Properties

Label 162.4.c.i.109.1
Level $162$
Weight $4$
Character 162.109
Analytic conductor $9.558$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.4.c.i.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(-5.59808 + 9.69615i) q^{5} +(-9.19615 - 15.9282i) q^{7} +8.00000 q^{8} +22.3923 q^{10} +(11.7846 + 20.4115i) q^{11} +(33.8731 - 58.6699i) q^{13} +(-18.3923 + 31.8564i) q^{14} +(-8.00000 - 13.8564i) q^{16} +117.158 q^{17} +110.315 q^{19} +(-22.3923 - 38.7846i) q^{20} +(23.5692 - 40.8231i) q^{22} +(-34.6077 + 59.9423i) q^{23} +(-0.176915 - 0.306425i) q^{25} -135.492 q^{26} +73.5692 q^{28} +(-99.1865 - 171.796i) q^{29} +(155.531 - 269.387i) q^{31} +(-16.0000 + 27.7128i) q^{32} +(-117.158 - 202.923i) q^{34} +205.923 q^{35} -206.608 q^{37} +(-110.315 - 191.072i) q^{38} +(-44.7846 + 77.5692i) q^{40} +(66.3154 - 114.862i) q^{41} +(167.588 + 290.272i) q^{43} -94.2769 q^{44} +138.431 q^{46} +(189.531 + 328.277i) q^{47} +(2.36156 - 4.09034i) q^{49} +(-0.353829 + 0.612850i) q^{50} +(135.492 + 234.679i) q^{52} +190.908 q^{53} -263.885 q^{55} +(-73.5692 - 127.426i) q^{56} +(-198.373 + 343.592i) q^{58} +(168.862 - 292.477i) q^{59} +(-138.735 - 240.295i) q^{61} -622.123 q^{62} +64.0000 q^{64} +(379.248 + 656.877i) q^{65} +(-332.535 + 575.967i) q^{67} +(-234.315 + 405.846i) q^{68} +(-205.923 - 356.669i) q^{70} -528.431 q^{71} -73.8306 q^{73} +(206.608 + 357.855i) q^{74} +(-220.631 + 382.144i) q^{76} +(216.746 - 375.415i) q^{77} +(239.904 + 415.526i) q^{79} +179.138 q^{80} -265.261 q^{82} +(89.8846 + 155.685i) q^{83} +(-655.858 + 1135.98i) q^{85} +(335.177 - 580.543i) q^{86} +(94.2769 + 163.292i) q^{88} +846.458 q^{89} -1246.01 q^{91} +(-138.431 - 239.769i) q^{92} +(379.061 - 656.554i) q^{94} +(-617.554 + 1069.63i) q^{95} +(336.492 + 582.822i) q^{97} -9.44624 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 8 q^{4} - 12 q^{5} - 16 q^{7} + 32 q^{8} + 48 q^{10} - 36 q^{11} - 10 q^{13} - 32 q^{14} - 32 q^{16} + 240 q^{17} - 16 q^{19} - 48 q^{20} - 72 q^{22} - 180 q^{23} + 124 q^{25} + 40 q^{26}+ \cdots - 1368 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −5.59808 + 9.69615i −0.500707 + 0.867250i 0.499293 + 0.866433i \(0.333593\pi\)
−1.00000 0.000816748i \(0.999740\pi\)
\(6\) 0 0
\(7\) −9.19615 15.9282i −0.496546 0.860042i 0.503447 0.864026i \(-0.332065\pi\)
−0.999992 + 0.00398426i \(0.998732\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 22.3923 0.708107
\(11\) 11.7846 + 20.4115i 0.323018 + 0.559483i 0.981109 0.193455i \(-0.0619694\pi\)
−0.658092 + 0.752938i \(0.728636\pi\)
\(12\) 0 0
\(13\) 33.8731 58.6699i 0.722669 1.25170i −0.237257 0.971447i \(-0.576248\pi\)
0.959926 0.280253i \(-0.0904183\pi\)
\(14\) −18.3923 + 31.8564i −0.351111 + 0.608142i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 117.158 1.67147 0.835733 0.549137i \(-0.185043\pi\)
0.835733 + 0.549137i \(0.185043\pi\)
\(18\) 0 0
\(19\) 110.315 1.33200 0.666002 0.745950i \(-0.268004\pi\)
0.666002 + 0.745950i \(0.268004\pi\)
\(20\) −22.3923 38.7846i −0.250354 0.433625i
\(21\) 0 0
\(22\) 23.5692 40.8231i 0.228408 0.395614i
\(23\) −34.6077 + 59.9423i −0.313748 + 0.543427i −0.979171 0.203039i \(-0.934918\pi\)
0.665423 + 0.746467i \(0.268251\pi\)
\(24\) 0 0
\(25\) −0.176915 0.306425i −0.00141532 0.00245140i
\(26\) −135.492 −1.02201
\(27\) 0 0
\(28\) 73.5692 0.496546
\(29\) −99.1865 171.796i −0.635120 1.10006i −0.986490 0.163823i \(-0.947617\pi\)
0.351370 0.936237i \(-0.385716\pi\)
\(30\) 0 0
\(31\) 155.531 269.387i 0.901101 1.56075i 0.0750350 0.997181i \(-0.476093\pi\)
0.826066 0.563573i \(-0.190574\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −117.158 202.923i −0.590952 1.02356i
\(35\) 205.923 0.994496
\(36\) 0 0
\(37\) −206.608 −0.918003 −0.459001 0.888436i \(-0.651793\pi\)
−0.459001 + 0.888436i \(0.651793\pi\)
\(38\) −110.315 191.072i −0.470935 0.815683i
\(39\) 0 0
\(40\) −44.7846 + 77.5692i −0.177027 + 0.306619i
\(41\) 66.3154 114.862i 0.252603 0.437521i −0.711639 0.702546i \(-0.752047\pi\)
0.964242 + 0.265025i \(0.0853800\pi\)
\(42\) 0 0
\(43\) 167.588 + 290.272i 0.594349 + 1.02944i 0.993638 + 0.112618i \(0.0359235\pi\)
−0.399290 + 0.916825i \(0.630743\pi\)
\(44\) −94.2769 −0.323018
\(45\) 0 0
\(46\) 138.431 0.443707
\(47\) 189.531 + 328.277i 0.588211 + 1.01881i 0.994467 + 0.105051i \(0.0335007\pi\)
−0.406256 + 0.913759i \(0.633166\pi\)
\(48\) 0 0
\(49\) 2.36156 4.09034i 0.00688502 0.0119252i
\(50\) −0.353829 + 0.612850i −0.00100078 + 0.00173340i
\(51\) 0 0
\(52\) 135.492 + 234.679i 0.361335 + 0.625850i
\(53\) 190.908 0.494777 0.247388 0.968916i \(-0.420428\pi\)
0.247388 + 0.968916i \(0.420428\pi\)
\(54\) 0 0
\(55\) −263.885 −0.646949
\(56\) −73.5692 127.426i −0.175555 0.304071i
\(57\) 0 0
\(58\) −198.373 + 343.592i −0.449098 + 0.777860i
\(59\) 168.862 292.477i 0.372609 0.645377i −0.617357 0.786683i \(-0.711797\pi\)
0.989966 + 0.141306i \(0.0451301\pi\)
\(60\) 0 0
\(61\) −138.735 240.295i −0.291199 0.504372i 0.682894 0.730517i \(-0.260721\pi\)
−0.974094 + 0.226145i \(0.927388\pi\)
\(62\) −622.123 −1.27435
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 379.248 + 656.877i 0.723691 + 1.25347i
\(66\) 0 0
\(67\) −332.535 + 575.967i −0.606352 + 1.05023i 0.385485 + 0.922714i \(0.374034\pi\)
−0.991836 + 0.127518i \(0.959299\pi\)
\(68\) −234.315 + 405.846i −0.417866 + 0.723766i
\(69\) 0 0
\(70\) −205.923 356.669i −0.351607 0.609002i
\(71\) −528.431 −0.883284 −0.441642 0.897191i \(-0.645604\pi\)
−0.441642 + 0.897191i \(0.645604\pi\)
\(72\) 0 0
\(73\) −73.8306 −0.118373 −0.0591865 0.998247i \(-0.518851\pi\)
−0.0591865 + 0.998247i \(0.518851\pi\)
\(74\) 206.608 + 357.855i 0.324563 + 0.562159i
\(75\) 0 0
\(76\) −220.631 + 382.144i −0.333001 + 0.576775i
\(77\) 216.746 375.415i 0.320786 0.555617i
