Properties

Label 162.4.c.j.55.2
Level $162$
Weight $4$
Character 162.55
Analytic conductor $9.558$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.4.c.j.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(5.59808 + 9.69615i) q^{5} +(-9.19615 + 15.9282i) q^{7} -8.00000 q^{8} +O(q^{10})\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(5.59808 + 9.69615i) q^{5} +(-9.19615 + 15.9282i) q^{7} -8.00000 q^{8} +22.3923 q^{10} +(-11.7846 + 20.4115i) q^{11} +(33.8731 + 58.6699i) q^{13} +(18.3923 + 31.8564i) q^{14} +(-8.00000 + 13.8564i) q^{16} -117.158 q^{17} +110.315 q^{19} +(22.3923 - 38.7846i) q^{20} +(23.5692 + 40.8231i) q^{22} +(34.6077 + 59.9423i) q^{23} +(-0.176915 + 0.306425i) q^{25} +135.492 q^{26} +73.5692 q^{28} +(99.1865 - 171.796i) q^{29} +(155.531 + 269.387i) q^{31} +(16.0000 + 27.7128i) q^{32} +(-117.158 + 202.923i) q^{34} -205.923 q^{35} -206.608 q^{37} +(110.315 - 191.072i) q^{38} +(-44.7846 - 77.5692i) q^{40} +(-66.3154 - 114.862i) q^{41} +(167.588 - 290.272i) q^{43} +94.2769 q^{44} +138.431 q^{46} +(-189.531 + 328.277i) q^{47} +(2.36156 + 4.09034i) q^{49} +(0.353829 + 0.612850i) q^{50} +(135.492 - 234.679i) q^{52} -190.908 q^{53} -263.885 q^{55} +(73.5692 - 127.426i) q^{56} +(-198.373 - 343.592i) q^{58} +(-168.862 - 292.477i) q^{59} +(-138.735 + 240.295i) q^{61} +622.123 q^{62} +64.0000 q^{64} +(-379.248 + 656.877i) q^{65} +(-332.535 - 575.967i) q^{67} +(234.315 + 405.846i) q^{68} +(-205.923 + 356.669i) q^{70} +528.431 q^{71} -73.8306 q^{73} +(-206.608 + 357.855i) q^{74} +(-220.631 - 382.144i) q^{76} +(-216.746 - 375.415i) q^{77} +(239.904 - 415.526i) q^{79} -179.138 q^{80} -265.261 q^{82} +(-89.8846 + 155.685i) q^{83} +(-655.858 - 1135.98i) q^{85} +(-335.177 - 580.543i) q^{86} +(94.2769 - 163.292i) q^{88} -846.458 q^{89} -1246.01 q^{91} +(138.431 - 239.769i) q^{92} +(379.061 + 656.554i) q^{94} +(617.554 + 1069.63i) q^{95} +(336.492 - 582.822i) q^{97} +9.44624 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{4} + 12 q^{5} - 16 q^{7} - 32 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} - 8 q^{4} + 12 q^{5} - 16 q^{7} - 32 q^{8} + 48 q^{10} + 36 q^{11} - 10 q^{13} + 32 q^{14} - 32 q^{16} - 240 q^{17} - 16 q^{19} + 48 q^{20} - 72 q^{22} + 180 q^{23} + 124 q^{25} - 40 q^{26} + 128 q^{28} + 324 q^{29} + 248 q^{31} + 64 q^{32} - 240 q^{34} - 408 q^{35} - 868 q^{37} - 16 q^{38} - 96 q^{40} + 192 q^{41} + 608 q^{43} - 288 q^{44} + 720 q^{46} - 384 q^{47} + 342 q^{49} - 248 q^{50} - 40 q^{52} + 816 q^{53} - 432 q^{55} + 128 q^{56} - 648 q^{58} - 1008 q^{59} - 742 q^{61} + 992 q^{62} + 256 q^{64} - 696 q^{65} + 104 q^{67} + 480 q^{68} - 408 q^{70} + 2280 q^{71} + 1700 q^{73} - 868 q^{74} + 32 q^{76} - 576 q^{77} + 440 q^{79} - 384 q^{80} + 768 q^{82} + 264 q^{83} - 1314 q^{85} - 1216 q^{86} - 288 q^{88} - 1536 q^{89} - 2864 q^{91} + 720 q^{92} + 768 q^{94} + 1140 q^{95} + 764 q^{97} + 1368 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 5.59808 + 9.69615i 0.500707 + 0.867250i 1.00000 0.000816748i \(0.000259979\pi\)
−0.499293 + 0.866433i \(0.666407\pi\)
\(6\) 0 0
\(7\) −9.19615 + 15.9282i −0.496546 + 0.860042i −0.999992 0.00398426i \(-0.998732\pi\)
0.503447 + 0.864026i \(0.332065\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 22.3923 0.708107
\(11\) −11.7846 + 20.4115i −0.323018 + 0.559483i −0.981109 0.193455i \(-0.938031\pi\)
0.658092 + 0.752938i \(0.271364\pi\)
\(12\) 0 0
\(13\) 33.8731 + 58.6699i 0.722669 + 1.25170i 0.959926 + 0.280253i \(0.0904183\pi\)
−0.237257 + 0.971447i \(0.576248\pi\)
\(14\) 18.3923 + 31.8564i 0.351111 + 0.608142i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −117.158 −1.67147 −0.835733 0.549137i \(-0.814957\pi\)
−0.835733 + 0.549137i \(0.814957\pi\)
\(18\) 0 0
\(19\) 110.315 1.33200 0.666002 0.745950i \(-0.268004\pi\)
0.666002 + 0.745950i \(0.268004\pi\)
\(20\) 22.3923 38.7846i 0.250354 0.433625i
\(21\) 0 0
\(22\) 23.5692 + 40.8231i 0.228408 + 0.395614i
\(23\) 34.6077 + 59.9423i 0.313748 + 0.543427i 0.979171 0.203039i \(-0.0650820\pi\)
−0.665423 + 0.746467i \(0.731749\pi\)
\(24\) 0 0
\(25\) −0.176915 + 0.306425i −0.00141532 + 0.00245140i
\(26\) 135.492 1.02201
\(27\) 0 0
\(28\) 73.5692 0.496546
\(29\) 99.1865 171.796i 0.635120 1.10006i −0.351370 0.936237i \(-0.614284\pi\)
0.986490 0.163823i \(-0.0523827\pi\)
\(30\) 0 0
\(31\) 155.531 + 269.387i 0.901101 + 1.56075i 0.826066 + 0.563573i \(0.190574\pi\)
0.0750350 + 0.997181i \(0.476093\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −117.158 + 202.923i −0.590952 + 1.02356i
\(35\) −205.923 −0.994496
\(36\) 0 0
\(37\) −206.608 −0.918003 −0.459001 0.888436i \(-0.651793\pi\)
−0.459001 + 0.888436i \(0.651793\pi\)
\(38\) 110.315 191.072i 0.470935 0.815683i
\(39\) 0 0
\(40\) −44.7846 77.5692i −0.177027 0.306619i
\(41\) −66.3154 114.862i −0.252603 0.437521i 0.711639 0.702546i \(-0.247953\pi\)
−0.964242 + 0.265025i \(0.914620\pi\)
\(42\) 0 0
\(43\) 167.588 290.272i 0.594349 1.02944i −0.399290 0.916825i \(-0.630743\pi\)
0.993638 0.112618i \(-0.0359235\pi\)
\(44\) 94.2769 0.323018
\(45\) 0 0
\(46\) 138.431 0.443707
\(47\) −189.531 + 328.277i −0.588211 + 1.01881i 0.406256 + 0.913759i \(0.366834\pi\)
−0.994467 + 0.105051i \(0.966499\pi\)
\(48\) 0 0
\(49\) 2.36156 + 4.09034i 0.00688502 + 0.0119252i
\(50\) 0.353829 + 0.612850i 0.00100078 + 0.00173340i
\(51\) 0 0
\(52\) 135.492 234.679i 0.361335 0.625850i
\(53\) −190.908 −0.494777 −0.247388 0.968916i \(-0.579572\pi\)
−0.247388 + 0.968916i \(0.579572\pi\)
\(54\) 0 0
\(55\) −263.885 −0.646949
\(56\) 73.5692 127.426i 0.175555 0.304071i
\(57\) 0 0
\(58\) −198.373 343.592i −0.449098 0.777860i
\(59\) −168.862 292.477i −0.372609 0.645377i 0.617357 0.786683i \(-0.288203\pi\)
−0.989966 + 0.141306i \(0.954870\pi\)
\(60\) 0 0
\(61\) −138.735 + 240.295i −0.291199 + 0.504372i −0.974094 0.226145i \(-0.927388\pi\)
0.682894 + 0.730517i \(0.260721\pi\)
