 0 0
\(589\) 784.750 1359.23i 0.0548982 0.0950865i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21495.3 1.48854 0.744270 0.667879i \(-0.232798\pi\)
0.744270 + 0.667879i \(0.232798\pi\)
\(594\) 0 0
\(595\) −1967.90 −0.135590
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5052.44 + 8751.08i −0.344636 + 0.596927i −0.985288 0.170905i \(-0.945331\pi\)
0.640652 + 0.767832i \(0.278664\pi\)
\(600\) 0 0
\(601\) 5504.09 + 9533.37i 0.373572 + 0.647045i 0.990112 0.140278i \(-0.0447997\pi\)
−0.616540 + 0.787323i \(0.711466\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9734.33 + 16860.3i 0.654143 + 1.13301i
\(606\) 0 0
\(607\) 7340.08 12713.4i 0.490815 0.850116i −0.509129 0.860690i \(-0.670033\pi\)
0.999944 + 0.0105740i \(0.00336587\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 21653.4 1.43372
\(612\) 0 0
\(613\) 235.863 0.0155407 0.00777033 0.999970i \(-0.497527\pi\)
0.00777033 + 0.999970i \(0.497527\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9156.53 15859.6i 0.597452 1.03482i −0.395744 0.918361i \(-0.629513\pi\)
0.993196 0.116457i \(-0.0371536\pi\)
\(618\) 0 0
\(619\) 3424.73 + 5931.81i 0.222377 + 0.385169i 0.955529 0.294896i \(-0.0952850\pi\)
−0.733152 + 0.680065i \(0.761952\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1082.56 + 1875.04i 0.0696175 + 0.120581i
\(624\) 0 0
\(625\) −11728.0 + 20313.6i −0.750594 + 1.30007i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5840.30 −0.370220
\(630\) 0 0
\(631\) −22464.3 −1.41726 −0.708629 0.705581i \(-0.750686\pi\)
−0.708629 + 0.705581i \(0.750686\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19845.1 34372.7i 1.24020 2.14809i
\(636\) 0 0
\(637\) 7076.39 + 12256.7i 0.440152 + 0.762365i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9444.39 + 16358.2i 0.581952 + 1.00797i 0.995248 + 0.0973730i \(0.0310440\pi\)
−0.413296 + 0.910597i \(0.635623\pi\)
\(642\) 0 0
\(643\) 3396.98 5883.74i 0.208342 0.360858i −0.742851 0.669457i \(-0.766527\pi\)
0.951192 + 0.308599i \(0.0998601\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5277.92 0.320706 0.160353 0.987060i \(-0.448737\pi\)
0.160353 + 0.987060i \(0.448737\pi\)
\(648\) 0 0
\(649\) 998.122 0.0603694
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8282.09 + 14345.0i −0.496330 + 0.859668i −0.999991 0.00423291i \(-0.998653\pi\)
0.503661 + 0.863901i \(0.331986\pi\)
\(654\) 0 0
\(655\) 1228.44 + 2127.72i 0.0732810 + 0.126926i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1650.51 + 2858.77i 0.0975641 + 0.168986i 0.910676 0.413122i \(-0.135562\pi\)
−0.813112 + 0.582108i \(0.802228\pi\)
\(660\) 0 0
\(661\) −6495.17 + 11250.0i −0.382198 + 0.661986i −0.991376 0.131047i \(-0.958166\pi\)
0.609178 + 0.793033i \(0.291499\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1207.55 0.0704164
\(666\) 0 0
\(667\) −543.938 −0.0315762
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2754.38 4770.72i 0.158467 0.274473i
\(672\) 0 0
\(673\) −9257.15 16033.9i −0.530219 0.918365i −0.999378 0.0352522i \(-0.988777\pi\)
0.469160 0.883113i \(-0.344557\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3050.00 5282.75i −0.173148 0.299900i 0.766371 0.642398i \(-0.222060\pi\)
−0.939519 + 0.342498i \(0.888727\pi\)
\(678\) 0 0
\(679\) −804.687 + 1393.76i −0.0454802 + 0.0787740i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22630.0 −1.26781 −0.633905 0.773411i \(-0.718549\pi\)
−0.633905 + 0.773411i \(0.718549\pi\)
\(684\) 0 0
\(685\) −2253.42 −0.125691
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6655.48 11527.6i 0.368002 0.637398i
\(690\) 0 0
\(691\) 11493.4 + 19907.2i 0.632750 + 1.09595i 0.986987 + 0.160799i \(0.0514072\pi\)