\(78\) 0 0
\(79\) 239.904 + 415.526i 0.341662 + 0.591776i 0.984741 0.174024i \(-0.0556769\pi\)
−0.643080 + 0.765799i \(0.722344\pi\)
\(80\) 179.138 0.250354
\(81\) 0 0
\(82\) −265.261 −0.357234
\(83\) 89.8846 + 155.685i 0.118869 + 0.205887i 0.919320 0.393512i \(-0.128740\pi\)
−0.800451 + 0.599398i \(0.795407\pi\)
\(84\) 0 0
\(85\) −655.858 + 1135.98i −0.836915 + 1.44958i
\(86\) 335.177 580.543i 0.420268 0.727926i
\(87\) 0 0
\(88\) 94.2769 + 163.292i 0.114204 + 0.197807i
\(89\) 846.458 1.00814 0.504069 0.863663i \(-0.331836\pi\)
0.504069 + 0.863663i \(0.331836\pi\)
\(90\) 0 0
\(91\) −1246.01 −1.43535
\(92\) −138.431 239.769i −0.156874 0.271714i
\(93\) 0 0
\(94\) 379.061 656.554i 0.415928 0.720408i
\(95\) −617.554 + 1069.63i −0.666944 + 1.15518i
\(96\) 0 0
\(97\) 336.492 + 582.822i 0.352223 + 0.610068i 0.986639 0.162924i \(-0.0520926\pi\)
−0.634416 + 0.772992i \(0.718759\pi\)
\(98\) −9.44624 −0.00973689
\(99\) 0 0
\(100\) 1.41532 0.00141532
\(101\) −103.261 178.854i −0.101732 0.176204i 0.810667 0.585508i \(-0.199105\pi\)
−0.912398 + 0.409304i \(0.865772\pi\)
\(102\) 0 0
\(103\) 685.885 1187.99i 0.656138 1.13646i −0.325469 0.945553i \(-0.605522\pi\)
0.981607 0.190912i \(-0.0611444\pi\)
\(104\) 270.985 469.359i 0.255502 0.442543i
\(105\) 0 0
\(106\) −190.908 330.662i −0.174930 0.302988i
\(107\) −1267.00 −1.14472 −0.572362 0.820001i \(-0.693973\pi\)
−0.572362 + 0.820001i \(0.693973\pi\)
\(108\) 0 0
\(109\) 1725.13 1.51594 0.757970 0.652289i \(-0.226191\pi\)
0.757970 + 0.652289i \(0.226191\pi\)
\(110\) 263.885 + 457.061i 0.228731 + 0.396174i
\(111\) 0 0
\(112\) −147.138 + 254.851i −0.124136 + 0.215011i
\(113\) 870.098 1507.05i 0.724353 1.25462i −0.234886 0.972023i \(-0.575472\pi\)
0.959240 0.282594i \(-0.0911949\pi\)
\(114\) 0 0
\(115\) −387.473 671.123i −0.314192 0.544196i
\(116\) 793.492 0.635120
\(117\) 0 0
\(118\) −675.446 −0.526948
\(119\) −1077.40 1866.11i −0.829959 1.43753i
\(120\) 0 0
\(121\) 387.746 671.596i 0.291319 0.504580i
\(122\) −277.469 + 480.591i −0.205909 + 0.356645i
\(123\) 0 0
\(124\) 622.123 + 1077.55i 0.450551 + 0.780377i
\(125\) −1395.56 −0.998580
\(126\) 0 0
\(127\) 492.131 0.343855 0.171927 0.985110i \(-0.445001\pi\)
0.171927 + 0.985110i \(0.445001\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 758.496 1313.75i 0.511727 0.886337i
\(131\) −959.638 + 1662.14i −0.640030 + 1.10857i 0.345395 + 0.938457i \(0.387745\pi\)
−0.985425 + 0.170108i \(0.945588\pi\)
\(132\) 0 0
\(133\) −1014.48 1757.13i −0.661401 1.14558i
\(134\) 1330.14 0.857511
\(135\) 0 0
\(136\) 937.261 0.590952
\(137\) −1311.43 2271.46i −0.817832 1.41653i −0.907277 0.420534i \(-0.861843\pi\)
0.0894453 0.995992i \(-0.471491\pi\)
\(138\) 0 0
\(139\) 314.284 544.357i 0.191779 0.332171i −0.754061 0.656804i \(-0.771908\pi\)
0.945840 + 0.324634i \(0.105241\pi\)
\(140\) −411.846 + 713.338i −0.248624 + 0.430629i
\(141\) 0 0
\(142\) 528.431 + 915.269i 0.312288 + 0.540899i
\(143\) 1596.72 0.933739
\(144\) 0 0
\(145\) 2221.02 1.27204
\(146\) 73.8306 + 127.878i 0.0418511 + 0.0724883i
\(147\) 0 0
\(148\) 413.215 715.710i 0.229501 0.397507i
\(149\) −284.156 + 492.173i −0.156235 + 0.270606i −0.933508 0.358557i \(-0.883269\pi\)
0.777273 + 0.629163i \(0.216602\pi\)
\(150\) 0 0
\(151\) −178.715 309.544i −0.0963155 0.166823i 0.813841 0.581087i \(-0.197372\pi\)
−0.910157 + 0.414264i \(0.864039\pi\)
\(152\) 882.523 0.470935
\(153\) 0 0
\(154\) −866.985 −0.453660
\(155\) 1741.35 + 3016.10i 0.902376 + 1.56296i
\(156\) 0 0
\(157\) 363.627 629.820i 0.184844 0.320160i −0.758680 0.651464i \(-0.774155\pi\)
0.943524 + 0.331304i \(0.107489\pi\)
\(158\) 479.808 831.051i 0.241591 0.418449i
\(159\) 0 0
\(160\) −179.138 310.277i −0.0885134 0.153310i
\(161\) 1273.03 0.623161
\(162\) 0 0
\(163\) −396.554 −0.190555 −0.0952776 0.995451i \(-0.530374\pi\)
−0.0952776 + 0.995451i \(0.530374\pi\)
\(164\) 265.261 + 459.446i 0.126301 + 0.218761i
\(165\) 0 0
\(166\) 179.769 311.369i 0.0840530 0.145584i
\(167\) −1589.26 + 2752.68i −0.736411 + 1.27550i 0.217690 + 0.976018i \(0.430148\pi\)
−0.954101 + 0.299484i \(0.903185\pi\)
\(168\) 0 0
\(169\) −1196.27 2072.00i −0.544501 0.943104i
\(170\) 2623.43 1.18358
\(171\) 0 0
\(172\) −1340.71 −0.594349
\(173\) −1076.32 1864.25i −0.473014 0.819285i 0.526509 0.850170i \(-0.323501\pi\)
−0.999523 + 0.0308850i \(0.990167\pi\)
\(174\) 0 0
\(175\) −3.25387 + 5.63586i −0.00140554 + 0.00243446i
\(176\) 188.554 326.585i 0.0807544 0.139871i
\(177\) 0 0
\(178\) −846.458 1466.11i −0.356431 0.617356i
\(179\) −4490.29 −1.87497 −0.937487 0.348022i \(-0.886854\pi\)
−0.937487 + 0.348022i \(0.886854\pi\)
\(180\) 0 0
\(181\) 1407.32 0.577931 0.288966 0.957340i \(-0.406689\pi\)
0.288966 + 0.957340i \(0.406689\pi\)
\(182\) 1246.01 + 2158.15i 0.507474 + 0.878970i
\(183\) 0 0
\(184\) −276.862 + 479.538i −0.110927 + 0.192131i
\(185\) 1156.61 2003.30i 0.459650 0.796138i
\(186\) 0 0
\(187\) 1380.66 + 2391.37i 0.539913 + 0.935156i
\(188\) −1516.25 −0.588211
\(189\) 0 0
\(190\) 2470.22 0.943201
\(191\) −386.138 668.811i −0.146283 0.253369i 0.783568 0.621306i \(-0.213398\pi\)
−0.929851 + 0.367937i \(0.880064\pi\)
\(192\) 0 0
\(193\) −1826.34 + 3163.31i −0.681154 + 1.17979i 0.293475 + 0.955967i \(0.405188\pi\)
−0.974629 + 0.223826i \(0.928145\pi\)
\(194\) 672.985 1165.64i 0.249059 0.431383i
\(195\) 0 0
\(196\) 9.44624 + 16.3614i 0.00344251 + 0.00596260i
\(197\) 2647.40 0.957460 0.478730 0.877962i \(-0.341097\pi\)
0.478730 + 0.877962i \(0.341097\pi\)
\(198\) 0 0
\(199\) 1470.22 0.523723 0.261861 0.965106i \(-0.415664\pi\)
0.261861 + 0.965106i \(0.415664\pi\)
\(200\) −1.41532 2.45140i −0.000500390 0.000866701i
\(201\) 0 0
\(202\) −206.523 + 357.708i −0.0719351 + 0.124595i
\(203\) −1824.27 + 3159.73i −0.630732 + 1.09246i
\(204\) 0 0