\(62\) 622.123 1.27435
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −379.248 + 656.877i −0.723691 + 1.25347i
\(66\) 0 0
\(67\) −332.535 575.967i −0.606352 1.05023i −0.991836 0.127518i \(-0.959299\pi\)
0.385485 0.922714i \(-0.374034\pi\)
\(68\) 234.315 + 405.846i 0.417866 + 0.723766i
\(69\) 0 0
\(70\) −205.923 + 356.669i −0.351607 + 0.609002i
\(71\) 528.431 0.883284 0.441642 0.897191i \(-0.354396\pi\)
0.441642 + 0.897191i \(0.354396\pi\)
\(72\) 0 0
\(73\) −73.8306 −0.118373 −0.0591865 0.998247i \(-0.518851\pi\)
−0.0591865 + 0.998247i \(0.518851\pi\)
\(74\) −206.608 + 357.855i −0.324563 + 0.562159i
\(75\) 0 0
\(76\) −220.631 382.144i −0.333001 0.576775i
\(77\) −216.746 375.415i −0.320786 0.555617i
\(78\) 0 0
\(79\) 239.904 415.526i 0.341662 0.591776i −0.643080 0.765799i \(-0.722344\pi\)
0.984741 + 0.174024i \(0.0556769\pi\)
\(80\) −179.138 −0.250354
\(81\) 0 0
\(82\) −265.261 −0.357234
\(83\) −89.8846 + 155.685i −0.118869 + 0.205887i −0.919320 0.393512i \(-0.871260\pi\)
0.800451 + 0.599398i \(0.204593\pi\)
\(84\) 0 0
\(85\) −655.858 1135.98i −0.836915 1.44958i
\(86\) −335.177 580.543i −0.420268 0.727926i
\(87\) 0 0
\(88\) 94.2769 163.292i 0.114204 0.197807i
\(89\) −846.458 −1.00814 −0.504069 0.863663i \(-0.668164\pi\)
−0.504069 + 0.863663i \(0.668164\pi\)
\(90\) 0 0
\(91\) −1246.01 −1.43535
\(92\) 138.431 239.769i 0.156874 0.271714i
\(93\) 0 0
\(94\) 379.061 + 656.554i 0.415928 + 0.720408i
\(95\) 617.554 + 1069.63i 0.666944 + 1.15518i
\(96\) 0 0
\(97\) 336.492 582.822i 0.352223 0.610068i −0.634416 0.772992i \(-0.718759\pi\)
0.986639 + 0.162924i \(0.0520926\pi\)
\(98\) 9.44624 0.00973689
\(99\) 0 0
\(100\) 1.41532 0.00141532
\(101\) 103.261 178.854i 0.101732 0.176204i −0.810667 0.585508i \(-0.800895\pi\)
0.912398 + 0.409304i \(0.134228\pi\)
\(102\) 0 0
\(103\) 685.885 + 1187.99i 0.656138 + 1.13646i 0.981607 + 0.190912i \(0.0611444\pi\)
−0.325469 + 0.945553i \(0.605522\pi\)
\(104\) −270.985 469.359i −0.255502 0.442543i
\(105\) 0 0
\(106\) −190.908 + 330.662i −0.174930 + 0.302988i
\(107\) 1267.00 1.14472 0.572362 0.820001i \(-0.306027\pi\)
0.572362 + 0.820001i \(0.306027\pi\)
\(108\) 0 0
\(109\) 1725.13 1.51594 0.757970 0.652289i \(-0.226191\pi\)
0.757970 + 0.652289i \(0.226191\pi\)
\(110\) −263.885 + 457.061i −0.228731 + 0.396174i
\(111\) 0 0
\(112\) −147.138 254.851i −0.124136 0.215011i
\(113\) −870.098 1507.05i −0.724353 1.25462i −0.959240 0.282594i \(-0.908805\pi\)
0.234886 0.972023i \(-0.424528\pi\)
\(114\) 0 0
\(115\) −387.473 + 671.123i −0.314192 + 0.544196i
\(116\) −793.492 −0.635120
\(117\) 0 0
\(118\) −675.446 −0.526948
\(119\) 1077.40 1866.11i 0.829959 1.43753i
\(120\) 0 0
\(121\) 387.746 + 671.596i 0.291319 + 0.504580i
\(122\) 277.469 + 480.591i 0.205909 + 0.356645i
\(123\) 0 0
\(124\) 622.123 1077.55i 0.450551 0.780377i
\(125\) 1395.56 0.998580
\(126\) 0 0
\(127\) 492.131 0.343855 0.171927 0.985110i \(-0.445001\pi\)
0.171927 + 0.985110i \(0.445001\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 758.496 + 1313.75i 0.511727 + 0.886337i
\(131\) 959.638 + 1662.14i 0.640030 + 1.10857i 0.985425 + 0.170108i \(0.0544116\pi\)
−0.345395 + 0.938457i \(0.612255\pi\)
\(132\) 0 0
\(133\) −1014.48 + 1757.13i −0.661401 + 1.14558i
\(134\) −1330.14 −0.857511
\(135\) 0 0
\(136\) 937.261 0.590952
\(137\) 1311.43 2271.46i 0.817832 1.41653i −0.0894453 0.995992i \(-0.528509\pi\)
0.907277 0.420534i \(-0.138157\pi\)
\(138\) 0 0
\(139\) 314.284 + 544.357i 0.191779 + 0.332171i 0.945840 0.324634i \(-0.105241\pi\)
−0.754061 + 0.656804i \(0.771908\pi\)
\(140\) 411.846 + 713.338i 0.248624 + 0.430629i
\(141\) 0 0
\(142\) 528.431 915.269i 0.312288 0.540899i
\(143\) −1596.72 −0.933739
\(144\) 0 0
\(145\) 2221.02 1.27204
\(146\) −73.8306 + 127.878i −0.0418511 + 0.0724883i
\(147\) 0 0
\(148\) 413.215 + 715.710i 0.229501 + 0.397507i
\(149\) 284.156 + 492.173i 0.156235 + 0.270606i 0.933508 0.358557i \(-0.116731\pi\)
−0.777273 + 0.629163i \(0.783398\pi\)
\(150\) 0 0
\(151\) −178.715 + 309.544i −0.0963155 + 0.166823i −0.910157 0.414264i \(-0.864039\pi\)
0.813841 + 0.581087i \(0.197372\pi\)
\(152\) −882.523 −0.470935
\(153\) 0 0
\(154\) −866.985 −0.453660
\(155\) −1741.35 + 3016.10i −0.902376 + 1.56296i
\(156\) 0 0
\(157\) 363.627 + 629.820i 0.184844 + 0.320160i 0.943524 0.331304i \(-0.107489\pi\)
−0.758680 + 0.651464i \(0.774155\pi\)
\(158\) −479.808 831.051i −0.241591 0.418449i
\(159\) 0 0
\(160\) −179.138 + 310.277i −0.0885134 + 0.153310i
\(161\) −1273.03 −0.623161
\(162\) 0 0
\(163\) −396.554 −0.190555 −0.0952776 0.995451i \(-0.530374\pi\)
−0.0952776 + 0.995451i \(0.530374\pi\)
\(164\) −265.261 + 459.446i −0.126301 + 0.218761i
\(165\) 0 0
\(166\) 179.769 + 311.369i 0.0840530 + 0.145584i
\(167\) 1589.26 + 2752.68i 0.736411 + 1.27550i 0.954101 + 0.299484i \(0.0968145\pi\)
−0.217690 + 0.976018i \(0.569852\pi\)
\(168\) 0 0
\(169\) −1196.27 + 2072.00i −0.544501 + 0.943104i
\(170\) −2623.43 −1.18358
\(171\) 0 0
\(172\) −1340.71 −0.594349
\(173\) 1076.32 1864.25i 0.473014 0.819285i −0.526509 0.850170i \(-0.676499\pi\)
0.999523 + 0.0308850i \(0.00983256\pi\)
\(174\) 0 0
\(175\) −3.25387 5.63586i −0.00140554 0.00243446i
\(176\) −188.554 326.585i −0.0807544 0.139871i
\(177\) 0 0
\(178\) −846.458 + 1466.11i −0.356431 + 0.617356i
\(179\) 4490.29 1.87497 0.937487 0.348022i \(-0.113146\pi\)
0.937487 + 0.348022i \(0.113146\pi\)
\(180\) 0 0
\(181\) 1407.32 0.577931 0.288966 0.957340i \(-0.406689\pi\)
0.288966 + 0.957340i \(0.406689\pi\)
\(182\) −1246.01 + 2158.15i −0.507474 + 0.878970i
\(183\) 0 0
\(184\) −276.862 479.538i −0.110927 0.192131i
\(185\) −1156.61 2003.30i −0.459650 0.796138i
\(186\) 0 0
\(187\) 1380.66 2391.37i 0.539913 0.935156i
\(188\) 1516.25 0.588211
\(189\) 0 0
\(190\) 2470.22 0.943201
\(191\) 386.138 668.811i 0.146283 0.253369i −0.783568 0.621306i \(-0.786602\pi\)