−0.354237 + 0.935156i \(0.615259\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3910.48 6773.14i −0.213428 0.369669i
\(696\) 0 0
\(697\) −2233.15 + 3867.92i −0.121358 + 0.210198i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −27015.5 −1.45558 −0.727790 0.685800i \(-0.759452\pi\)
−0.727790 + 0.685800i \(0.759452\pi\)
\(702\) 0 0
\(703\) 3583.76 0.192268
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −28.0949 + 48.6618i −0.00149451 + 0.00258857i
\(708\) 0 0
\(709\) 9588.67 + 16608.1i 0.507912 + 0.879730i 0.999958 + 0.00916077i \(0.00291601\pi\)
−0.492046 + 0.870569i \(0.663751\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3780.46 + 6547.95i 0.198568 + 0.343931i
\(714\) 0 0
\(715\) −8540.81 + 14793.1i −0.446725 + 0.773750i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 25931.8 1.34505 0.672526 0.740073i \(-0.265209\pi\)
0.672526 + 0.740073i \(0.265209\pi\)
\(720\) 0 0
\(721\) −11573.6 −0.597812
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1471.54 2548.78i 0.0753816 0.130565i
\(726\) 0 0
\(727\) 2915.25 + 5049.36i 0.148722 + 0.257594i 0.930755 0.365643i \(-0.119151\pi\)
−0.782034 + 0.623236i \(0.785817\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3474.38 + 6017.81i 0.175793 + 0.304482i
\(732\) 0 0
\(733\) 11577.3 20052.4i 0.583379 1.01044i −0.411696 0.911321i \(-0.635064\pi\)
0.995075 0.0991211i \(-0.0316031\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7469.26 0.373316
\(738\) 0 0
\(739\) 27085.8 1.34827 0.674133 0.738610i \(-0.264517\pi\)
0.674133 + 0.738610i \(0.264517\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16093.8 + 27875.3i −0.794650 + 1.37637i 0.128412 + 0.991721i \(0.459012\pi\)
−0.923061 + 0.384653i \(0.874321\pi\)
\(744\) 0 0
\(745\) 14974.5 + 25936.5i 0.736406 + 1.27549i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4230.02 7326.61i −0.206357 0.357421i
\(750\) 0 0
\(751\) −1366.46 + 2366.78i −0.0663954 + 0.115000i −0.897312 0.441397i \(-0.854483\pi\)
0.830917 + 0.556397i \(0.187817\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −62818.3 −3.02807
\(756\) 0 0
\(757\) −6315.62 −0.303230 −0.151615 0.988440i \(-0.548447\pi\)
−0.151615 + 0.988440i \(0.548447\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15740.7 27263.6i 0.749801 1.29869i −0.198116 0.980179i \(-0.563482\pi\)
0.947918 0.318516i \(-0.103184\pi\)
\(762\) 0 0
\(763\) 265.145 + 459.244i 0.0125804 + 0.0217900i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1221.51 2115.72i −0.0575048 0.0996012i
\(768\) 0 0
\(769\) 13648.3 23639.6i 0.640014 1.10854i −0.345415 0.938450i \(-0.612262\pi\)
0.985429 0.170087i \(-0.0544048\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −24025.2 −1.11789 −0.558943 0.829206i \(-0.688793\pi\)
−0.558943 + 0.829206i \(0.688793\pi\)
\(774\) 0 0
\(775\) −40909.9 −1.89616
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1370.32 2373.46i 0.0630252 0.109163i
\(780\) 0 0
\(781\) 6070.66 + 10514.7i 0.278138 + 0.481748i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13667.0 23671.9i −0.621396 1.07629i
\(786\) 0 0
\(787\) −5279.44 + 9144.26i −0.239125 + 0.414177i −0.960464 0.278406i \(-0.910194\pi\)
0.721338 + 0.692583i \(0.243527\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9690.47 0.435592
\(792\) 0 0
\(793\) −13483.3 −0.603792
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13444.6 + 23286.7i −0.597529 + 1.03495i 0.395656 + 0.918399i \(0.370517\pi\)
−0.993185 + 0.116552i \(0.962816\pi\)
\(798\) 0 0
\(799\) 3981.90 + 6896.85i 0.176307 + 0.305373i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4481.68 + 7762.49i 0.196955 + 0.341136i
\(804\) 0 0