\(205\) 742.477 + 1286.01i 0.252960 + 0.438140i
\(206\) −2743.54 −0.927919
\(207\) 0 0
\(208\) −1083.94 −0.361335
\(209\) 1300.02 + 2251.71i 0.430261 + 0.745233i
\(210\) 0 0
\(211\) −768.003 + 1330.22i −0.250576 + 0.434010i −0.963685 0.267043i \(-0.913953\pi\)
0.713109 + 0.701054i \(0.247287\pi\)
\(212\) −381.815 + 661.323i −0.123694 + 0.214245i
\(213\) 0 0
\(214\) 1267.00 + 2194.51i 0.404721 + 0.700997i
\(215\) −3752.69 −1.19038
\(216\) 0 0
\(217\) −5721.14 −1.78975
\(218\) −1725.13 2988.01i −0.535966 0.928320i
\(219\) 0 0
\(220\) 527.769 914.123i 0.161737 0.280137i
\(221\) 3968.49 6873.63i 1.20792 2.09217i
\(222\) 0 0
\(223\) 828.765 + 1435.46i 0.248871 + 0.431057i 0.963213 0.268740i \(-0.0866071\pi\)
−0.714342 + 0.699797i \(0.753274\pi\)
\(224\) 588.554 0.175555
\(225\) 0 0
\(226\) −3480.39 −1.02439
\(227\) 757.131 + 1311.39i 0.221377 + 0.383436i 0.955226 0.295876i \(-0.0956116\pi\)
−0.733850 + 0.679312i \(0.762278\pi\)
\(228\) 0 0
\(229\) −2149.52 + 3723.08i −0.620280 + 1.07436i 0.369153 + 0.929369i \(0.379648\pi\)
−0.989433 + 0.144988i \(0.953685\pi\)
\(230\) −774.946 + 1342.25i −0.222167 + 0.384805i
\(231\) 0 0
\(232\) −793.492 1374.37i −0.224549 0.388930i
\(233\) 1336.78 0.375860 0.187930 0.982182i \(-0.439822\pi\)
0.187930 + 0.982182i \(0.439822\pi\)
\(234\) 0 0
\(235\) −4244.03 −1.17809
\(236\) 675.446 + 1169.91i 0.186304 + 0.322688i
\(237\) 0 0
\(238\) −2154.80 + 3732.22i −0.586869 + 1.01649i
\(239\) 3439.31 5957.07i 0.930840 1.61226i 0.148951 0.988845i \(-0.452410\pi\)
0.781889 0.623418i \(-0.214256\pi\)
\(240\) 0 0
\(241\) −765.646 1326.14i −0.204646 0.354457i 0.745374 0.666646i \(-0.232271\pi\)
−0.950020 + 0.312190i \(0.898938\pi\)
\(242\) −1550.98 −0.411988
\(243\) 0 0
\(244\) 1109.88 0.291199
\(245\) 26.4404 + 45.7961i 0.00689476 + 0.0119421i
\(246\) 0 0
\(247\) 3736.72 6472.19i 0.962598 1.66727i
\(248\) 1244.25 2155.10i 0.318587 0.551810i
\(249\) 0 0
\(250\) 1395.56 + 2417.18i 0.353051 + 0.611503i
\(251\) 1181.60 0.297139 0.148570 0.988902i \(-0.452533\pi\)
0.148570 + 0.988902i \(0.452533\pi\)
\(252\) 0 0
\(253\) −1631.35 −0.405384
\(254\) −492.131 852.395i −0.121571 0.210567i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −2190.68 + 3794.36i −0.531714 + 0.920956i 0.467600 + 0.883940i \(0.345119\pi\)
−0.999315 + 0.0370161i \(0.988215\pi\)
\(258\) 0 0
\(259\) 1900.00 + 3290.89i 0.455830 + 0.789521i
\(260\) −3033.98 −0.723691
\(261\) 0 0
\(262\) 3838.55 0.905140
\(263\) 1400.04 + 2424.94i 0.328251 + 0.568548i 0.982165 0.188021i \(-0.0602074\pi\)
−0.653914 + 0.756569i \(0.726874\pi\)
\(264\) 0 0
\(265\) −1068.72 + 1851.07i −0.247738 + 0.429095i
\(266\) −2028.95 + 3514.25i −0.467681 + 0.810047i
\(267\) 0 0
\(268\) −1330.14 2303.87i −0.303176 0.525116i
\(269\) 2803.73 0.635489 0.317745 0.948176i \(-0.397075\pi\)
0.317745 + 0.948176i \(0.397075\pi\)
\(270\) 0 0
\(271\) −6332.36 −1.41942 −0.709711 0.704493i \(-0.751175\pi\)
−0.709711 + 0.704493i \(0.751175\pi\)
\(272\) −937.261 1623.38i −0.208933 0.361883i
\(273\) 0 0
\(274\) −2622.86 + 4542.92i −0.578294 + 1.00163i
\(275\) 4.16974 7.22220i 0.000914344 0.00158369i
\(276\) 0 0
\(277\) −463.831 803.378i −0.100610 0.174261i 0.811326 0.584594i \(-0.198746\pi\)
−0.911936 + 0.410332i \(0.865413\pi\)
\(278\) −1257.14 −0.271216
\(279\) 0 0
\(280\) 1647.38 0.351607
\(281\) −570.764 988.592i −0.121170 0.209873i 0.799059 0.601253i \(-0.205331\pi\)
−0.920230 + 0.391379i \(0.871998\pi\)
\(282\) 0 0
\(283\) −1805.52 + 3127.26i −0.379248 + 0.656877i −0.990953 0.134209i \(-0.957151\pi\)
0.611705 + 0.791086i \(0.290484\pi\)
\(284\) 1056.86 1830.54i 0.220821 0.382473i
\(285\) 0 0
\(286\) −1596.72 2765.61i −0.330127 0.571796i
\(287\) −2439.38 −0.501715
\(288\) 0 0
\(289\) 8812.92 1.79380
\(290\) −2221.02 3846.91i −0.449733 0.778960i
\(291\) 0 0
\(292\) 147.661 255.757i 0.0295932 0.0512570i
\(293\) −1162.11 + 2012.83i −0.231710 + 0.401333i −0.958311 0.285726i \(-0.907765\pi\)
0.726602 + 0.687059i \(0.241099\pi\)
\(294\) 0 0
\(295\) 1890.60 + 3274.61i 0.373136 + 0.646290i
\(296\) −1652.86 −0.324563
\(297\) 0 0
\(298\) 1136.62 0.220949
\(299\) 2344.54 + 4060.86i 0.453472 + 0.785436i
\(300\) 0 0
\(301\) 3082.34 5338.77i 0.590243 1.02233i
\(302\) −357.430 + 619.088i −0.0681053 + 0.117962i
\(303\) 0 0
\(304\) −882.523 1528.57i −0.166501 0.288387i
\(305\) 3106.59 0.583222
\(306\) 0 0
\(307\) 6968.51 1.29548 0.647742 0.761860i \(-0.275713\pi\)
0.647742 + 0.761860i \(0.275713\pi\)
\(308\) 866.985 + 1501.66i 0.160393 + 0.277809i
\(309\) 0 0
\(310\) 3482.69 6032.20i 0.638076 1.10518i
\(311\) −3170.15 + 5490.87i −0.578016 + 1.00115i 0.417691 + 0.908589i \(0.362840\pi\)
−0.995707 + 0.0925637i \(0.970494\pi\)
\(312\) 0 0
\(313\) −1194.42 2068.79i −0.215694 0.373594i 0.737793 0.675027i \(-0.235868\pi\)
−0.953487 + 0.301434i \(0.902535\pi\)
\(314\) −1454.51 −0.261409
\(315\) 0 0
\(316\) −1919.23 −0.341662
\(317\) 2930.63 + 5076.00i 0.519245 + 0.899359i 0.999750 + 0.0223668i \(0.00712015\pi\)
−0.480505 + 0.876992i \(0.659547\pi\)
\(318\) 0 0
\(319\) 2337.75 4049.10i 0.410310 0.710677i
\(320\) −358.277 + 620.554i −0.0625884 + 0.108406i
\(321\) 0 0
\(322\) −1273.03 2204.95i −0.220321 0.381606i
\(323\) 12924.3 2.22640
\(324\) 0 0
\(325\) −23.9706 −0.00409122
\(326\) 396.554 + 686.851i 0.0673714 + 0.116691i
\(327\) 0 0
\(328\) 530.523 918.892i 0.0893086 0.154687i
\(329\) 3485.91 6037.77i 0.584147 1.01177i
\(330\) 0 0
\(331\) −2482.48 4299.78i −0.412234 0.714010i 0.582900 0.812544i \(-0.301918\pi\)
−0.995134 + 0.0985339i \(0.968585\pi\)
\(332\) −719.077 −0.118869
\(333\) 0 0
\(334\) 6357.04 1.04144
\(335\) −3723.11 6448.61i −0.607209 1.05172i
\(336\) 0 0
\(337\) 1548.83 2682.65i 0.250357 0.433630i −0.713267 0.700892i \(-0.752785\pi\)