0.929851 + 0.367937i \(0.119936\pi\)
\(192\) 0 0
\(193\) −1826.34 3163.31i −0.681154 1.17979i −0.974629 0.223826i \(-0.928145\pi\)
0.293475 0.955967i \(-0.405188\pi\)
\(194\) −672.985 1165.64i −0.249059 0.431383i
\(195\) 0 0
\(196\) 9.44624 16.3614i 0.00344251 0.00596260i
\(197\) −2647.40 −0.957460 −0.478730 0.877962i \(-0.658903\pi\)
−0.478730 + 0.877962i \(0.658903\pi\)
\(198\) 0 0
\(199\) 1470.22 0.523723 0.261861 0.965106i \(-0.415664\pi\)
0.261861 + 0.965106i \(0.415664\pi\)
\(200\) 1.41532 2.45140i 0.000500390 0.000866701i
\(201\) 0 0
\(202\) −206.523 357.708i −0.0719351 0.124595i
\(203\) 1824.27 + 3159.73i 0.630732 + 1.09246i
\(204\) 0 0
\(205\) 742.477 1286.01i 0.252960 0.438140i
\(206\) 2743.54 0.927919
\(207\) 0 0
\(208\) −1083.94 −0.361335
\(209\) −1300.02 + 2251.71i −0.430261 + 0.745233i
\(210\) 0 0
\(211\) −768.003 1330.22i −0.250576 0.434010i 0.713109 0.701054i \(-0.247287\pi\)
−0.963685 + 0.267043i \(0.913953\pi\)
\(212\) 381.815 + 661.323i 0.123694 + 0.214245i
\(213\) 0 0
\(214\) 1267.00 2194.51i 0.404721 0.700997i
\(215\) 3752.69 1.19038
\(216\) 0 0
\(217\) −5721.14 −1.78975
\(218\) 1725.13 2988.01i 0.535966 0.928320i
\(219\) 0 0
\(220\) 527.769 + 914.123i 0.161737 + 0.280137i
\(221\) −3968.49 6873.63i −1.20792 2.09217i
\(222\) 0 0
\(223\) 828.765 1435.46i 0.248871 0.431057i −0.714342 0.699797i \(-0.753274\pi\)
0.963213 + 0.268740i \(0.0866071\pi\)
\(224\) −588.554 −0.175555
\(225\) 0 0
\(226\) −3480.39 −1.02439
\(227\) −757.131 + 1311.39i −0.221377 + 0.383436i −0.955226 0.295876i \(-0.904388\pi\)
0.733850 + 0.679312i \(0.237722\pi\)
\(228\) 0 0
\(229\) −2149.52 3723.08i −0.620280 1.07436i −0.989433 0.144988i \(-0.953685\pi\)
0.369153 0.929369i \(-0.379648\pi\)
\(230\) 774.946 + 1342.25i 0.222167 + 0.384805i
\(231\) 0 0
\(232\) −793.492 + 1374.37i −0.224549 + 0.388930i
\(233\) −1336.78 −0.375860 −0.187930 0.982182i \(-0.560178\pi\)
−0.187930 + 0.982182i \(0.560178\pi\)
\(234\) 0 0
\(235\) −4244.03 −1.17809
\(236\) −675.446 + 1169.91i −0.186304 + 0.322688i
\(237\) 0 0
\(238\) −2154.80 3732.22i −0.586869 1.01649i
\(239\) −3439.31 5957.07i −0.930840 1.61226i −0.781889 0.623418i \(-0.785744\pi\)
−0.148951 0.988845i \(-0.547590\pi\)
\(240\) 0 0
\(241\) −765.646 + 1326.14i −0.204646 + 0.354457i −0.950020 0.312190i \(-0.898938\pi\)
0.745374 + 0.666646i \(0.232271\pi\)
\(242\) 1550.98 0.411988
\(243\) 0 0
\(244\) 1109.88 0.291199
\(245\) −26.4404 + 45.7961i −0.00689476 + 0.0119421i
\(246\) 0 0
\(247\) 3736.72 + 6472.19i 0.962598 + 1.66727i
\(248\) −1244.25 2155.10i −0.318587 0.551810i
\(249\) 0 0
\(250\) 1395.56 2417.18i 0.353051 0.611503i
\(251\) −1181.60 −0.297139 −0.148570 0.988902i \(-0.547467\pi\)
−0.148570 + 0.988902i \(0.547467\pi\)
\(252\) 0 0
\(253\) −1631.35 −0.405384
\(254\) 492.131 852.395i 0.121571 0.210567i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 2190.68 + 3794.36i 0.531714 + 0.920956i 0.999315 + 0.0370161i \(0.0117853\pi\)
−0.467600 + 0.883940i \(0.654881\pi\)
\(258\) 0 0
\(259\) 1900.00 3290.89i 0.455830 0.789521i
\(260\) 3033.98 0.723691
\(261\) 0 0
\(262\) 3838.55 0.905140
\(263\) −1400.04 + 2424.94i −0.328251 + 0.568548i −0.982165 0.188021i \(-0.939793\pi\)
0.653914 + 0.756569i \(0.273126\pi\)
\(264\) 0 0
\(265\) −1068.72 1851.07i −0.247738 0.429095i
\(266\) 2028.95 + 3514.25i 0.467681 + 0.810047i
\(267\) 0 0
\(268\) −1330.14 + 2303.87i −0.303176 + 0.525116i
\(269\) −2803.73 −0.635489 −0.317745 0.948176i \(-0.602925\pi\)
−0.317745 + 0.948176i \(0.602925\pi\)
\(270\) 0 0
\(271\) −6332.36 −1.41942 −0.709711 0.704493i \(-0.751175\pi\)
−0.709711 + 0.704493i \(0.751175\pi\)
\(272\) 937.261 1623.38i 0.208933 0.361883i
\(273\) 0 0
\(274\) −2622.86 4542.92i −0.578294 1.00163i
\(275\) −4.16974 7.22220i −0.000914344 0.00158369i
\(276\) 0 0
\(277\) −463.831 + 803.378i −0.100610 + 0.174261i −0.911936 0.410332i \(-0.865413\pi\)
0.811326 + 0.584594i \(0.198746\pi\)
\(278\) 1257.14 0.271216
\(279\) 0 0
\(280\) 1647.38 0.351607
\(281\) 570.764 988.592i 0.121170 0.209873i −0.799059 0.601253i \(-0.794669\pi\)
0.920230 + 0.391379i \(0.128002\pi\)
\(282\) 0 0
\(283\) −1805.52 3127.26i −0.379248 0.656877i 0.611705 0.791086i \(-0.290484\pi\)
−0.990953 + 0.134209i \(0.957151\pi\)
\(284\) −1056.86 1830.54i −0.220821 0.382473i
\(285\) 0 0
\(286\) −1596.72 + 2765.61i −0.330127 + 0.571796i
\(287\) 2439.38 0.501715
\(288\) 0 0
\(289\) 8812.92 1.79380
\(290\) 2221.02 3846.91i 0.449733 0.778960i
\(291\) 0 0
\(292\) 147.661 + 255.757i 0.0295932 + 0.0512570i
\(293\) 1162.11 + 2012.83i 0.231710 + 0.401333i 0.958311 0.285726i \(-0.0922347\pi\)
−0.726602 + 0.687059i \(0.758901\pi\)
\(294\) 0 0
\(295\) 1890.60 3274.61i 0.373136 0.646290i
\(296\) 1652.86 0.324563
\(297\) 0 0
\(298\) 1136.62 0.220949
\(299\) −2344.54 + 4060.86i −0.453472 + 0.785436i
\(300\) 0 0
\(301\) 3082.34 + 5338.77i 0.590243 + 1.02233i
\(302\) 357.430 + 619.088i 0.0681053 + 0.117962i
\(303\) 0 0
\(304\) −882.523 + 1528.57i −0.166501 + 0.288387i
\(305\) −3106.59 −0.583222
\(306\) 0 0
\(307\) 6968.51 1.29548 0.647742 0.761860i \(-0.275713\pi\)
0.647742 + 0.761860i \(0.275713\pi\)
\(308\) −866.985 + 1501.66i −0.160393 + 0.277809i
\(309\) 0 0
\(310\) 3482.69 + 6032.20i 0.638076 + 1.10518i
\(311\) 3170.15 + 5490.87i 0.578016 + 1.00115i 0.995707 + 0.0925637i \(0.0295062\pi\)
−0.417691 + 0.908589i \(0.637160\pi\)
\(312\) 0 0
\(313\) −1194.42 + 2068.79i −0.215694 + 0.373594i −0.953487 0.301434i \(-0.902535\pi\)
0.737793 + 0.675027i \(0.235868\pi\)
\(314\) 1454.51 0.261409
\(315\) 0 0
\(316\) −1919.23 −0.341662
\(317\) −2930.63 + 5076.00i −0.519245 + 0.899359i 0.480505 + 0.876992i \(0.340453\pi\)
−0.999750 + 0.0223668i \(0.992880\pi\)
\(318\) 0 0
\(319\) 2337.75 + 4049.10i 0.410310 + 0.710677i
\(320\) 358.277 + 620.554i 0.0625884 + 0.108406i
\(321\) 0 0
\(322\) −1273.03 + 2204.95i −0.220321 + 0.381606i
\(323\) −12924.3 −2.22640