\(805\) −2908.64 + 5037.91i −0.127349 + 0.220575i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18643.8 0.810236 0.405118 0.914264i \(-0.367230\pi\)
0.405118 + 0.914264i \(0.367230\pi\)
\(810\) 0 0
\(811\) 23870.8 1.03356 0.516781 0.856118i \(-0.327130\pi\)
0.516781 + 0.856118i \(0.327130\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5385.61 9328.15i 0.231472 0.400921i
\(816\) 0 0
\(817\) −2131.97 3692.68i −0.0912952 0.158128i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7266.51 + 12586.0i 0.308895 + 0.535022i 0.978121 0.208037i \(-0.0667074\pi\)
−0.669226 + 0.743059i \(0.733374\pi\)
\(822\) 0 0
\(823\) 4434.21 7680.28i 0.187809 0.325295i −0.756710 0.653750i \(-0.773195\pi\)
0.944520 + 0.328455i \(0.106528\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25059.3 1.05369 0.526843 0.849963i \(-0.323376\pi\)
0.526843 + 0.849963i \(0.323376\pi\)
\(828\) 0 0
\(829\) −22556.3 −0.945009 −0.472505 0.881328i \(-0.656650\pi\)
−0.472505 + 0.881328i \(0.656650\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2602.58 + 4507.81i −0.108252 + 0.187499i
\(834\) 0 0
\(835\) −31093.4 53855.4i −1.28866 2.23203i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −10604.8 18368.0i −0.436374 0.755822i 0.561033 0.827794i \(-0.310404\pi\)
−0.997407 + 0.0719718i \(0.977071\pi\)
\(840\) 0 0
\(841\) 12135.0 21018.5i 0.497561 0.861801i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1846.04 −0.0751548
\(846\) 0 0
\(847\) −5751.73 −0.233331
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8632.22 + 14951.4i −0.347719 + 0.602267i
\(852\) 0 0
\(853\) −14058.1 24349.4i −0.564292 0.977382i −0.997115 0.0759030i \(-0.975816\pi\)
0.432824 0.901479i \(-0.357517\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4738.82 8207.87i −0.188886 0.327159i 0.755993 0.654579i \(-0.227154\pi\)
−0.944879 + 0.327420i \(0.893821\pi\)
\(858\) 0 0
\(859\) 14772.9 25587.4i 0.586780 1.01633i −0.407871 0.913040i \(-0.633729\pi\)
0.994651 0.103293i \(-0.0329380\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9932.53 0.391781 0.195891 0.980626i \(-0.437240\pi\)
0.195891 + 0.980626i \(0.437240\pi\)
\(864\) 0 0
\(865\) 50039.2 1.96692
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3507.50 6075.16i 0.136920 0.237153i
\(870\) 0 0
\(871\) −9140.94 15832.6i −0.355602 0.615920i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8447.28 14631.1i −0.326366 0.565282i
\(876\) 0 0
\(877\) 13512.7 23404.7i 0.520288 0.901165i −0.479434 0.877578i \(-0.659158\pi\)
0.999722 0.0235871i \(-0.00750870\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12798.1 0.489422 0.244711 0.969596i \(-0.421307\pi\)
0.244711 + 0.969596i \(0.421307\pi\)
\(882\) 0 0
\(883\) −27016.7 −1.02965 −0.514826 0.857294i \(-0.672144\pi\)
−0.514826 + 0.857294i \(0.672144\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10075.1 17450.5i 0.381384 0.660576i −0.609876 0.792497i \(-0.708781\pi\)
0.991260 + 0.131920i \(0.0421143\pi\)
\(888\) 0 0
\(889\) 5862.94 + 10154.9i 0.221188 + 0.383110i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2443.39 4232.08i −0.0915622 0.158590i
\(894\) 0 0
\(895\) 23161.5 40116.9i 0.865033 1.49828i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1653.63 0.0613477
\(900\) 0 0
\(901\) 4895.56 0.181015
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7302.08 + 12647.6i −0.268209 + 0.464552i
\(906\) 0 0
\(907\) 4639.96 + 8036.64i 0.169865 + 0.294214i 0.938372 0.345627i \(-0.112334\pi\)
−0.768508 + 0.639841i \(0.779000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8200.30 14203.3i −0.298231 0.516551i 0.677501 0.735522i \(-0.263063\pi\)