0.963624 + 0.267262i \(0.0861188\pi\)
\(338\) −2392.54 + 4144.00i −0.385021 + 0.666875i
\(339\) 0 0
\(340\) −2623.43 4543.91i −0.418457 0.724789i
\(341\) 7331.48 1.16429
\(342\) 0 0
\(343\) −6395.43 −1.00677
\(344\) 1340.71 + 2322.17i 0.210134 + 0.363963i
\(345\) 0 0
\(346\) −2152.65 + 3728.50i −0.334472 + 0.579322i
\(347\) −4022.10 + 6966.48i −0.622241 + 1.07775i 0.366827 + 0.930289i \(0.380444\pi\)
−0.989067 + 0.147464i \(0.952889\pi\)
\(348\) 0 0
\(349\) 572.353 + 991.345i 0.0877862 + 0.152050i 0.906575 0.422045i \(-0.138687\pi\)
−0.818789 + 0.574095i \(0.805354\pi\)
\(350\) 13.0155 0.00198773
\(351\) 0 0
\(352\) −754.215 −0.114204
\(353\) −3900.63 6756.09i −0.588129 1.01867i −0.994477 0.104951i \(-0.966531\pi\)
0.406348 0.913718i \(-0.366802\pi\)
\(354\) 0 0
\(355\) 2958.20 5123.75i 0.442267 0.766029i
\(356\) −1692.92 + 2932.22i −0.252035 + 0.436537i
\(357\) 0 0
\(358\) 4490.29 + 7777.41i 0.662903 + 1.14818i
\(359\) 341.307 0.0501769 0.0250885 0.999685i \(-0.492013\pi\)
0.0250885 + 0.999685i \(0.492013\pi\)
\(360\) 0 0
\(361\) 5310.48 0.774235
\(362\) −1407.32 2437.56i −0.204329 0.353909i
\(363\) 0 0
\(364\) 2492.02 4316.30i 0.358838 0.621526i
\(365\) 413.310 715.873i 0.0592702 0.102659i
\(366\) 0 0
\(367\) −59.6839 103.376i −0.00848903 0.0147034i 0.861750 0.507334i \(-0.169369\pi\)
−0.870239 + 0.492630i \(0.836036\pi\)
\(368\) 1107.45 0.156874
\(369\) 0 0
\(370\) −4626.42 −0.650044
\(371\) −1755.62 3040.81i −0.245679 0.425529i
\(372\) 0 0
\(373\) 2187.22 3788.37i 0.303619 0.525883i −0.673334 0.739338i \(-0.735139\pi\)
0.976953 + 0.213456i \(0.0684718\pi\)
\(374\) 2761.31 4782.74i 0.381776 0.661255i
\(375\) 0 0
\(376\) 1516.25 + 2626.22i 0.207964 + 0.360204i
\(377\) −13439.0 −1.83593
\(378\) 0 0
\(379\) 8949.46 1.21294 0.606468 0.795108i \(-0.292586\pi\)
0.606468 + 0.795108i \(0.292586\pi\)
\(380\) −2470.22 4278.54i −0.333472 0.577590i
\(381\) 0 0
\(382\) −772.277 + 1337.62i −0.103437 + 0.179159i
\(383\) −103.232 + 178.802i −0.0137726 + 0.0238548i −0.872830 0.488025i \(-0.837717\pi\)
0.859057 + 0.511880i \(0.171051\pi\)
\(384\) 0 0
\(385\) 2426.72 + 4203.21i 0.321240 + 0.556403i
\(386\) 7305.35 0.963297
\(387\) 0 0
\(388\) −2691.94 −0.352223
\(389\) 1014.47 + 1757.11i 0.132225 + 0.229021i 0.924534 0.381099i \(-0.124454\pi\)
−0.792309 + 0.610120i \(0.791121\pi\)
\(390\) 0 0
\(391\) −4054.56 + 7022.70i −0.524419 + 0.908320i
\(392\) 18.8925 32.7228i 0.00243422 0.00421620i
\(393\) 0 0
\(394\) −2647.40 4585.44i −0.338513 0.586322i
\(395\) −5372.00 −0.684290
\(396\) 0 0
\(397\) −6646.07 −0.840193 −0.420097 0.907479i \(-0.638004\pi\)
−0.420097 + 0.907479i \(0.638004\pi\)
\(398\) −1470.22 2546.49i −0.185164 0.320713i
\(399\) 0 0
\(400\) −2.83063 + 4.90280i −0.000353829 + 0.000612850i
\(401\) 0.817240 1.41550i 0.000101773 0.000176276i −0.865975 0.500088i \(-0.833301\pi\)
0.866076 + 0.499912i \(0.166634\pi\)
\(402\) 0 0
\(403\) −10536.6 18249.9i −1.30240 2.25582i
\(404\) 826.091 0.101732
\(405\) 0 0
\(406\) 7297.08 0.891990
\(407\) −2434.79 4217.18i −0.296531 0.513607i
\(408\) 0 0
\(409\) 3101.68 5372.26i 0.374983 0.649490i −0.615342 0.788261i \(-0.710982\pi\)
0.990324 + 0.138771i \(0.0443152\pi\)
\(410\) 1484.95 2572.02i 0.178870 0.309812i
\(411\) 0 0
\(412\) 2743.54 + 4751.95i 0.328069 + 0.568232i
\(413\) −6211.51 −0.740068
\(414\) 0 0
\(415\) −2012.72 −0.238074
\(416\) 1083.94 + 1877.44i 0.127751 + 0.221271i
\(417\) 0 0
\(418\) 2600.05 4503.41i 0.304240 0.526960i
\(419\) 4875.18 8444.07i 0.568421 0.984534i −0.428302 0.903636i \(-0.640888\pi\)
0.996722 0.0808979i \(-0.0257788\pi\)
\(420\) 0 0
\(421\) 5030.69 + 8713.41i 0.582377 + 1.00871i 0.995197 + 0.0978939i \(0.0312106\pi\)
−0.412820 + 0.910813i \(0.635456\pi\)
\(422\) 3072.01 0.354368
\(423\) 0 0
\(424\) 1527.26 0.174930
\(425\) −20.7269 35.9000i −0.00236565 0.00409743i
\(426\) 0 0
\(427\) −2551.65 + 4419.59i −0.289187 + 0.500887i
\(428\) 2534.00 4389.02i 0.286181 0.495680i
\(429\) 0 0
\(430\) 3752.69 + 6499.85i 0.420862 + 0.728955i
\(431\) −6763.21 −0.755853 −0.377926 0.925836i \(-0.623363\pi\)
−0.377926 + 0.925836i \(0.623363\pi\)
\(432\) 0 0
\(433\) −10601.4 −1.17660 −0.588302 0.808641i \(-0.700204\pi\)
−0.588302 + 0.808641i \(0.700204\pi\)
\(434\) 5721.14 + 9909.30i 0.632773 + 1.09599i
\(435\) 0 0
\(436\) −3450.26 + 5976.03i −0.378985 + 0.656422i
\(437\) −3817.76 + 6612.55i −0.417914 + 0.723848i
\(438\) 0 0
\(439\) 6284.46 + 10885.0i 0.683237 + 1.18340i 0.973987 + 0.226602i \(0.0727616\pi\)
−0.290751 + 0.956799i \(0.593905\pi\)
\(440\) −2111.08 −0.228731
\(441\) 0 0
\(442\) −15874.0 −1.70825
\(443\) 5127.71 + 8881.46i 0.549944 + 0.952530i 0.998278 + 0.0586643i \(0.0186842\pi\)
−0.448334 + 0.893866i \(0.647983\pi\)
\(444\) 0 0
\(445\) −4738.53 + 8207.38i −0.504782 + 0.874308i
\(446\) 1657.53 2870.93i 0.175978 0.304803i
\(447\) 0 0
\(448\) −588.554 1019.41i −0.0620682 0.107505i
\(449\) −4080.23 −0.428860 −0.214430 0.976739i \(-0.568789\pi\)
−0.214430 + 0.976739i \(0.568789\pi\)
\(450\) 0 0
\(451\) 3126.00 0.326381
\(452\) 3480.39 + 6028.22i 0.362177 + 0.627308i
\(453\) 0 0
\(454\) 1514.26 2622.78i 0.156537 0.271130i
\(455\) 6975.25 12081.5i 0.718691 1.24481i
\(456\) 0 0
\(457\) 1091.60 + 1890.71i 0.111735 + 0.193531i 0.916470 0.400104i \(-0.131026\pi\)
−0.804735 + 0.593634i \(0.797693\pi\)
\(458\) 8598.08 0.877209
\(459\) 0 0
\(460\) 3099.78 0.314192
\(461\) −1625.13 2814.81i −0.164186 0.284379i 0.772180 0.635404i \(-0.219166\pi\)
−0.936366 + 0.351025i \(0.885833\pi\)
\(462\) 0 0
\(463\) −9495.57 + 16446.8i −0.953124 + 1.65086i −0.214520 + 0.976720i \(0.568819\pi\)
−0.738604 + 0.674140i \(0.764515\pi\)
\(464\) −1586.98 + 2748.74i −0.158780 + 0.275015i
\(465\) 0 0
\(466\) −1336.78 2315.37i −0.132887 0.230166i
