Properties

Label 162.5.b.c.161.3
Level $162$
Weight $5$
Character 162.161
Analytic conductor $16.746$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,5,Mod(161,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.161");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 162.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.7459340196\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.221456830464.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 38x^{6} - 100x^{5} + 449x^{4} - 736x^{3} + 1900x^{2} - 1548x + 2307 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{16} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.3
Root \(0.500000 + 3.61825i\) of defining polynomial
Character \(\chi\) \(=\) 162.161
Dual form 162.5.b.c.161.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82843i q^{2} -8.00000 q^{4} +7.40592i q^{5} -60.3765 q^{7} +22.6274i q^{8} +20.9471 q^{10} -63.7457i q^{11} +289.988 q^{13} +170.770i q^{14} +64.0000 q^{16} +460.439i q^{17} +187.741 q^{19} -59.2473i q^{20} -180.300 q^{22} -41.4096i q^{23} +570.152 q^{25} -820.210i q^{26} +483.012 q^{28} +1398.90i q^{29} +636.965 q^{31} -181.019i q^{32} +1302.32 q^{34} -447.143i q^{35} +847.670 q^{37} -531.011i q^{38} -167.577 q^{40} -506.166i q^{41} +1404.86 q^{43} +509.966i q^{44} -117.124 q^{46} -2478.82i q^{47} +1244.32 q^{49} -1612.63i q^{50} -2319.90 q^{52} +773.208i q^{53} +472.095 q^{55} -1366.16i q^{56} +3956.70 q^{58} +4497.48i q^{59} -2602.95 q^{61} -1801.61i q^{62} -512.000 q^{64} +2147.63i q^{65} -3383.10 q^{67} -3683.51i q^{68} -1264.71 q^{70} +2771.07i q^{71} +3525.16 q^{73} -2397.57i q^{74} -1501.93 q^{76} +3848.74i q^{77} +5829.79 q^{79} +473.979i q^{80} -1431.65 q^{82} +5125.29i q^{83} -3409.97 q^{85} -3973.54i q^{86} +1442.40 q^{88} -1221.14i q^{89} -17508.5 q^{91} +331.277i q^{92} -7011.16 q^{94} +1390.39i q^{95} -14735.2 q^{97} -3519.46i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 64 q^{4} + 52 q^{7} - 20 q^{13} + 512 q^{16} + 100 q^{19} - 672 q^{22} - 1588 q^{25} - 416 q^{28} + 2956 q^{31} + 192 q^{34} - 32 q^{37} + 136 q^{43} + 2112 q^{46} - 4884 q^{49} + 160 q^{52} - 3996 q^{55}+ \cdots - 62672 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.82843i − 0.707107i
\(3\) 0 0
\(4\) −8.00000 −0.500000
\(5\) 7.40592i 0.296237i 0.988970 + 0.148118i \(0.0473216\pi\)
−0.988970 + 0.148118i \(0.952678\pi\)
\(6\) 0 0
\(7\) −60.3765 −1.23217 −0.616086 0.787679i \(-0.711283\pi\)
−0.616086 + 0.787679i \(0.711283\pi\)
\(8\) 22.6274i 0.353553i
\(9\) 0 0
\(10\) 20.9471 0.209471
\(11\) − 63.7457i − 0.526824i −0.964683 0.263412i \(-0.915152\pi\)
0.964683 0.263412i \(-0.0848479\pi\)
\(12\) 0 0
\(13\) 289.988 1.71591 0.857953 0.513728i \(-0.171736\pi\)
0.857953 + 0.513728i \(0.171736\pi\)
\(14\) 170.770i 0.871278i
\(15\) 0 0
\(16\) 64.0000 0.250000
\(17\) 460.439i 1.59321i 0.604498 + 0.796606i \(0.293374\pi\)
−0.604498 + 0.796606i \(0.706626\pi\)
\(18\) 0 0
\(19\) 187.741 0.520058 0.260029 0.965601i \(-0.416268\pi\)
0.260029 + 0.965601i \(0.416268\pi\)
\(20\) − 59.2473i − 0.148118i
\(21\) 0 0
\(22\) −180.300 −0.372521
\(23\) − 41.4096i − 0.0782790i −0.999234 0.0391395i \(-0.987538\pi\)
0.999234 0.0391395i \(-0.0124617\pi\)
\(24\) 0 0
\(25\) 570.152 0.912244
\(26\) − 820.210i − 1.21333i
\(27\) 0 0
