Properties

Label 1296.4.a.j
Level $1296$
Weight $4$
Character orbit 1296.a
Self dual yes
Analytic conductor $76.466$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1296,4,Mod(1,1296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1296.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1296.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.4664753674\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 162)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 6) q^{5} + (2 \beta - 8) q^{7} + (8 \beta + 18) q^{11} + (14 \beta + 5) q^{13} + (11 \beta - 60) q^{17} + (22 \beta + 4) q^{19} + (4 \beta + 90) q^{23} + ( - 12 \beta - 62) q^{25} + (7 \beta - 162) q^{29}+ \cdots + (56 \beta - 382) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 12 q^{5} - 16 q^{7} + 36 q^{11} + 10 q^{13} - 120 q^{17} + 8 q^{19} + 180 q^{23} - 124 q^{25} - 324 q^{29} + 248 q^{31} + 204 q^{35} - 434 q^{37} - 192 q^{41} + 608 q^{43} - 384 q^{47} - 342 q^{49}+ \cdots - 764 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −11.1962 0 −18.3923 0 0 0
1.2 0 0 0 −0.803848 0 2.39230 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1296.4.a.j 2
3.b odd 2 1 1296.4.a.s 2
4.b odd 2 1 162.4.a.e 2
12.b even 2 1 162.4.a.h yes 2
36.f odd 6 2 162.4.c.j 4
36.h even 6 2 162.4.c.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.4.a.e 2 4.b odd 2 1
162.4.a.h yes 2 12.b even 2 1
162.4.c.i 4 36.h even 6 2
162.4.c.j 4 36.f odd 6 2
1296.4.a.j 2 1.a even 1 1 trivial
1296.4.a.s 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 12T_{5} + 9 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1296))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 12T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} + 16T - 44 \) Copy content Toggle raw display
$11$ \( T^{2} - 36T - 1404 \) Copy content Toggle raw display
$13$ \( T^{2} - 10T - 5267 \) Copy content Toggle raw display
$17$ \( T^{2} + 120T + 333 \) Copy content Toggle raw display
$19$ \( T^{2} - 8T - 13052 \) Copy content Toggle raw display
$23$ \( T^{2} - 180T + 7668 \) Copy content Toggle raw display
$29$ \( T^{2} + 324T + 24921 \) Copy content Toggle raw display
$31$ \( T^{2} - 248T - 19616 \) Copy content Toggle raw display
$37$ \( T^{2} + 434T + 46981 \) Copy content Toggle raw display
$41$ \( T^{2} + 192T - 43056 \) Copy content Toggle raw display
$43$ \( T^{2} - 608T + 91444 \) Copy content Toggle raw display
$47$ \( T^{2} + 384T + 1872 \) Copy content Toggle raw display
$53$ \( T^{2} - 408T - 114336 \) Copy content Toggle raw display
$59$ \( T^{2} + 1008 T + 226368 \) Copy content Toggle raw display
$61$ \( T^{2} - 742T + 128893 \) Copy content Toggle raw display
$67$ \( T^{2} - 104T - 511484 \) Copy content Toggle raw display
$71$ \( T^{2} + 1140 T + 323172 \) Copy content Toggle raw display
$73$ \( T^{2} - 850T - 68207 \) Copy content Toggle raw display
$79$ \( T^{2} - 440T - 19100 \) Copy content Toggle raw display
$83$ \( T^{2} - 264T - 79776 \) Copy content Toggle raw display
$89$ \( T^{2} + 768T - 66411 \) Copy content Toggle raw display
$97$ \( T^{2} + 764T + 61252 \) Copy content Toggle raw display
show more
show less