\(324\) 0 0
\(325\) −23.9706 −0.00409122
\(326\) −396.554 + 686.851i −0.0673714 + 0.116691i
\(327\) 0 0
\(328\) 530.523 + 918.892i 0.0893086 + 0.154687i
\(329\) −3485.91 6037.77i −0.584147 1.01177i
\(330\) 0 0
\(331\) −2482.48 + 4299.78i −0.412234 + 0.714010i −0.995134 0.0985339i \(-0.968585\pi\)
0.582900 + 0.812544i \(0.301918\pi\)
\(332\) 719.077 0.118869
\(333\) 0 0
\(334\) 6357.04 1.04144
\(335\) 3723.11 6448.61i 0.607209 1.05172i
\(336\) 0 0
\(337\) 1548.83 + 2682.65i 0.250357 + 0.433630i 0.963624 0.267262i \(-0.0861188\pi\)
−0.713267 + 0.700892i \(0.752785\pi\)
\(338\) 2392.54 + 4144.00i 0.385021 + 0.666875i
\(339\) 0 0
\(340\) −2623.43 + 4543.91i −0.418457 + 0.724789i
\(341\) −7331.48 −1.16429
\(342\) 0 0
\(343\) −6395.43 −1.00677
\(344\) −1340.71 + 2322.17i −0.210134 + 0.363963i
\(345\) 0 0
\(346\) −2152.65 3728.50i −0.334472 0.579322i
\(347\) 4022.10 + 6966.48i 0.622241 + 1.07775i 0.989067 + 0.147464i \(0.0471109\pi\)
−0.366827 + 0.930289i \(0.619556\pi\)
\(348\) 0 0
\(349\) 572.353 991.345i 0.0877862 0.152050i −0.818789 0.574095i \(-0.805354\pi\)
0.906575 + 0.422045i \(0.138687\pi\)
\(350\) −13.0155 −0.00198773
\(351\) 0 0
\(352\) −754.215 −0.114204
\(353\) 3900.63 6756.09i 0.588129 1.01867i −0.406348 0.913718i \(-0.633198\pi\)
0.994477 0.104951i \(-0.0334687\pi\)
\(354\) 0 0
\(355\) 2958.20 + 5123.75i 0.442267 + 0.766029i
\(356\) 1692.92 + 2932.22i 0.252035 + 0.436537i
\(357\) 0 0
\(358\) 4490.29 7777.41i 0.662903 1.14818i
\(359\) −341.307 −0.0501769 −0.0250885 0.999685i \(-0.507987\pi\)
−0.0250885 + 0.999685i \(0.507987\pi\)
\(360\) 0 0
\(361\) 5310.48 0.774235
\(362\) 1407.32 2437.56i 0.204329 0.353909i
\(363\) 0 0
\(364\) 2492.02 + 4316.30i 0.358838 + 0.621526i
\(365\) −413.310 715.873i −0.0592702 0.102659i
\(366\) 0 0
\(367\) −59.6839 + 103.376i −0.00848903 + 0.0147034i −0.870239 0.492630i \(-0.836036\pi\)
0.861750 + 0.507334i \(0.169369\pi\)
\(368\) −1107.45 −0.156874
\(369\) 0 0
\(370\) −4626.42 −0.650044
\(371\) 1755.62 3040.81i 0.245679 0.425529i
\(372\) 0 0
\(373\) 2187.22 + 3788.37i 0.303619 + 0.525883i 0.976953 0.213456i \(-0.0684718\pi\)
−0.673334 + 0.739338i \(0.735139\pi\)
\(374\) −2761.31 4782.74i −0.381776 0.661255i
\(375\) 0 0
\(376\) 1516.25 2626.22i 0.207964 0.360204i
\(377\) 13439.0 1.83593
\(378\) 0 0
\(379\) 8949.46 1.21294 0.606468 0.795108i \(-0.292586\pi\)
0.606468 + 0.795108i \(0.292586\pi\)
\(380\) 2470.22 4278.54i 0.333472 0.577590i
\(381\) 0 0
\(382\) −772.277 1337.62i −0.103437 0.179159i
\(383\) 103.232 + 178.802i 0.0137726 + 0.0238548i 0.872830 0.488025i \(-0.162283\pi\)
−0.859057 + 0.511880i \(0.828949\pi\)
\(384\) 0 0
\(385\) 2426.72 4203.21i 0.321240 0.556403i
\(386\) −7305.35 −0.963297
\(387\) 0 0
\(388\) −2691.94 −0.352223
\(389\) −1014.47 + 1757.11i −0.132225 + 0.229021i −0.924534 0.381099i \(-0.875546\pi\)
0.792309 + 0.610120i \(0.208879\pi\)
\(390\) 0 0
\(391\) −4054.56 7022.70i −0.524419 0.908320i
\(392\) −18.8925 32.7228i −0.00243422 0.00421620i
\(393\) 0 0
\(394\) −2647.40 + 4585.44i −0.338513 + 0.586322i
\(395\) 5372.00 0.684290
\(396\) 0 0
\(397\) −6646.07 −0.840193 −0.420097 0.907479i \(-0.638004\pi\)
−0.420097 + 0.907479i \(0.638004\pi\)
\(398\) 1470.22 2546.49i 0.185164 0.320713i
\(399\) 0 0
\(400\) −2.83063 4.90280i −0.000353829 0.000612850i
\(401\) −0.817240 1.41550i −0.000101773 0.000176276i 0.865975 0.500088i \(-0.166699\pi\)
−0.866076 + 0.499912i \(0.833366\pi\)
\(402\) 0 0
\(403\) −10536.6 + 18249.9i −1.30240 + 2.25582i
\(404\) −826.091 −0.101732
\(405\) 0 0
\(406\) 7297.08 0.891990
\(407\) 2434.79 4217.18i 0.296531 0.513607i
\(408\) 0 0
\(409\) 3101.68 + 5372.26i 0.374983 + 0.649490i 0.990324 0.138771i \(-0.0443152\pi\)
−0.615342 + 0.788261i \(0.710982\pi\)
\(410\) −1484.95 2572.02i −0.178870 0.309812i
\(411\) 0 0
\(412\) 2743.54 4751.95i 0.328069 0.568232i
\(413\) 6211.51 0.740068
\(414\) 0 0
\(415\) −2012.72 −0.238074
\(416\) −1083.94 + 1877.44i −0.127751 + 0.221271i
\(417\) 0 0
\(418\) 2600.05 + 4503.41i 0.304240 + 0.526960i
\(419\) −4875.18 8444.07i −0.568421 0.984534i −0.996722 0.0808979i \(-0.974221\pi\)
0.428302 0.903636i \(-0.359112\pi\)
\(420\) 0 0
\(421\) 5030.69 8713.41i 0.582377 1.00871i −0.412820 0.910813i \(-0.635456\pi\)
0.995197 0.0978939i \(-0.0312106\pi\)
\(422\) −3072.01 −0.354368
\(423\) 0 0
\(424\) 1527.26 0.174930
\(425\) 20.7269 35.9000i 0.00236565 0.00409743i
\(426\) 0 0
\(427\) −2551.65 4419.59i −0.289187 0.500887i
\(428\) −2534.00 4389.02i −0.286181 0.495680i
\(429\) 0 0
\(430\) 3752.69 6499.85i 0.420862 0.728955i
\(431\) 6763.21 0.755853 0.377926 0.925836i \(-0.376637\pi\)
0.377926 + 0.925836i \(0.376637\pi\)
\(432\) 0 0
\(433\) −10601.4 −1.17660 −0.588302 0.808641i \(-0.700204\pi\)
−0.588302 + 0.808641i \(0.700204\pi\)
\(434\) −5721.14 + 9909.30i −0.632773 + 1.09599i
\(435\) 0 0
\(436\) −3450.26 5976.03i −0.378985 0.656422i
\(437\) 3817.76 + 6612.55i 0.417914 + 0.723848i
\(438\) 0 0
\(439\) 6284.46 10885.0i 0.683237 1.18340i −0.290751 0.956799i \(-0.593905\pi\)
0.973987 0.226602i \(-0.0727616\pi\)
\(440\) 2111.08 0.228731
\(441\) 0 0
\(442\) −15874.0 −1.70825
\(443\) −5127.71 + 8881.46i −0.549944 + 0.952530i 0.448334 + 0.893866i \(0.352017\pi\)
−0.998278 + 0.0586643i \(0.981316\pi\)
\(444\) 0 0
\(445\) −4738.53 8207.38i −0.504782 0.874308i
\(446\) −1657.53 2870.93i −0.175978 0.304803i
\(447\) 0 0
\(448\) −588.554 + 1019.41i −0.0620682 + 0.107505i
\(449\) 4080.23 0.428860 0.214430 0.976739i \(-0.431211\pi\)
0.214430 + 0.976739i \(0.431211\pi\)
\(450\) 0 0
\(451\) 3126.00 0.326381
\(452\) −3480.39 + 6028.22i −0.362177 + 0.627308i
\(453\) 0 0
\(454\) 1514.26 + 2622.78i 0.156537 + 0.271130i
\(455\) −6975.25 12081.5i −0.718691 1.24481i
\(456\) 0 0
\(457\) 1091.60 1890.71i 0.111735 0.193531i −0.804735 0.593634i \(-0.797693\pi\)
0.916470 + 0.400104i \(0.131026\pi\)
\(458\) −8598.08 −0.877209