\(467\) 6906.52 0.684359 0.342180 0.939635i \(-0.388835\pi\)
0.342180 + 0.939635i \(0.388835\pi\)
\(468\) 0 0
\(469\) 12232.2 1.20432
\(470\) 4244.03 + 7350.88i 0.416516 + 0.721427i
\(471\) 0 0
\(472\) 1350.89 2339.81i 0.131737 0.228175i
\(473\) −3949.93 + 6841.48i −0.383970 + 0.665056i
\(474\) 0 0
\(475\) −19.5164 33.8034i −0.00188521 0.00326527i
\(476\) 8619.20 0.829959
\(477\) 0 0
\(478\) −13757.3 −1.31641
\(479\) −3690.14 6391.50i −0.351997 0.609677i 0.634602 0.772839i \(-0.281164\pi\)
−0.986599 + 0.163162i \(0.947831\pi\)
\(480\) 0 0
\(481\) −6998.44 + 12121.6i −0.663412 + 1.14906i
\(482\) −1531.29 + 2652.28i −0.144706 + 0.250639i
\(483\) 0 0
\(484\) 1550.98 + 2686.38i 0.145660 + 0.252290i
\(485\) −7534.84 −0.705442
\(486\) 0 0
\(487\) −8756.51 −0.814774 −0.407387 0.913256i \(-0.633560\pi\)
−0.407387 + 0.913256i \(0.633560\pi\)
\(488\) −1109.88 1922.36i −0.102954 0.178322i
\(489\) 0 0
\(490\) 52.8808 91.5922i 0.00487533 0.00844432i
\(491\) −5918.97 + 10252.0i −0.544031 + 0.942290i 0.454636 + 0.890677i \(0.349769\pi\)
−0.998667 + 0.0516124i \(0.983564\pi\)
\(492\) 0 0
\(493\) −11620.5 20127.2i −1.06158 1.83871i
\(494\) −14946.9 −1.36132
\(495\) 0 0
\(496\) −4976.98 −0.450551
\(497\) 4859.53 + 8416.95i 0.438591 + 0.759662i
\(498\) 0 0
\(499\) −4289.19 + 7429.09i −0.384791 + 0.666477i −0.991740 0.128264i \(-0.959060\pi\)
0.606950 + 0.794740i \(0.292393\pi\)
\(500\) 2791.12 4834.35i 0.249645 0.432398i
\(501\) 0 0
\(502\) −1181.60 2046.59i −0.105055 0.181960i
\(503\) −3611.17 −0.320107 −0.160054 0.987108i \(-0.551167\pi\)
−0.160054 + 0.987108i \(0.551167\pi\)
\(504\) 0 0
\(505\) 2312.26 0.203751
\(506\) 1631.35 + 2825.59i 0.143325 + 0.248246i
\(507\) 0 0
\(508\) −984.261 + 1704.79i −0.0859636 + 0.148893i
\(509\) −4529.87 + 7845.96i −0.394465 + 0.683234i −0.993033 0.117838i \(-0.962404\pi\)
0.598567 + 0.801072i \(0.295737\pi\)
\(510\) 0 0
\(511\) 678.958 + 1175.99i 0.0587775 + 0.101806i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 8762.70 0.751957
\(515\) 7679.27 + 13300.9i 0.657066 + 1.13807i
\(516\) 0 0
\(517\) −4467.09 + 7737.23i −0.380005 + 0.658188i
\(518\) 3799.99 6581.78i 0.322321 0.558276i
\(519\) 0 0
\(520\) 3033.98 + 5255.01i 0.255863 + 0.443169i
\(521\) −12834.1 −1.07922 −0.539609 0.841916i \(-0.681428\pi\)
−0.539609 + 0.841916i \(0.681428\pi\)
\(522\) 0 0
\(523\) 7061.21 0.590373 0.295187 0.955440i \(-0.404618\pi\)
0.295187 + 0.955440i \(0.404618\pi\)
\(524\) −3838.55 6648.57i −0.320015 0.554283i
\(525\) 0 0
\(526\) 2800.08 4849.88i 0.232109 0.402024i
\(527\) 18221.6 31560.8i 1.50616 2.60875i
\(528\) 0 0
\(529\) 3688.11 + 6388.00i 0.303124 + 0.525027i
\(530\) 4274.86 0.350355
\(531\) 0 0
\(532\) 8115.81 0.661401
\(533\) −4492.61 7781.43i −0.365097 0.632366i
\(534\) 0 0
\(535\) 7092.76 12285.0i 0.573172 0.992762i
\(536\) −2660.28 + 4607.73i −0.214378 + 0.371313i
\(537\) 0 0
\(538\) −2803.73 4856.21i −0.224679 0.389156i
\(539\) 111.320 0.00889593
\(540\) 0 0
\(541\) −21645.6 −1.72018 −0.860091 0.510141i \(-0.829593\pi\)
−0.860091 + 0.510141i \(0.829593\pi\)
\(542\) 6332.36 + 10968.0i 0.501842 + 0.869215i
\(543\) 0 0
\(544\) −1874.52 + 3246.77i −0.147738 + 0.255890i
\(545\) −9657.41 + 16727.1i −0.759042 + 1.31470i
\(546\) 0 0
\(547\) −4253.52 7367.32i −0.332482 0.575875i 0.650516 0.759492i \(-0.274553\pi\)
−0.982998 + 0.183617i \(0.941219\pi\)
\(548\) 10491.4 0.817832
\(549\) 0 0
\(550\) −16.6790 −0.00129308
\(551\) −10941.8 18951.7i −0.845982 1.46528i
\(552\) 0 0
\(553\) 4412.38 7642.47i 0.339301 0.587687i
\(554\) −927.661 + 1606.76i −0.0711418 + 0.123221i
\(555\) 0 0
\(556\) 1257.14 + 2177.43i 0.0958894 + 0.166085i
\(557\) −636.486 −0.0484179 −0.0242090 0.999707i \(-0.507707\pi\)
−0.0242090 + 0.999707i \(0.507707\pi\)
\(558\) 0 0
\(559\) 22706.9 1.71807
\(560\) −1647.38 2853.35i −0.124312 0.215315i
\(561\) 0 0
\(562\) −1141.53 + 1977.18i −0.0856805 + 0.148403i
\(563\) −6781.31 + 11745.6i −0.507635 + 0.879249i 0.492326 + 0.870411i \(0.336147\pi\)
−0.999961 + 0.00883838i \(0.997187\pi\)
\(564\) 0 0
\(565\) 9741.75 + 16873.2i 0.725378 + 1.25639i
\(566\) 7222.09 0.536338
\(567\) 0 0
\(568\) −4227.45 −0.312288
\(569\) 10558.4 + 18287.6i 0.777909 + 1.34738i 0.933145 + 0.359500i \(0.117053\pi\)
−0.155236 + 0.987877i \(0.549614\pi\)
\(570\) 0 0
\(571\) 7263.55 12580.8i 0.532347 0.922052i −0.466940 0.884289i \(-0.654643\pi\)
0.999287 0.0377630i \(-0.0120232\pi\)
\(572\) −3193.45 + 5531.21i −0.233435 + 0.404321i
\(573\) 0 0
\(574\) 2439.38 + 4225.14i 0.177383 + 0.307237i
\(575\) 24.4904 0.00177621
\(576\) 0 0
\(577\) −14590.9 −1.05273 −0.526366 0.850258i \(-0.676446\pi\)
−0.526366 + 0.850258i \(0.676446\pi\)
\(578\) −8812.92 15264.4i −0.634203 1.09847i
\(579\) 0 0
\(580\) −4442.03 + 7693.82i −0.318009 + 0.550808i
\(581\) 1653.18 2863.40i 0.118048 0.204464i
\(582\) 0 0
\(583\) 2249.77 + 3896.72i 0.159822 + 0.276819i
\(584\) −590.645 −0.0418511
\(585\) 0 0
\(586\) 4648.42 0.327687
\(587\) −9170.74 15884.2i −0.644833 1.11688i −0.984340 0.176280i \(-0.943594\pi\)
0.339507 0.940603i \(-0.389740\pi\)
\(588\) 0 0
\(589\) 17157.4 29717.5i 1.20027 2.07893i
\(590\) 3781.20 6549.23i 0.263847 0.456996i
\(591\) 0 0
\(592\) 1652.86 + 2862.84i 0.114750 + 0.198753i
\(593\) 28380.4 1.96534 0.982668 0.185376i \(-0.0593504\pi\)
0.982668 + 0.185376i \(0.0593504\pi\)
\(594\) 0 0
\(595\) 24125.5 1.66227
\(596\) −1136.62 1968.69i −0.0781173 0.135303i
\(597\) 0 0
\(598\) 4689.08 8121.72i 0.320653 0.555387i
\(599\) 11940.6 20681.7i 0.814487 1.41073i −0.0952079 0.995457i \(-0.530352\pi\)
0.909695 0.415276i \(-0.136315\pi\)
\(600\) 0 0
\(601\) −8310.38 14394.0i −0.564039 0.976944i −0.997138 0.0755978i \(-0.975914\pi\)
0.433100 0.901346i \(-0.357420\pi\)
\(602\) −12329.4 −0.834729
\(603\) 0 0
\(604\) 1429.72 0.0963155
