Properties

Label 162.4.c.j
Level $162$
Weight $4$
Character orbit 162.c
Analytic conductor $9.558$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,4,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.55830942093\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta_1 + 2) q^{2} - 4 \beta_1 q^{4} + (\beta_{2} + 6 \beta_1) q^{5} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots - 8) q^{7} - 8 q^{8} + (2 \beta_{3} + 12) q^{10} + ( - 8 \beta_{3} + 8 \beta_{2} + \cdots + 18) q^{11}+ \cdots + ( - 64 \beta_{3} + 342) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{4} + 12 q^{5} - 16 q^{7} - 32 q^{8} + 48 q^{10} + 36 q^{11} - 10 q^{13} + 32 q^{14} - 32 q^{16} - 240 q^{17} - 16 q^{19} + 48 q^{20} - 72 q^{22} + 180 q^{23} + 124 q^{25} - 40 q^{26}+ \cdots + 1368 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 3\zeta_{12}^{3} + 3\zeta_{12} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -3\zeta_{12}^{3} + 6\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 9 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} ) / 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
1.00000 1.73205i 0 −2.00000 3.46410i 0.401924 + 0.696152i 0 1.19615 2.07180i −8.00000 0 1.60770
55.2 1.00000 1.73205i 0 −2.00000 3.46410i 5.59808 + 9.69615i 0 −9.19615 + 15.9282i −8.00000 0 22.3923
109.1 1.00000 + 1.73205i 0 −2.00000 + 3.46410i 0.401924 0.696152i 0 1.19615 + 2.07180i −8.00000 0 1.60770
109.2 1.00000 + 1.73205i 0 −2.00000 + 3.46410i 5.59808 9.69615i 0 −9.19615 15.9282i −8.00000 0 22.3923
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.4.c.j 4
3.b odd 2 1 162.4.c.i 4
9.c even 3 1 162.4.a.e 2
9.c even 3 1 inner 162.4.c.j 4
9.d odd 6 1 162.4.a.h yes 2
9.d odd 6 1 162.4.c.i 4
36.f odd 6 1 1296.4.a.j 2
36.h even 6 1 1296.4.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.4.a.e 2 9.c even 3 1
162.4.a.h yes 2 9.d odd 6 1
162.4.c.i 4 3.b odd 2 1
162.4.c.i 4 9.d odd 6 1
162.4.c.j 4 1.a even 1 1 trivial
162.4.c.j 4 9.c even 3 1 inner
1296.4.a.j 2 36.f odd 6 1
1296.4.a.s 2 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 12T_{5}^{3} + 135T_{5}^{2} - 108T_{5} + 81 \) acting on \(S_{4}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 12 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( T^{4} + 16 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$11$ \( T^{4} - 36 T^{3} + \cdots + 1971216 \) Copy content Toggle raw display
$13$ \( T^{4} + 10 T^{3} + \cdots + 27741289 \) Copy content Toggle raw display
$17$ \( (T^{2} + 120 T + 333)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 8 T - 13052)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 180 T^{3} + \cdots + 58798224 \) Copy content Toggle raw display
$29$ \( T^{4} - 324 T^{3} + \cdots + 621056241 \) Copy content Toggle raw display
$31$ \( T^{4} - 248 T^{3} + \cdots + 384787456 \) Copy content Toggle raw display
$37$ \( (T^{2} + 434 T + 46981)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 1853819136 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 8362005136 \) Copy content Toggle raw display
$47$ \( T^{4} + 384 T^{3} + \cdots + 3504384 \) Copy content Toggle raw display
$53$ \( (T^{2} - 408 T - 114336)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 51242471424 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 16613405449 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 261615882256 \) Copy content Toggle raw display
$71$ \( (T^{2} - 1140 T + 323172)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 850 T - 68207)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 440 T^{3} + \cdots + 364810000 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 6364210176 \) Copy content Toggle raw display
$89$ \( (T^{2} + 768 T - 66411)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 3751807504 \) Copy content Toggle raw display
show more
show less