\(459\) 0 0
\(460\) 3099.78 0.314192
\(461\) 1625.13 2814.81i 0.164186 0.284379i −0.772180 0.635404i \(-0.780834\pi\)
0.936366 + 0.351025i \(0.114167\pi\)
\(462\) 0 0
\(463\) −9495.57 16446.8i −0.953124 1.65086i −0.738604 0.674140i \(-0.764515\pi\)
−0.214520 0.976720i \(-0.568819\pi\)
\(464\) 1586.98 + 2748.74i 0.158780 + 0.275015i
\(465\) 0 0
\(466\) −1336.78 + 2315.37i −0.132887 + 0.230166i
\(467\) −6906.52 −0.684359 −0.342180 0.939635i \(-0.611165\pi\)
−0.342180 + 0.939635i \(0.611165\pi\)
\(468\) 0 0
\(469\) 12232.2 1.20432
\(470\) −4244.03 + 7350.88i −0.416516 + 0.721427i
\(471\) 0 0
\(472\) 1350.89 + 2339.81i 0.131737 + 0.228175i
\(473\) 3949.93 + 6841.48i 0.383970 + 0.665056i
\(474\) 0 0
\(475\) −19.5164 + 33.8034i −0.00188521 + 0.00326527i
\(476\) −8619.20 −0.829959
\(477\) 0 0
\(478\) −13757.3 −1.31641
\(479\) 3690.14 6391.50i 0.351997 0.609677i −0.634602 0.772839i \(-0.718836\pi\)
0.986599 + 0.163162i \(0.0521693\pi\)
\(480\) 0 0
\(481\) −6998.44 12121.6i −0.663412 1.14906i
\(482\) 1531.29 + 2652.28i 0.144706 + 0.250639i
\(483\) 0 0
\(484\) 1550.98 2686.38i 0.145660 0.252290i
\(485\) 7534.84 0.705442
\(486\) 0 0
\(487\) −8756.51 −0.814774 −0.407387 0.913256i \(-0.633560\pi\)
−0.407387 + 0.913256i \(0.633560\pi\)
\(488\) 1109.88 1922.36i 0.102954 0.178322i
\(489\) 0 0
\(490\) 52.8808 + 91.5922i 0.00487533 + 0.00844432i
\(491\) 5918.97 + 10252.0i 0.544031 + 0.942290i 0.998667 + 0.0516124i \(0.0164360\pi\)
−0.454636 + 0.890677i \(0.650231\pi\)
\(492\) 0 0
\(493\) −11620.5 + 20127.2i −1.06158 + 1.83871i
\(494\) 14946.9 1.36132
\(495\) 0 0
\(496\) −4976.98 −0.450551
\(497\) −4859.53 + 8416.95i −0.438591 + 0.759662i
\(498\) 0 0
\(499\) −4289.19 7429.09i −0.384791 0.666477i 0.606950 0.794740i \(-0.292393\pi\)
−0.991740 + 0.128264i \(0.959060\pi\)
\(500\) −2791.12 4834.35i −0.249645 0.432398i
\(501\) 0 0
\(502\) −1181.60 + 2046.59i −0.105055 + 0.181960i
\(503\) 3611.17 0.320107 0.160054 0.987108i \(-0.448833\pi\)
0.160054 + 0.987108i \(0.448833\pi\)
\(504\) 0 0
\(505\) 2312.26 0.203751
\(506\) −1631.35 + 2825.59i −0.143325 + 0.248246i
\(507\) 0 0
\(508\) −984.261 1704.79i −0.0859636 0.148893i
\(509\) 4529.87 + 7845.96i 0.394465 + 0.683234i 0.993033 0.117838i \(-0.0375965\pi\)
−0.598567 + 0.801072i \(0.704263\pi\)
\(510\) 0 0
\(511\) 678.958 1175.99i 0.0587775 0.101806i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 8762.70 0.751957
\(515\) −7679.27 + 13300.9i −0.657066 + 1.13807i
\(516\) 0 0
\(517\) −4467.09 7737.23i −0.380005 0.658188i
\(518\) −3799.99 6581.78i −0.322321 0.558276i
\(519\) 0 0
\(520\) 3033.98 5255.01i 0.255863 0.443169i
\(521\) 12834.1 1.07922 0.539609 0.841916i \(-0.318572\pi\)
0.539609 + 0.841916i \(0.318572\pi\)
\(522\) 0 0
\(523\) 7061.21 0.590373 0.295187 0.955440i \(-0.404618\pi\)
0.295187 + 0.955440i \(0.404618\pi\)
\(524\) 3838.55 6648.57i 0.320015 0.554283i
\(525\) 0 0
\(526\) 2800.08 + 4849.88i 0.232109 + 0.402024i
\(527\) −18221.6 31560.8i −1.50616 2.60875i
\(528\) 0 0
\(529\) 3688.11 6388.00i 0.303124 0.525027i
\(530\) −4274.86 −0.350355
\(531\) 0 0
\(532\) 8115.81 0.661401
\(533\) 4492.61 7781.43i 0.365097 0.632366i
\(534\) 0 0
\(535\) 7092.76 + 12285.0i 0.573172 + 0.992762i
\(536\) 2660.28 + 4607.73i 0.214378 + 0.371313i
\(537\) 0 0
\(538\) −2803.73 + 4856.21i −0.224679 + 0.389156i
\(539\) −111.320 −0.00889593
\(540\) 0 0
\(541\) −21645.6 −1.72018 −0.860091 0.510141i \(-0.829593\pi\)
−0.860091 + 0.510141i \(0.829593\pi\)
\(542\) −6332.36 + 10968.0i −0.501842 + 0.869215i
\(543\) 0 0
\(544\) −1874.52 3246.77i −0.147738 0.255890i
\(545\) 9657.41 + 16727.1i 0.759042 + 1.31470i
\(546\) 0 0
\(547\) −4253.52 + 7367.32i −0.332482 + 0.575875i −0.982998 0.183617i \(-0.941219\pi\)
0.650516 + 0.759492i \(0.274553\pi\)
\(548\) −10491.4 −0.817832
\(549\) 0 0
\(550\) −16.6790 −0.00129308
\(551\) 10941.8 18951.7i 0.845982 1.46528i
\(552\) 0 0
\(553\) 4412.38 + 7642.47i 0.339301 + 0.587687i
\(554\) 927.661 + 1606.76i 0.0711418 + 0.123221i
\(555\) 0 0
\(556\) 1257.14 2177.43i 0.0958894 0.166085i
\(557\) 636.486 0.0484179 0.0242090 0.999707i \(-0.492293\pi\)
0.0242090 + 0.999707i \(0.492293\pi\)
\(558\) 0 0
\(559\) 22706.9 1.71807
\(560\) 1647.38 2853.35i 0.124312 0.215315i
\(561\) 0 0
\(562\) −1141.53 1977.18i −0.0856805 0.148403i
\(563\) 6781.31 + 11745.6i 0.507635 + 0.879249i 0.999961 + 0.00883838i \(0.00281338\pi\)
−0.492326 + 0.870411i \(0.663853\pi\)
\(564\) 0 0
\(565\) 9741.75 16873.2i 0.725378 1.25639i
\(566\) −7222.09 −0.536338
\(567\) 0 0
\(568\) −4227.45 −0.312288
\(569\) −10558.4 + 18287.6i −0.777909 + 1.34738i 0.155236 + 0.987877i \(0.450386\pi\)
−0.933145 + 0.359500i \(0.882947\pi\)
\(570\) 0 0
\(571\) 7263.55 + 12580.8i 0.532347 + 0.922052i 0.999287 + 0.0377630i \(0.0120232\pi\)
−0.466940 + 0.884289i \(0.654643\pi\)
\(572\) 3193.45 + 5531.21i 0.233435 + 0.404321i
\(573\) 0 0
\(574\) 2439.38 4225.14i 0.177383 0.307237i
\(575\) −24.4904 −0.00177621
\(576\) 0 0
\(577\) −14590.9 −1.05273 −0.526366 0.850258i \(-0.676446\pi\)
−0.526366 + 0.850258i \(0.676446\pi\)
\(578\) 8812.92 15264.4i 0.634203 1.09847i
\(579\) 0 0
\(580\) −4442.03 7693.82i −0.318009 0.550808i
\(581\) −1653.18 2863.40i −0.118048 0.204464i
\(582\) 0 0
\(583\) 2249.77 3896.72i 0.159822 0.276819i
\(584\) 590.645 0.0418511
\(585\) 0 0
\(586\) 4648.42 0.327687
\(587\) 9170.74 15884.2i 0.644833 1.11688i −0.339507 0.940603i \(-0.610260\pi\)
0.984340 0.176280i \(-0.0564064\pi\)
\(588\) 0 0
\(589\) 17157.4 + 29717.5i 1.20027 + 2.07893i
\(590\) −3781.20 6549.23i −0.263847 0.456996i
\(591\) 0 0
\(592\) 1652.86 2862.84i 0.114750 0.198753i
\(593\) −28380.4 −1.96534 −0.982668 0.185376i \(-0.940650\pi\)
−0.982668 + 0.185376i \(0.940650\pi\)
\(594\) 0 0
\(595\) 24125.5 1.66227
\(596\) 1136.62 1968.69i 0.0781173 0.135303i
\(597\) 0 0
\(598\) 4689.08 + 8121.72i 0.320653 + 0.555387i