\(605\) 4341.26 + 7519.29i 0.291731 + 0.505293i
\(606\) 0 0
\(607\) 785.389 1360.33i 0.0525172 0.0909624i −0.838572 0.544791i \(-0.816609\pi\)
0.891089 + 0.453829i \(0.149942\pi\)
\(608\) −1765.05 + 3057.15i −0.117734 + 0.203921i
\(609\) 0 0
\(610\) −3106.59 5380.77i −0.206200 0.357149i
\(611\) 25680.0 1.70033
\(612\) 0 0
\(613\) −5766.40 −0.379939 −0.189969 0.981790i \(-0.560839\pi\)
−0.189969 + 0.981790i \(0.560839\pi\)
\(614\) −6968.51 12069.8i −0.458023 0.793319i
\(615\) 0 0
\(616\) 1733.97 3003.32i 0.113415 0.196440i
\(617\) −3481.28 + 6029.76i −0.227149 + 0.393434i −0.956962 0.290213i \(-0.906274\pi\)
0.729813 + 0.683647i \(0.239607\pi\)
\(618\) 0 0
\(619\) −1330.21 2303.99i −0.0863741 0.149604i 0.819602 0.572934i \(-0.194195\pi\)
−0.905976 + 0.423329i \(0.860861\pi\)
\(620\) −13930.8 −0.902376
\(621\) 0 0
\(622\) 12680.6 0.817438
\(623\) −7784.15 13482.5i −0.500587 0.867042i
\(624\) 0 0
\(625\) 7834.55 13569.8i 0.501411 0.868470i
\(626\) −2388.83 + 4137.58i −0.152519 + 0.264171i
\(627\) 0 0
\(628\) 1454.51 + 2519.28i 0.0924222 + 0.160080i
\(629\) −24205.7 −1.53441
\(630\) 0 0
\(631\) −20432.5 −1.28908 −0.644538 0.764573i \(-0.722950\pi\)
−0.644538 + 0.764573i \(0.722950\pi\)
\(632\) 1919.23 + 3324.20i 0.120796 + 0.209224i
\(633\) 0 0
\(634\) 5861.26 10152.0i 0.367162 0.635943i
\(635\) −2754.98 + 4771.77i −0.172170 + 0.298208i
\(636\) 0 0
\(637\) −159.987 277.105i −0.00995118 0.0172359i
\(638\) −9351.00 −0.580266
\(639\) 0 0
\(640\) 1433.11 0.0885134
\(641\) −13034.2 22575.8i −0.803149 1.39109i −0.917534 0.397658i \(-0.869823\pi\)
0.114385 0.993436i \(-0.463510\pi\)
\(642\) 0 0
\(643\) −10585.2 + 18334.1i −0.649207 + 1.12446i 0.334106 + 0.942535i \(0.391566\pi\)
−0.983313 + 0.181923i \(0.941768\pi\)
\(644\) −2546.06 + 4409.91i −0.155790 + 0.269836i
\(645\) 0 0
\(646\) −12924.3 22385.5i −0.787151 1.36339i
\(647\) 8291.45 0.503818 0.251909 0.967751i \(-0.418942\pi\)
0.251909 + 0.967751i \(0.418942\pi\)
\(648\) 0 0
\(649\) 7959.87 0.481436
\(650\) 23.9706 + 41.5182i 0.00144647 + 0.00250535i
\(651\) 0 0
\(652\) 793.108 1373.70i 0.0476388 0.0825128i
\(653\) −12342.5 + 21377.8i −0.739662 + 1.28113i 0.212985 + 0.977055i \(0.431681\pi\)
−0.952648 + 0.304077i \(0.901652\pi\)
\(654\) 0 0
\(655\) −10744.3 18609.6i −0.640936 1.11013i
\(656\) −2122.09 −0.126301
\(657\) 0 0
\(658\) −13943.6 −0.826108
\(659\) 14977.2 + 25941.3i 0.885325 + 1.53343i 0.845341 + 0.534227i \(0.179397\pi\)
0.0399839 + 0.999200i \(0.487269\pi\)
\(660\) 0 0
\(661\) 2063.38 3573.88i 0.121416 0.210299i −0.798910 0.601450i \(-0.794590\pi\)
0.920326 + 0.391151i \(0.127923\pi\)
\(662\) −4964.96 + 8599.56i −0.291493 + 0.504881i
\(663\) 0 0
\(664\) 719.077 + 1245.48i 0.0420265 + 0.0727920i
\(665\) 22716.5 1.32467
\(666\) 0 0
\(667\) 13730.5 0.797070
\(668\) −6357.04 11010.7i −0.368206 0.637751i
\(669\) 0 0
\(670\) −7446.21 + 12897.2i −0.429362 + 0.743676i
\(671\) 3269.87 5663.58i 0.188125 0.325842i
\(672\) 0 0
\(673\) 13164.9 + 22802.2i 0.754039 + 1.30603i 0.945851 + 0.324602i \(0.105230\pi\)
−0.191812 + 0.981432i \(0.561436\pi\)
\(674\) −6195.32 −0.354058
\(675\) 0 0
\(676\) 9570.15 0.544501
\(677\) −3301.93 5719.11i −0.187450 0.324673i 0.756949 0.653473i \(-0.226689\pi\)
−0.944399 + 0.328801i \(0.893356\pi\)
\(678\) 0 0
\(679\) 6188.87 10719.4i 0.349789 0.605853i
\(680\) −5246.86 + 9087.83i −0.295894 + 0.512503i
\(681\) 0 0
\(682\) −7331.48 12698.5i −0.411637 0.712977i
\(683\) 12706.4 0.711854 0.355927 0.934514i \(-0.384165\pi\)
0.355927 + 0.934514i \(0.384165\pi\)
\(684\) 0 0
\(685\) 29365.9 1.63798
\(686\) 6395.43 + 11077.2i 0.355946 + 0.616516i
\(687\) 0 0
\(688\) 2681.42 4644.35i 0.148587 0.257361i
\(689\) 6466.63 11200.5i 0.357560 0.619312i
\(690\) 0 0
\(691\) 7865.10 + 13622.8i 0.432999 + 0.749977i 0.997130 0.0757086i \(-0.0241219\pi\)
−0.564131 + 0.825686i \(0.690789\pi\)
\(692\) 8610.60 0.473014
\(693\) 0 0
\(694\) 16088.4 0.879982
\(695\) 3518.78 + 6094.70i 0.192050 + 0.332640i
\(696\) 0 0
\(697\) 7769.35 13456.9i 0.422217 0.731301i
\(698\) 1144.71 1982.69i 0.0620742 0.107516i
\(699\) 0 0
\(700\) −13.0155 22.5434i −0.000702769 0.00121723i
\(701\) −652.959 −0.0351811 −0.0175905 0.999845i \(-0.505600\pi\)
−0.0175905 + 0.999845i \(0.505600\pi\)
\(702\) 0 0
\(703\) −22792.0 −1.22278
\(704\) 754.215 + 1306.34i 0.0403772 + 0.0699354i
\(705\) 0 0
\(706\) −7801.26 + 13512.2i −0.415870 + 0.720308i
\(707\) −1899.22 + 3289.54i −0.101029 + 0.174987i
\(708\) 0 0
\(709\) 12442.2 + 21550.6i 0.659065 + 1.14153i 0.980858 + 0.194724i \(0.0623812\pi\)
−0.321793 + 0.946810i \(0.604285\pi\)
\(710\) −11832.8 −0.625460
\(711\) 0 0
\(712\) 6771.66 0.356431
\(713\) 10765.1 + 18645.7i 0.565438 + 0.979367i
\(714\) 0 0
\(715\) −8938.58 + 15482.1i −0.467530 + 0.809786i
\(716\) 8980.58 15554.8i 0.468743 0.811887i
\(717\) 0 0
\(718\) −341.307 591.162i −0.0177402 0.0307270i
\(719\) 21323.8 1.10604 0.553020 0.833168i \(-0.313475\pi\)
0.553020 + 0.833168i \(0.313475\pi\)
\(720\) 0 0
\(721\) −25230.0 −1.30321
\(722\) −5310.48 9198.02i −0.273733 0.474120i
\(723\) 0 0
\(724\) −2814.65 + 4875.11i −0.144483 + 0.250251i
\(725\) −35.0951 + 60.7865i −0.00179779 + 0.00311387i
\(726\) 0 0
\(727\) −4016.00 6955.92i −0.204877 0.354857i 0.745217 0.666822i \(-0.232346\pi\)
−0.950093 + 0.311965i \(0.899013\pi\)
\(728\) −9968.06 −0.507474
\(729\) 0 0
\(730\) −1653.24 −0.0838207
\(731\) 19634.3 + 34007.6i 0.993433 + 1.72068i
\(732\) 0 0
\(733\) −14228.7 + 24644.8i −0.716984 + 1.24185i 0.245205 + 0.969471i \(0.421145\pi\)
−0.962189 + 0.272381i \(0.912189\pi\)
\(734\) −119.368 + 206.751i −0.00600265 + 0.0103969i
\(735\) 0 0
\(736\) −1107.45 1918.15i −0.0554633 0.0960653i
\(737\) −15675.2 −0.783449
\(738\) 0 0
\(739\) −11006.3 −0.547868 −0.273934 0.961748i \(-0.588325\pi\)