−0.975731 + 0.218972i \(0.929730\pi\)
\(912\) 0 0
\(913\) −8745.22 + 15147.2i −0.317004 + 0.549067i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −725.848 −0.0261392
\(918\) 0 0
\(919\) 11704.6 0.420128 0.210064 0.977688i \(-0.432633\pi\)
0.210064 + 0.977688i \(0.432633\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 14858.7 25736.0i 0.529880 0.917778i
\(924\) 0 0
\(925\) −46706.3 80897.8i −1.66021 2.87557i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8162.22 + 14137.4i 0.288260 + 0.499281i 0.973395 0.229136i \(-0.0735899\pi\)
−0.685134 + 0.728417i \(0.740257\pi\)
\(930\) 0 0
\(931\) 1597.01 2766.11i 0.0562191 0.0973744i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −6282.36 −0.219738
\(936\) 0 0
\(937\) −7397.79 −0.257925 −0.128962 0.991649i \(-0.541165\pi\)
−0.128962 + 0.991649i \(0.541165\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3713.44 6431.87i 0.128645 0.222819i −0.794507 0.607255i \(-0.792271\pi\)
0.923152 + 0.384436i \(0.125604\pi\)
\(942\) 0 0
\(943\) 6601.37 + 11433.9i 0.227964 + 0.394845i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11526.0 + 19963.6i 0.395505 + 0.685035i 0.993166 0.116714i \(-0.0372362\pi\)
−0.597660 + 0.801749i \(0.703903\pi\)
\(948\) 0 0
\(949\) 10969.4 18999.6i 0.375219 0.649898i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 23445.7 0.796936 0.398468 0.917182i \(-0.369542\pi\)
0.398468 + 0.917182i \(0.369542\pi\)
\(954\) 0 0
\(955\) 71886.4 2.43580
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 332.869 576.547i 0.0112085 0.0194136i
\(960\) 0 0
\(961\) 3402.51 + 5893.32i 0.114213 + 0.197822i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −43130.0 74703.4i −1.43876 2.49201i
\(966\) 0 0
\(967\) −8370.95 + 14498.9i −0.278378 + 0.482165i −0.970982 0.239153i \(-0.923130\pi\)
0.692604 + 0.721318i \(0.256464\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −43037.7 −1.42240 −0.711198 0.702992i \(-0.751847\pi\)
−0.711198 + 0.702992i \(0.751847\pi\)
\(972\) 0 0
\(973\) 2310.59 0.0761295
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8949.91 + 15501.7i −0.293074 + 0.507619i −0.974535 0.224236i \(-0.928011\pi\)
0.681461 + 0.731854i \(0.261345\pi\)
\(978\) 0 0
\(979\) 3455.97 + 5985.92i 0.112823 + 0.195415i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23150.1 + 40097.2i 0.751144 + 1.30102i 0.947269 + 0.320441i \(0.103831\pi\)
−0.196124 + 0.980579i \(0.562836\pi\)
\(984\) 0 0
\(985\) −32649.1 + 56549.9i −1.05613 + 1.82927i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 20541.1 0.660435
\(990\) 0 0
\(991\) −4621.74 −0.148148 −0.0740739 0.997253i \(-0.523600\pi\)
−0.0740739 + 0.997253i \(0.523600\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3301.13 5717.72i 0.105179 0.182175i
\(996\) 0 0
\(997\) −9972.43 17272.8i −0.316780 0.548680i 0.663034 0.748589i \(-0.269268\pi\)
−0.979814 + 0.199910i \(0.935935\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.4.i.b.145.1 4
3.2 odd 2 144.4.i.b.49.2 4
4.3 odd 2 54.4.c.b.37.1 4
9.2 odd 6 144.4.i.b.97.2 4
9.4 even 3 1296.4.a.r.1.2 2
9.5 odd 6 1296.4.a.l.1.1 2
9.7 even 3 inner 432.4.i.b.289.1 4
12.11 even 2 18.4.c.b.13.1 yes 4
36.7 odd 6 54.4.c.b.19.1 4
36.11 even 6 18.4.c.b.7.1 4
36.23 even 6 162.4.a.f.1.1 2
36.31 odd 6 162.4.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.4.c.b.7.1 4 36.11 even 6
18.4.c.b.13.1 yes 4 12.11 even 2
54.4.c.b.19.1 4 36.7 odd 6
54.4.c.b.37.1 4 4.3 odd 2
144.4.i.b.49.2 4 3.2 odd 2
144.4.i.b.97.2 4 9.2 odd 6
162.4.a.f.1.1 2 36.23 even 6
162.4.a.g.1.2 2 36.31 odd 6
432.4.i.b.145.1 4 1.1 even 1 trivial
432.4.i.b.289.1 4 9.7 even 3 inner
1296.4.a.l.1.1 2 9.5 odd 6
1296.4.a.r.1.2 2 9.4 even 3