\(599\) −11940.6 20681.7i −0.814487 1.41073i −0.909695 0.415276i \(-0.863685\pi\)
0.0952079 0.995457i \(-0.469648\pi\)
\(600\) 0 0
\(601\) −8310.38 + 14394.0i −0.564039 + 0.976944i 0.433100 + 0.901346i \(0.357420\pi\)
−0.997138 + 0.0755978i \(0.975914\pi\)
\(602\) 12329.4 0.834729
\(603\) 0 0
\(604\) 1429.72 0.0963155
\(605\) −4341.26 + 7519.29i −0.291731 + 0.505293i
\(606\) 0 0
\(607\) 785.389 + 1360.33i 0.0525172 + 0.0909624i 0.891089 0.453829i \(-0.149942\pi\)
−0.838572 + 0.544791i \(0.816609\pi\)
\(608\) 1765.05 + 3057.15i 0.117734 + 0.203921i
\(609\) 0 0
\(610\) −3106.59 + 5380.77i −0.206200 + 0.357149i
\(611\) −25680.0 −1.70033
\(612\) 0 0
\(613\) −5766.40 −0.379939 −0.189969 0.981790i \(-0.560839\pi\)
−0.189969 + 0.981790i \(0.560839\pi\)
\(614\) 6968.51 12069.8i 0.458023 0.793319i
\(615\) 0 0
\(616\) 1733.97 + 3003.32i 0.113415 + 0.196440i
\(617\) 3481.28 + 6029.76i 0.227149 + 0.393434i 0.956962 0.290213i \(-0.0937261\pi\)
−0.729813 + 0.683647i \(0.760393\pi\)
\(618\) 0 0
\(619\) −1330.21 + 2303.99i −0.0863741 + 0.149604i −0.905976 0.423329i \(-0.860861\pi\)
0.819602 + 0.572934i \(0.194195\pi\)
\(620\) 13930.8 0.902376
\(621\) 0 0
\(622\) 12680.6 0.817438
\(623\) 7784.15 13482.5i 0.500587 0.867042i
\(624\) 0 0
\(625\) 7834.55 + 13569.8i 0.501411 + 0.868470i
\(626\) 2388.83 + 4137.58i 0.152519 + 0.264171i
\(627\) 0 0
\(628\) 1454.51 2519.28i 0.0924222 0.160080i
\(629\) 24205.7 1.53441
\(630\) 0 0
\(631\) −20432.5 −1.28908 −0.644538 0.764573i \(-0.722950\pi\)
−0.644538 + 0.764573i \(0.722950\pi\)
\(632\) −1919.23 + 3324.20i −0.120796 + 0.209224i
\(633\) 0 0
\(634\) 5861.26 + 10152.0i 0.367162 + 0.635943i
\(635\) 2754.98 + 4771.77i 0.172170 + 0.298208i
\(636\) 0 0
\(637\) −159.987 + 277.105i −0.00995118 + 0.0172359i
\(638\) 9351.00 0.580266
\(639\) 0 0
\(640\) 1433.11 0.0885134
\(641\) 13034.2 22575.8i 0.803149 1.39109i −0.114385 0.993436i \(-0.536490\pi\)
0.917534 0.397658i \(-0.130177\pi\)
\(642\) 0 0
\(643\) −10585.2 18334.1i −0.649207 1.12446i −0.983313 0.181923i \(-0.941768\pi\)
0.334106 0.942535i \(-0.391566\pi\)
\(644\) 2546.06 + 4409.91i 0.155790 + 0.269836i
\(645\) 0 0
\(646\) −12924.3 + 22385.5i −0.787151 + 1.36339i
\(647\) −8291.45 −0.503818 −0.251909 0.967751i \(-0.581058\pi\)
−0.251909 + 0.967751i \(0.581058\pi\)
\(648\) 0 0
\(649\) 7959.87 0.481436
\(650\) −23.9706 + 41.5182i −0.00144647 + 0.00250535i
\(651\) 0 0
\(652\) 793.108 + 1373.70i 0.0476388 + 0.0825128i
\(653\) 12342.5 + 21377.8i 0.739662 + 1.28113i 0.952648 + 0.304077i \(0.0983480\pi\)
−0.212985 + 0.977055i \(0.568319\pi\)
\(654\) 0 0
\(655\) −10744.3 + 18609.6i −0.640936 + 1.11013i
\(656\) 2122.09 0.126301
\(657\) 0 0
\(658\) −13943.6 −0.826108
\(659\) −14977.2 + 25941.3i −0.885325 + 1.53343i −0.0399839 + 0.999200i \(0.512731\pi\)
−0.845341 + 0.534227i \(0.820603\pi\)
\(660\) 0 0
\(661\) 2063.38 + 3573.88i 0.121416 + 0.210299i 0.920326 0.391151i \(-0.127923\pi\)
−0.798910 + 0.601450i \(0.794590\pi\)
\(662\) 4964.96 + 8599.56i 0.291493 + 0.504881i
\(663\) 0 0
\(664\) 719.077 1245.48i 0.0420265 0.0727920i
\(665\) −22716.5 −1.32467
\(666\) 0 0
\(667\) 13730.5 0.797070
\(668\) 6357.04 11010.7i 0.368206 0.637751i
\(669\) 0 0
\(670\) −7446.21 12897.2i −0.429362 0.743676i
\(671\) −3269.87 5663.58i −0.188125 0.325842i
\(672\) 0 0
\(673\) 13164.9 22802.2i 0.754039 1.30603i −0.191812 0.981432i \(-0.561436\pi\)
0.945851 0.324602i \(-0.105230\pi\)
\(674\) 6195.32 0.354058
\(675\) 0 0
\(676\) 9570.15 0.544501
\(677\) 3301.93 5719.11i 0.187450 0.324673i −0.756949 0.653473i \(-0.773311\pi\)
0.944399 + 0.328801i \(0.106644\pi\)
\(678\) 0 0
\(679\) 6188.87 + 10719.4i 0.349789 + 0.605853i
\(680\) 5246.86 + 9087.83i 0.295894 + 0.512503i
\(681\) 0 0
\(682\) −7331.48 + 12698.5i −0.411637 + 0.712977i
\(683\) −12706.4 −0.711854 −0.355927 0.934514i \(-0.615835\pi\)
−0.355927 + 0.934514i \(0.615835\pi\)
\(684\) 0 0
\(685\) 29365.9 1.63798
\(686\) −6395.43 + 11077.2i −0.355946 + 0.616516i
\(687\) 0 0
\(688\) 2681.42 + 4644.35i 0.148587 + 0.257361i
\(689\) −6466.63 11200.5i −0.357560 0.619312i
\(690\) 0 0
\(691\) 7865.10 13622.8i 0.432999 0.749977i −0.564131 0.825686i \(-0.690789\pi\)
0.997130 + 0.0757086i \(0.0241219\pi\)
\(692\) −8610.60 −0.473014
\(693\) 0 0
\(694\) 16088.4 0.879982
\(695\) −3518.78 + 6094.70i −0.192050 + 0.332640i
\(696\) 0 0
\(697\) 7769.35 + 13456.9i 0.422217 + 0.731301i
\(698\) −1144.71 1982.69i −0.0620742 0.107516i
\(699\) 0 0
\(700\) −13.0155 + 22.5434i −0.000702769 + 0.00121723i
\(701\) 652.959 0.0351811 0.0175905 0.999845i \(-0.494400\pi\)
0.0175905 + 0.999845i \(0.494400\pi\)
\(702\) 0 0
\(703\) −22792.0 −1.22278
\(704\) −754.215 + 1306.34i −0.0403772 + 0.0699354i
\(705\) 0 0
\(706\) −7801.26 13512.2i −0.415870 0.720308i
\(707\) 1899.22 + 3289.54i 0.101029 + 0.174987i
\(708\) 0 0
\(709\) 12442.2 21550.6i 0.659065 1.14153i −0.321793 0.946810i \(-0.604285\pi\)
0.980858 0.194724i \(-0.0623812\pi\)
\(710\) 11832.8 0.625460
\(711\) 0 0
\(712\) 6771.66 0.356431
\(713\) −10765.1 + 18645.7i −0.565438 + 0.979367i
\(714\) 0 0
\(715\) −8938.58 15482.1i −0.467530 0.809786i
\(716\) −8980.58 15554.8i −0.468743 0.811887i
\(717\) 0 0
\(718\) −341.307 + 591.162i −0.0177402 + 0.0307270i
\(719\) −21323.8 −1.10604 −0.553020 0.833168i \(-0.686525\pi\)
−0.553020 + 0.833168i \(0.686525\pi\)
\(720\) 0 0
\(721\) −25230.0 −1.30321
\(722\) 5310.48 9198.02i 0.273733 0.474120i
\(723\) 0 0
\(724\) −2814.65 4875.11i −0.144483 0.250251i
\(725\) 35.0951 + 60.7865i 0.00179779 + 0.00311387i
\(726\) 0 0
\(727\) −4016.00 + 6955.92i −0.204877 + 0.354857i −0.950093 0.311965i \(-0.899013\pi\)
0.745217 + 0.666822i \(0.232346\pi\)
\(728\) 9968.06 0.507474
\(729\) 0 0
\(730\) −1653.24 −0.0838207
\(731\) −19634.3 + 34007.6i −0.993433 + 1.72068i
\(732\) 0 0
\(733\) −14228.7 24644.8i −0.716984 1.24185i −0.962189 0.272381i \(-0.912189\pi\)
0.245205 0.969471i \(-0.421145\pi\)