−0.273934 + 0.961748i \(0.588325\pi\)
\(740\) 4626.42 + 8013.20i 0.229825 + 0.398069i
\(741\) 0 0
\(742\) −3511.23 + 6081.63i −0.173721 + 0.300894i
\(743\) −2326.45 + 4029.54i −0.114871 + 0.198963i −0.917728 0.397209i \(-0.869979\pi\)
0.802857 + 0.596172i \(0.203312\pi\)
\(744\) 0 0
\(745\) −3181.45 5510.44i −0.156456 0.270989i
\(746\) −8748.86 −0.429381
\(747\) 0 0
\(748\) −11045.3 −0.539913
\(749\) 11651.5 + 20181.0i 0.568408 + 0.984511i
\(750\) 0 0
\(751\) 8678.87 15032.3i 0.421700 0.730406i −0.574406 0.818571i \(-0.694767\pi\)
0.996106 + 0.0881649i \(0.0281003\pi\)
\(752\) 3032.49 5252.43i 0.147053 0.254703i
\(753\) 0 0
\(754\) 13439.0 + 23277.0i 0.649098 + 1.12427i
\(755\) 4001.85 0.192903
\(756\) 0 0
\(757\) 119.139 0.00572019 0.00286010 0.999996i \(-0.499090\pi\)
0.00286010 + 0.999996i \(0.499090\pi\)
\(758\) −8949.46 15500.9i −0.428838 0.742769i
\(759\) 0 0
\(760\) −4940.43 + 8557.08i −0.235800 + 0.408418i
\(761\) 4421.51 7658.28i 0.210617 0.364799i −0.741291 0.671184i \(-0.765786\pi\)
0.951908 + 0.306385i \(0.0991194\pi\)
\(762\) 0 0
\(763\) −15864.6 27478.2i −0.752734 1.30377i
\(764\) 3089.11 0.146283
\(765\) 0 0
\(766\) 412.926 0.0194773
\(767\) −11439.7 19814.2i −0.538545 0.932788i
\(768\) 0 0
\(769\) −1346.55 + 2332.30i −0.0631442 + 0.109369i −0.895869 0.444318i \(-0.853446\pi\)
0.832725 + 0.553687i \(0.186779\pi\)
\(770\) 4853.45 8406.41i 0.227151 0.393437i
\(771\) 0 0
\(772\) −7305.35 12653.2i −0.340577 0.589897i
\(773\) −18116.5 −0.842958 −0.421479 0.906838i \(-0.638489\pi\)
−0.421479 + 0.906838i \(0.638489\pi\)
\(774\) 0 0
\(775\) −110.063 −0.00510137
\(776\) 2691.94 + 4662.57i 0.124530 + 0.215692i
\(777\) 0 0
\(778\) 2028.94 3514.23i 0.0934975 0.161942i
\(779\) 7315.60 12671.0i 0.336468 0.582780i
\(780\) 0 0
\(781\) −6227.35 10786.1i −0.285316 0.494183i
\(782\) 16218.2 0.741640
\(783\) 0 0
\(784\) −75.5700 −0.00344251
\(785\) 4071.22 + 7051.56i 0.185106 + 0.320613i
\(786\) 0 0
\(787\) −15873.7 + 27494.1i −0.718980 + 1.24531i 0.242424 + 0.970170i \(0.422057\pi\)
−0.961404 + 0.275140i \(0.911276\pi\)
\(788\) −5294.81 + 9170.88i −0.239365 + 0.414593i
\(789\) 0 0
\(790\) 5372.00 + 9304.58i 0.241933 + 0.419040i
\(791\) −32006.2 −1.43870
\(792\) 0 0
\(793\) −18797.5 −0.841763
\(794\) 6646.07 + 11511.3i 0.297053 + 0.514511i
\(795\) 0 0
\(796\) −2940.43 + 5092.97i −0.130931 + 0.226778i
\(797\) 14132.9 24478.9i 0.628122 1.08794i −0.359806 0.933027i \(-0.617157\pi\)
0.987928 0.154912i \(-0.0495095\pi\)
\(798\) 0 0
\(799\) 22205.0 + 38460.2i 0.983174 + 1.70291i
\(800\) 11.3225 0.000500390
\(801\) 0 0
\(802\) −3.26896 −0.000143929
\(803\) −870.065 1507.00i −0.0382365 0.0662276i
\(804\) 0 0
\(805\) −7126.52 + 12343.5i −0.312021 + 0.540436i
\(806\) −21073.2 + 36499.9i −0.920933 + 1.59510i
\(807\) 0 0
\(808\) −826.091 1430.83i −0.0359676 0.0622976i
\(809\) −42553.4 −1.84932 −0.924659 0.380795i \(-0.875650\pi\)
−0.924659 + 0.380795i \(0.875650\pi\)
\(810\) 0 0
\(811\) −6900.03 −0.298758 −0.149379 0.988780i \(-0.547727\pi\)
−0.149379 + 0.988780i \(0.547727\pi\)
\(812\) −7297.08 12638.9i −0.315366 0.546230i
\(813\) 0 0
\(814\) −4869.58 + 8434.36i −0.209679 + 0.363175i
\(815\) 2219.94 3845.05i 0.0954123 0.165259i
\(816\) 0 0
\(817\) 18487.6 + 32021.4i 0.791675 + 1.37122i
\(818\) −12406.7 −0.530306
\(819\) 0 0
\(820\) −5939.81 −0.252960
\(821\) −11179.6 19363.6i −0.475238 0.823136i 0.524360 0.851497i \(-0.324305\pi\)
−0.999598 + 0.0283606i \(0.990971\pi\)
\(822\) 0 0
\(823\) −395.785 + 685.520i −0.0167633 + 0.0290349i −0.874285 0.485412i \(-0.838670\pi\)
0.857522 + 0.514447i \(0.172003\pi\)
\(824\) 5487.08 9503.90i 0.231980 0.401801i
\(825\) 0 0
\(826\) 6211.51 + 10758.6i 0.261654 + 0.453198i
\(827\) 23005.9 0.967343 0.483671 0.875250i \(-0.339303\pi\)
0.483671 + 0.875250i \(0.339303\pi\)
\(828\) 0 0
\(829\) −15420.2 −0.646040 −0.323020 0.946392i \(-0.604698\pi\)
−0.323020 + 0.946392i \(0.604698\pi\)
\(830\) 2012.72 + 3486.14i 0.0841718 + 0.145790i
\(831\) 0 0
\(832\) 2167.88 3754.87i 0.0903336 0.156462i
\(833\) 276.675 479.215i 0.0115081 0.0199326i
\(834\) 0 0
\(835\) −17793.6 30819.4i −0.737453 1.27731i
\(836\) −10400.2 −0.430261
\(837\) 0 0
\(838\) −19500.7 −0.803869
\(839\) −23145.1 40088.4i −0.952391 1.64959i −0.740228 0.672356i \(-0.765282\pi\)
−0.212163 0.977234i \(-0.568051\pi\)
\(840\) 0 0
\(841\) −7481.44 + 12958.2i −0.306755 + 0.531314i
\(842\) 10061.4 17426.8i 0.411803 0.713263i
\(843\) 0 0
\(844\) −3072.01 5320.88i −0.125288 0.217005i
\(845\) 26787.2 1.09054
\(846\) 0 0
\(847\) −14263.1 −0.578613
\(848\) −1527.26 2645.29i −0.0618471 0.107122i
\(849\) 0 0
\(850\) −41.4538 + 71.8001i −0.00167277 + 0.00289732i
\(851\) 7150.22 12384.5i 0.288021 0.498868i
\(852\) 0 0
\(853\) −13951.2 24164.2i −0.559999 0.969947i −0.997496 0.0707272i \(-0.977468\pi\)
0.437496 0.899220i \(-0.355865\pi\)
\(854\) 10206.6 0.408973
\(855\) 0 0
\(856\) −10136.0 −0.404721
\(857\) −3276.46 5675.00i −0.130597 0.226201i 0.793310 0.608818i \(-0.208356\pi\)
−0.923907 + 0.382617i \(0.875023\pi\)
\(858\) 0 0
\(859\) −17428.8 + 30187.6i −0.692275 + 1.19906i 0.278815 + 0.960345i \(0.410058\pi\)
−0.971091 + 0.238711i \(0.923275\pi\)
\(860\) 7505.38 12999.7i 0.297595 0.515449i
\(861\) 0 0
\(862\) 6763.21 + 11714.2i 0.267234 + 0.462863i
\(863\) −10885.2 −0.429359 −0.214680 0.976685i \(-0.568871\pi\)
−0.214680 + 0.976685i \(0.568871\pi\)
\(864\) 0 0
\(865\) 24101.4 0.947367
\(866\) 10601.4 + 18362.1i 0.415993 + 0.720520i
\(867\) 0 0
\(868\) 11442.3 19818.6i 0.447438 0.774985i
\(869\) −5654.35 + 9793.61i −0.220726 + 0.382308i
\(870\) 0 0
\(871\) 22527.9 + 39019.5i 0.876383 + 1.51794i
\(872\) 13801.0 0.535966
\(873\) 0 0
\(874\) 15271.0 0.591019
\(875\) 12833.8 + 22228.7i 0.495840 + 0.858821i