\(734\) 119.368 + 206.751i 0.00600265 + 0.0103969i
\(735\) 0 0
\(736\) −1107.45 + 1918.15i −0.0554633 + 0.0960653i
\(737\) 15675.2 0.783449
\(738\) 0 0
\(739\) −11006.3 −0.547868 −0.273934 0.961748i \(-0.588325\pi\)
−0.273934 + 0.961748i \(0.588325\pi\)
\(740\) −4626.42 + 8013.20i −0.229825 + 0.398069i
\(741\) 0 0
\(742\) −3511.23 6081.63i −0.173721 0.300894i
\(743\) 2326.45 + 4029.54i 0.114871 + 0.198963i 0.917728 0.397209i \(-0.130021\pi\)
−0.802857 + 0.596172i \(0.796688\pi\)
\(744\) 0 0
\(745\) −3181.45 + 5510.44i −0.156456 + 0.270989i
\(746\) 8748.86 0.429381
\(747\) 0 0
\(748\) −11045.3 −0.539913
\(749\) −11651.5 + 20181.0i −0.568408 + 0.984511i
\(750\) 0 0
\(751\) 8678.87 + 15032.3i 0.421700 + 0.730406i 0.996106 0.0881649i \(-0.0281003\pi\)
−0.574406 + 0.818571i \(0.694767\pi\)
\(752\) −3032.49 5252.43i −0.147053 0.254703i
\(753\) 0 0
\(754\) 13439.0 23277.0i 0.649098 1.12427i
\(755\) −4001.85 −0.192903
\(756\) 0 0
\(757\) 119.139 0.00572019 0.00286010 0.999996i \(-0.499090\pi\)
0.00286010 + 0.999996i \(0.499090\pi\)
\(758\) 8949.46 15500.9i 0.428838 0.742769i
\(759\) 0 0
\(760\) −4940.43 8557.08i −0.235800 0.408418i
\(761\) −4421.51 7658.28i −0.210617 0.364799i 0.741291 0.671184i \(-0.234214\pi\)
−0.951908 + 0.306385i \(0.900881\pi\)
\(762\) 0 0
\(763\) −15864.6 + 27478.2i −0.752734 + 1.30377i
\(764\) −3089.11 −0.146283
\(765\) 0 0
\(766\) 412.926 0.0194773
\(767\) 11439.7 19814.2i 0.538545 0.932788i
\(768\) 0 0
\(769\) −1346.55 2332.30i −0.0631442 0.109369i 0.832725 0.553687i \(-0.186779\pi\)
−0.895869 + 0.444318i \(0.853446\pi\)
\(770\) −4853.45 8406.41i −0.227151 0.393437i
\(771\) 0 0
\(772\) −7305.35 + 12653.2i −0.340577 + 0.589897i
\(773\) 18116.5 0.842958 0.421479 0.906838i \(-0.361511\pi\)
0.421479 + 0.906838i \(0.361511\pi\)
\(774\) 0 0
\(775\) −110.063 −0.00510137
\(776\) −2691.94 + 4662.57i −0.124530 + 0.215692i
\(777\) 0 0
\(778\) 2028.94 + 3514.23i 0.0934975 + 0.161942i
\(779\) −7315.60 12671.0i −0.336468 0.582780i
\(780\) 0 0
\(781\) −6227.35 + 10786.1i −0.285316 + 0.494183i
\(782\) −16218.2 −0.741640
\(783\) 0 0
\(784\) −75.5700 −0.00344251
\(785\) −4071.22 + 7051.56i −0.185106 + 0.320613i
\(786\) 0 0
\(787\) −15873.7 27494.1i −0.718980 1.24531i −0.961404 0.275140i \(-0.911276\pi\)
0.242424 0.970170i \(-0.422057\pi\)
\(788\) 5294.81 + 9170.88i 0.239365 + 0.414593i
\(789\) 0 0
\(790\) 5372.00 9304.58i 0.241933 0.419040i
\(791\) 32006.2 1.43870
\(792\) 0 0
\(793\) −18797.5 −0.841763
\(794\) −6646.07 + 11511.3i −0.297053 + 0.514511i
\(795\) 0 0
\(796\) −2940.43 5092.97i −0.130931 0.226778i
\(797\) −14132.9 24478.9i −0.628122 1.08794i −0.987928 0.154912i \(-0.950490\pi\)
0.359806 0.933027i \(-0.382843\pi\)
\(798\) 0 0
\(799\) 22205.0 38460.2i 0.983174 1.70291i
\(800\) −11.3225 −0.000500390
\(801\) 0 0
\(802\) −3.26896 −0.000143929
\(803\) 870.065 1507.00i 0.0382365 0.0662276i
\(804\) 0 0
\(805\) −7126.52 12343.5i −0.312021 0.540436i
\(806\) 21073.2 + 36499.9i 0.920933 + 1.59510i
\(807\) 0 0
\(808\) −826.091 + 1430.83i −0.0359676 + 0.0622976i
\(809\) 42553.4 1.84932 0.924659 0.380795i \(-0.124350\pi\)
0.924659 + 0.380795i \(0.124350\pi\)
\(810\) 0 0
\(811\) −6900.03 −0.298758 −0.149379 0.988780i \(-0.547727\pi\)
−0.149379 + 0.988780i \(0.547727\pi\)
\(812\) 7297.08 12638.9i 0.315366 0.546230i
\(813\) 0 0
\(814\) −4869.58 8434.36i −0.209679 0.363175i
\(815\) −2219.94 3845.05i −0.0954123 0.165259i
\(816\) 0 0
\(817\) 18487.6 32021.4i 0.791675 1.37122i
\(818\) 12406.7 0.530306
\(819\) 0 0
\(820\) −5939.81 −0.252960
\(821\) 11179.6 19363.6i 0.475238 0.823136i −0.524360 0.851497i \(-0.675695\pi\)
0.999598 + 0.0283606i \(0.00902868\pi\)
\(822\) 0 0
\(823\) −395.785 685.520i −0.0167633 0.0290349i 0.857522 0.514447i \(-0.172003\pi\)
−0.874285 + 0.485412i \(0.838670\pi\)
\(824\) −5487.08 9503.90i −0.231980 0.401801i
\(825\) 0 0
\(826\) 6211.51 10758.6i 0.261654 0.453198i
\(827\) −23005.9 −0.967343 −0.483671 0.875250i \(-0.660697\pi\)
−0.483671 + 0.875250i \(0.660697\pi\)
\(828\) 0 0
\(829\) −15420.2 −0.646040 −0.323020 0.946392i \(-0.604698\pi\)
−0.323020 + 0.946392i \(0.604698\pi\)
\(830\) −2012.72 + 3486.14i −0.0841718 + 0.145790i
\(831\) 0 0
\(832\) 2167.88 + 3754.87i 0.0903336 + 0.156462i
\(833\) −276.675 479.215i −0.0115081 0.0199326i
\(834\) 0 0
\(835\) −17793.6 + 30819.4i −0.737453 + 1.27731i
\(836\) 10400.2 0.430261
\(837\) 0 0
\(838\) −19500.7 −0.803869
\(839\) 23145.1 40088.4i 0.952391 1.64959i 0.212163 0.977234i \(-0.431949\pi\)
0.740228 0.672356i \(-0.234718\pi\)
\(840\) 0 0
\(841\) −7481.44 12958.2i −0.306755 0.531314i
\(842\) −10061.4 17426.8i −0.411803 0.713263i
\(843\) 0 0
\(844\) −3072.01 + 5320.88i −0.125288 + 0.217005i
\(845\) −26787.2 −1.09054
\(846\) 0 0
\(847\) −14263.1 −0.578613
\(848\) 1527.26 2645.29i 0.0618471 0.107122i
\(849\) 0 0
\(850\) −41.4538 71.8001i −0.00167277 0.00289732i
\(851\) −7150.22 12384.5i −0.288021 0.498868i
\(852\) 0 0
\(853\) −13951.2 + 24164.2i −0.559999 + 0.969947i 0.437496 + 0.899220i \(0.355865\pi\)
−0.997496 + 0.0707272i \(0.977468\pi\)
\(854\) −10206.6 −0.408973
\(855\) 0 0
\(856\) −10136.0 −0.404721
\(857\) 3276.46 5675.00i 0.130597 0.226201i −0.793310 0.608818i \(-0.791644\pi\)
0.923907 + 0.382617i \(0.124977\pi\)
\(858\) 0 0
\(859\) −17428.8 30187.6i −0.692275 1.19906i −0.971091 0.238711i \(-0.923275\pi\)
0.278815 0.960345i \(-0.410058\pi\)
\(860\) −7505.38 12999.7i −0.297595 0.515449i
\(861\) 0 0
\(862\) 6763.21 11714.2i 0.267234 0.462863i
\(863\) 10885.2 0.429359 0.214680 0.976685i \(-0.431129\pi\)
0.214680 + 0.976685i \(0.431129\pi\)
\(864\) 0 0
\(865\) 24101.4 0.947367
\(866\) −10601.4 + 18362.1i −0.415993 + 0.720520i
\(867\) 0 0
\(868\) 11442.3 + 19818.6i 0.447438 + 0.774985i
\(869\) 5654.35 + 9793.61i 0.220726 + 0.382308i
\(870\) 0 0
\(871\) 22527.9 39019.5i 0.876383 1.51794i
\(872\) −13801.0 −0.535966
\(873\) 0 0
\(874\) 15271.0 0.591019
\(875\) −12833.8 + 22228.7i −0.495840 + 0.858821i
\(876\) 0 0
\(877\) 13956.9 + 24174.1i 0.537390 + 0.930787i 0.999044 + 0.0437269i \(0.0139231\pi\)
−0.461653 + 0.887061i \(0.652744\pi\)
\(878\) −12568.9 21770.0i −0.483121 0.836791i
\(879\) 0 0
\(880\) 2111.08 3656.49i 0.0808686 0.140069i
\(881\) −10694.5 −0.408975 −0.204488 0.978869i \(-0.565553\pi\)
−0.204488 + 0.978869i \(0.565553\pi\)
\(882\) 0 0
\(883\) 3265.74 0.124463 0.0622315 0.998062i \(-0.480178\pi\)
0.0622315 + 0.998062i \(0.480178\pi\)
\(884\) −15874.0 + 27494.5i −0.603958 + 1.04609i
\(885\) 0 0
\(886\) 10255.4 + 17762.9i 0.388869 + 0.673541i
\(887\) 4696.44 + 8134.47i 0.177780 + 0.307924i 0.941120 0.338073i \(-0.109775\pi\)
−0.763340 + 0.645997i \(0.776442\pi\)
\(888\) 0 0
\(889\) −4525.71 + 7838.75i −0.170739 + 0.295729i
\(890\) −18954.1 −0.713870
\(891\) 0 0
\(892\) −6630.12 −0.248871
\(893\) −20908.2 + 36214.0i −0.783499 + 1.35706i
\(894\) 0 0
\(895\) 25137.0 + 43538.6i 0.938812 + 1.62607i
\(896\) 1177.11 + 2038.81i 0.0438888 + 0.0760177i
\(897\) 0 0
\(898\) 4080.23 7067.17i 0.151625 0.262622i
\(899\) 61706.2 2.28923
\(900\) 0 0
\(901\) 22366.3 0.827002
\(902\) 3126.00 5414.39i 0.115393 0.199867i
\(903\) 0 0
\(904\) 6960.78 + 12056.4i 0.256098 + 0.443574i
\(905\) 7878.30 + 13645.6i 0.289374 + 0.501211i
\(906\) 0 0
\(907\) −6769.24 + 11724.7i −0.247816 + 0.429229i −0.962919 0.269789i \(-0.913046\pi\)
0.715104 + 0.699018i \(0.246379\pi\)
\(908\) 6057.04 0.221377
\(909\) 0 0
\(910\) −27901.0 −1.01638
\(911\) 18903.2 32741.3i 0.687476 1.19074i −0.285175 0.958475i \(-0.592052\pi\)
0.972652 0.232269i \(-0.0746149\pi\)
\(912\) 0 0
\(913\) −2118.51 3669.37i −0.0767935 0.133010i
\(914\) −2183.20 3781.41i −0.0790086 0.136847i
\(915\) 0 0
\(916\) −8598.08 + 14892.3i −0.310140 + 0.537179i
\(917\) −35299.9 −1.27122
\(918\) 0 0
\(919\) 30674.2 1.10103 0.550515 0.834825i \(-0.314431\pi\)
0.550515 + 0.834825i \(0.314431\pi\)
\(920\) 3099.78 5368.98i 0.111084 0.192402i
\(921\) 0 0
\(922\) −3250.26 5629.62i −0.116097 0.201086i
\(923\) 17899.6 + 31003.0i 0.638322 + 1.10561i
\(924\) 0 0
\(925\) 36.5519 63.3098i 0.00129926 0.00225039i
\(926\) −37982.3 −1.34792
\(927\) 0 0
\(928\) 6347.94 0.224549
\(929\) 14058.7 24350.4i 0.496502 0.859967i −0.503490 0.864001i \(-0.667951\pi\)
0.999992 + 0.00403418i \(0.00128412\pi\)
\(930\) 0 0
\(931\) 260.516 + 451.228i 0.00917087 + 0.0158844i
\(932\) 2673.56 + 4630.74i 0.0939650 + 0.162752i
\(933\) 0 0
\(934\) −6906.52 + 11962.4i −0.241957 + 0.419083i
\(935\) 30916.1 1.08135
\(936\) 0 0
\(937\) 31859.0 1.11077 0.555384 0.831594i \(-0.312571\pi\)
0.555384 + 0.831594i \(0.312571\pi\)
\(938\) 12232.2 21186.7i 0.425793 0.737495i
\(939\) 0 0
\(940\) 8488.06 + 14701.8i 0.294521 + 0.510126i
\(941\) −1131.57 1959.93i −0.0392009 0.0678980i 0.845759 0.533565i \(-0.179148\pi\)
−0.884960 + 0.465667i \(0.845815\pi\)
\(942\) 0 0
\(943\) 4590.04 7950.19i 0.158507 0.274543i
\(944\) 5403.57 0.186304
\(945\) 0 0
\(946\) 15799.7 0.543016
\(947\) −3492.67 + 6049.48i −0.119848 + 0.207583i −0.919707 0.392604i \(-0.871574\pi\)
0.799859 + 0.600188i \(0.204908\pi\)
\(948\) 0 0
\(949\) −2500.87 4331.63i −0.0855444 0.148167i
\(950\) 39.0328 + 67.6068i 0.00133304 + 0.00230890i
\(951\) 0 0
\(952\) −8619.20 + 14928.9i −0.293435 + 0.508244i
\(953\) −26436.8 −0.898608 −0.449304 0.893379i \(-0.648328\pi\)
−0.449304 + 0.893379i \(0.648328\pi\)
\(954\) 0 0
\(955\) 8646.53 0.292979
\(956\) −13757.3 + 23828.3i −0.465420 + 0.806131i
\(957\) 0 0
\(958\) −7380.27 12783.0i −0.248900 0.431107i
\(959\) 24120.2 + 41777.4i 0.812181 + 1.40674i
\(960\) 0 0
\(961\) −33484.1 + 57996.2i −1.12397 + 1.94677i
\(962\) −27993.7 −0.938206
\(963\) 0 0
\(964\) 6125.17 0.204646
\(965\) 20448.0 35416.9i 0.682117 1.18146i
\(966\) 0 0
\(967\) 50.0781 + 86.7379i 0.00166536 + 0.00288449i 0.866857 0.498557i \(-0.166137\pi\)
−0.865192 + 0.501442i \(0.832803\pi\)
\(968\) −3101.97 5372.77i −0.102997 0.178396i
\(969\) 0 0
\(970\) 7534.84 13050.7i 0.249411 0.431993i
\(971\) −678.145 −0.0224127 −0.0112063 0.999937i \(-0.503567\pi\)
−0.0112063 + 0.999937i \(0.503567\pi\)
\(972\) 0 0
\(973\) −11560.8 −0.380908
\(974\) −8756.51 + 15166.7i −0.288066 + 0.498945i
\(975\) 0 0
\(976\) −2219.75 3844.73i −0.0727998 0.126093i
\(977\) −4874.13 8442.24i −0.159608 0.276449i 0.775119 0.631815i \(-0.217690\pi\)
−0.934727 + 0.355366i \(0.884356\pi\)
\(978\) 0 0
\(979\) 9975.17 17277.5i 0.325646 0.564036i
\(980\) 211.523 0.00689476
\(981\) 0 0
\(982\) 23675.9 0.769376
\(983\) −1757.84 + 3044.67i −0.0570361 + 0.0987894i −0.893134 0.449791i \(-0.851498\pi\)
0.836098 + 0.548581i \(0.184832\pi\)
\(984\) 0 0
\(985\) −14820.4 25669.6i −0.479407 0.830358i
\(986\) 23240.9 + 40254.5i 0.750651 + 1.30017i
\(987\) 0 0
\(988\) 14946.9 25888.8i 0.481299 0.833635i
\(989\) 23199.4 0.745903
\(990\) 0 0
\(991\) −612.517 −0.0196339 −0.00981697 0.999952i \(-0.503125\pi\)
−0.00981697 + 0.999952i \(0.503125\pi\)
\(992\) −4976.98 + 8620.39i −0.159294 + 0.275905i
\(993\) 0 0
\(994\) 9719.06 + 16833.9i 0.310131 + 0.537162i
\(995\) 8230.38 + 14255.4i 0.262232 + 0.454198i
\(996\) 0 0
\(997\) −11478.2 + 19880.8i −0.364611 + 0.631525i −0.988714 0.149817i \(-0.952131\pi\)
0.624102 + 0.781343i \(0.285465\pi\)
\(998\) −17156.8 −0.544176
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.4.c.j.55.2 4
3.2 odd 2 162.4.c.i.55.1 4
9.2 odd 6 162.4.a.h.1.2 yes 2
9.4 even 3 inner 162.4.c.j.109.2 4
9.5 odd 6 162.4.c.i.109.1 4
9.7 even 3 162.4.a.e.1.1 2
36.7 odd 6 1296.4.a.j.1.1 2
36.11 even 6 1296.4.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.4.a.e.1.1 2 9.7 even 3
162.4.a.h.1.2 yes 2 9.2 odd 6
162.4.c.i.55.1 4 3.2 odd 2
162.4.c.i.109.1 4 9.5 odd 6
162.4.c.j.55.2 4 1.1 even 1 trivial
162.4.c.j.109.2 4 9.4 even 3 inner
1296.4.a.j.1.1 2 36.7 odd 6
1296.4.a.s.1.2 2 36.11 even 6