\(876\) 0 0
\(877\) 13956.9 24174.1i 0.537390 0.930787i −0.461653 0.887061i \(-0.652744\pi\)
0.999044 0.0437269i \(-0.0139231\pi\)
\(878\) 12568.9 21770.0i 0.483121 0.836791i
\(879\) 0 0
\(880\) 2111.08 + 3656.49i 0.0808686 + 0.140069i
\(881\) 10694.5 0.408975 0.204488 0.978869i \(-0.434447\pi\)
0.204488 + 0.978869i \(0.434447\pi\)
\(882\) 0 0
\(883\) 3265.74 0.124463 0.0622315 0.998062i \(-0.480178\pi\)
0.0622315 + 0.998062i \(0.480178\pi\)
\(884\) 15874.0 + 27494.5i 0.603958 + 1.04609i
\(885\) 0 0
\(886\) 10255.4 17762.9i 0.388869 0.673541i
\(887\) −4696.44 + 8134.47i −0.177780 + 0.307924i −0.941120 0.338073i \(-0.890225\pi\)
0.763340 + 0.645997i \(0.223558\pi\)
\(888\) 0 0
\(889\) −4525.71 7838.75i −0.170739 0.295729i
\(890\) 18954.1 0.713870
\(891\) 0 0
\(892\) −6630.12 −0.248871
\(893\) 20908.2 + 36214.0i 0.783499 + 1.35706i
\(894\) 0 0
\(895\) 25137.0 43538.6i 0.938812 1.62607i
\(896\) −1177.11 + 2038.81i −0.0438888 + 0.0760177i
\(897\) 0 0
\(898\) 4080.23 + 7067.17i 0.151625 + 0.262622i
\(899\) −61706.2 −2.28923
\(900\) 0 0
\(901\) 22366.3 0.827002
\(902\) −3126.00 5414.39i −0.115393 0.199867i
\(903\) 0 0
\(904\) 6960.78 12056.4i 0.256098 0.443574i
\(905\) −7878.30 + 13645.6i −0.289374 + 0.501211i
\(906\) 0 0
\(907\) −6769.24 11724.7i −0.247816 0.429229i 0.715104 0.699018i \(-0.246379\pi\)
−0.962919 + 0.269789i \(0.913046\pi\)
\(908\) −6057.04 −0.221377
\(909\) 0 0
\(910\) −27901.0 −1.01638
\(911\) −18903.2 32741.3i −0.687476 1.19074i −0.972652 0.232269i \(-0.925385\pi\)
0.285175 0.958475i \(-0.407948\pi\)
\(912\) 0 0
\(913\) −2118.51 + 3669.37i −0.0767935 + 0.133010i
\(914\) 2183.20 3781.41i 0.0790086 0.136847i
\(915\) 0 0
\(916\) −8598.08 14892.3i −0.310140 0.537179i
\(917\) 35299.9 1.27122
\(918\) 0 0
\(919\) 30674.2 1.10103 0.550515 0.834825i \(-0.314431\pi\)
0.550515 + 0.834825i \(0.314431\pi\)
\(920\) −3099.78 5368.98i −0.111084 0.192402i
\(921\) 0 0
\(922\) −3250.26 + 5629.62i −0.116097 + 0.201086i
\(923\) −17899.6 + 31003.0i −0.638322 + 1.10561i
\(924\) 0 0
\(925\) 36.5519 + 63.3098i 0.00129926 + 0.00225039i
\(926\) 37982.3 1.34792
\(927\) 0 0
\(928\) 6347.94 0.224549
\(929\) −14058.7 24350.4i −0.496502 0.859967i 0.503490 0.864001i \(-0.332049\pi\)
−0.999992 + 0.00403418i \(0.998716\pi\)
\(930\) 0 0
\(931\) 260.516 451.228i 0.00917087 0.0158844i
\(932\) −2673.56 + 4630.74i −0.0939650 + 0.162752i
\(933\) 0 0
\(934\) −6906.52 11962.4i −0.241957 0.419083i
\(935\) −30916.1 −1.08135
\(936\) 0 0
\(937\) 31859.0 1.11077 0.555384 0.831594i \(-0.312571\pi\)
0.555384 + 0.831594i \(0.312571\pi\)
\(938\) −12232.2 21186.7i −0.425793 0.737495i
\(939\) 0 0
\(940\) 8488.06 14701.8i 0.294521 0.510126i
\(941\) 1131.57 1959.93i 0.0392009 0.0678980i −0.845759 0.533565i \(-0.820852\pi\)
0.884960 + 0.465667i \(0.154185\pi\)
\(942\) 0 0
\(943\) 4590.04 + 7950.19i 0.158507 + 0.274543i
\(944\) −5403.57 −0.186304
\(945\) 0 0
\(946\) 15799.7 0.543016
\(947\) 3492.67 + 6049.48i 0.119848 + 0.207583i 0.919707 0.392604i \(-0.128426\pi\)
−0.799859 + 0.600188i \(0.795092\pi\)
\(948\) 0 0
\(949\) −2500.87 + 4331.63i −0.0855444 + 0.148167i
\(950\) −39.0328 + 67.6068i −0.00133304 + 0.00230890i
\(951\) 0 0
\(952\) −8619.20 14928.9i −0.293435 0.508244i
\(953\) 26436.8 0.898608 0.449304 0.893379i \(-0.351672\pi\)
0.449304 + 0.893379i \(0.351672\pi\)
\(954\) 0 0
\(955\) 8646.53 0.292979
\(956\) 13757.3 + 23828.3i 0.465420 + 0.806131i
\(957\) 0 0
\(958\) −7380.27 + 12783.0i −0.248900 + 0.431107i
\(959\) −24120.2 + 41777.4i −0.812181 + 1.40674i
\(960\) 0 0
\(961\) −33484.1 57996.2i −1.12397 1.94677i
\(962\) 27993.7 0.938206
\(963\) 0 0
\(964\) 6125.17 0.204646
\(965\) −20448.0 35416.9i −0.682117 1.18146i
\(966\) 0 0
\(967\) 50.0781 86.7379i 0.00166536 0.00288449i −0.865192 0.501442i \(-0.832803\pi\)
0.866857 + 0.498557i \(0.166137\pi\)
\(968\) 3101.97 5372.77i 0.102997 0.178396i
\(969\) 0 0
\(970\) 7534.84 + 13050.7i 0.249411 + 0.431993i
\(971\) 678.145 0.0224127 0.0112063 0.999937i \(-0.496433\pi\)
0.0112063 + 0.999937i \(0.496433\pi\)
\(972\) 0 0
\(973\) −11560.8 −0.380908
\(974\) 8756.51 + 15166.7i 0.288066 + 0.498945i
\(975\) 0 0
\(976\) −2219.75 + 3844.73i −0.0727998 + 0.126093i
\(977\) 4874.13 8442.24i 0.159608 0.276449i −0.775119 0.631815i \(-0.782310\pi\)
0.934727 + 0.355366i \(0.115644\pi\)
\(978\) 0 0
\(979\) 9975.17 + 17277.5i 0.325646 + 0.564036i
\(980\) −211.523 −0.00689476
\(981\) 0 0
\(982\) 23675.9 0.769376
\(983\) 1757.84 + 3044.67i 0.0570361 + 0.0987894i 0.893134 0.449791i \(-0.148502\pi\)
−0.836098 + 0.548581i \(0.815168\pi\)
\(984\) 0 0
\(985\) −14820.4 + 25669.6i −0.479407 + 0.830358i
\(986\) −23240.9 + 40254.5i −0.750651 + 1.30017i
\(987\) 0 0
\(988\) 14946.9 + 25888.8i 0.481299 + 0.833635i
\(989\) −23199.4 −0.745903
\(990\) 0 0
\(991\) −612.517 −0.0196339 −0.00981697 0.999952i \(-0.503125\pi\)
−0.00981697 + 0.999952i \(0.503125\pi\)
\(992\) 4976.98 + 8620.39i 0.159294 + 0.275905i
\(993\) 0 0
\(994\) 9719.06 16833.9i 0.310131 0.537162i
\(995\) −8230.38 + 14255.4i −0.262232 + 0.454198i
\(996\) 0 0
\(997\) −11478.2 19880.8i −0.364611 0.631525i 0.624102 0.781343i \(-0.285465\pi\)
−0.988714 + 0.149817i \(0.952131\pi\)
\(998\) 17156.8 0.544176
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.4.c.i.109.1 4
3.2 odd 2 162.4.c.j.109.2 4
9.2 odd 6 162.4.c.j.55.2 4
9.4 even 3 162.4.a.h.1.2 yes 2
9.5 odd 6 162.4.a.e.1.1 2
9.7 even 3 inner 162.4.c.i.55.1 4
36.23 even 6 1296.4.a.j.1.1 2
36.31 odd 6 1296.4.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.4.a.e.1.1 2 9.5 odd 6
162.4.a.h.1.2 yes 2 9.4 even 3
162.4.c.i.55.1 4 9.7 even 3 inner
162.4.c.i.109.1 4 1.1 even 1 trivial
162.4.c.j.55.2 4 9.2 odd 6
162.4.c.j.109.2 4 3.2 odd 2
1296.4.a.j.1.1 2 36.23 even 6
1296.4.a.s.1.2 2 36.31 odd 6