\(28\) 483.012 0.616086
\(29\) 1398.90i 1.66338i 0.555239 + 0.831691i \(0.312627\pi\)
−0.555239 + 0.831691i \(0.687373\pi\)
\(30\) 0 0
\(31\) 636.965 0.662814 0.331407 0.943488i \(-0.392477\pi\)
0.331407 + 0.943488i \(0.392477\pi\)
\(32\) − 181.019i − 0.176777i
\(33\) 0 0
\(34\) 1302.32 1.12657
\(35\) − 447.143i − 0.365015i
\(36\) 0 0
\(37\) 847.670 0.619189 0.309594 0.950869i \(-0.399807\pi\)
0.309594 + 0.950869i \(0.399807\pi\)
\(38\) − 531.011i − 0.367736i
\(39\) 0 0
\(40\) −167.577 −0.104735
\(41\) − 506.166i − 0.301110i −0.988602 0.150555i \(-0.951894\pi\)
0.988602 0.150555i \(-0.0481060\pi\)
\(42\) 0 0
\(43\) 1404.86 0.759794 0.379897 0.925029i \(-0.375959\pi\)
0.379897 + 0.925029i \(0.375959\pi\)
\(44\) 509.966i 0.263412i
\(45\) 0 0
\(46\) −117.124 −0.0553516
\(47\) − 2478.82i − 1.12215i −0.827767 0.561073i \(-0.810389\pi\)
0.827767 0.561073i \(-0.189611\pi\)
\(48\) 0 0
\(49\) 1244.32 0.518249
\(50\) − 1612.63i − 0.645054i
\(51\) 0 0
\(52\) −2319.90 −0.857953
\(53\) 773.208i 0.275261i 0.990484 + 0.137630i \(0.0439486\pi\)
−0.990484 + 0.137630i \(0.956051\pi\)
\(54\) 0 0
\(55\) 472.095 0.156065
\(56\) − 1366.16i − 0.435639i
\(57\) 0 0
\(58\) 3956.70 1.17619
\(59\) 4497.48i 1.29201i 0.763334 + 0.646004i \(0.223561\pi\)
−0.763334 + 0.646004i \(0.776439\pi\)
\(60\) 0 0
\(61\) −2602.95 −0.699531 −0.349765 0.936837i \(-0.613739\pi\)
−0.349765 + 0.936837i \(0.613739\pi\)
\(62\) − 1801.61i − 0.468681i
\(63\) 0 0
\(64\) −512.000 −0.125000
\(65\) 2147.63i 0.508314i
\(66\) 0 0
\(67\) −3383.10 −0.753641 −0.376821 0.926286i \(-0.622983\pi\)
−0.376821 + 0.926286i \(0.622983\pi\)
\(68\) − 3683.51i − 0.796606i
\(69\) 0 0
\(70\) −1264.71 −0.258104
\(71\) 2771.07i 0.549706i 0.961486 + 0.274853i \(0.0886292\pi\)
−0.961486 + 0.274853i \(0.911371\pi\)
\(72\) 0 0
\(73\) 3525.16 0.661506 0.330753 0.943717i \(-0.392697\pi\)
0.330753 + 0.943717i \(0.392697\pi\)
\(74\) − 2397.57i − 0.437833i
\(75\) 0 0
\(76\) −1501.93 −0.260029
\(77\) 3848.74i 0.649138i
\(78\) 0 0
\(79\) 5829.79 0.934112 0.467056 0.884228i \(-0.345315\pi\)
0.467056 + 0.884228i \(0.345315\pi\)
\(80\) 473.979i 0.0740592i
\(81\) 0 0
\(82\) −1431.65 −0.212917
\(83\) 5125.29i 0.743982i 0.928236 + 0.371991i \(0.121325\pi\)
−0.928236 + 0.371991i \(0.878675\pi\)
\(84\) 0 0
\(85\) −3409.97 −0.471968
\(86\) − 3973.54i − 0.537255i
\(87\) 0 0
\(88\) 1442.40 0.186260
\(89\) − 1221.14i − 0.154164i −0.997025 0.0770822i \(-0.975440\pi\)
0.997025 0.0770822i \(-0.0245604\pi\)
\(90\) 0 0
\(91\) −17508.5 −2.11429
\(92\) 331.277i 0.0391395i
\(93\) 0 0
\(94\) −7011.16 −0.793476
\(95\) 1390.39i 0.154060i
\(96\) 0 0
\(97\) −14735.2 −1.56608 −0.783038 0.621974i \(-0.786331\pi\)
−0.783038 + 0.621974i \(0.786331\pi\)
\(98\) − 3519.46i − 0.366458i
\(99\) 0 0
\(100\) −4561.22 −0.456122
\(101\) 17359.8i 1.70177i 0.525351 + 0.850885i \(0.323934\pi\)
−0.525351 + 0.850885i \(0.676066\pi\)
\(102\) 0 0
\(103\) −10328.7 −0.973581 −0.486791 0.873519i \(-0.661833\pi\)
−0.486791 + 0.873519i \(0.661833\pi\)
\(104\) 6561.68i 0.606664i
\(105\) 0 0
\(106\) 2186.96 0.194639
\(107\) 7260.47i 0.634157i 0.948399 + 0.317079i \(0.102702\pi\)
−0.948399 + 0.317079i \(0.897298\pi\)
\(108\) 0 0
\(109\) 1894.50 0.159456 0.0797280 0.996817i \(-0.474595\pi\)
0.0797280 + 0.996817i \(0.474595\pi\)
\(110\) − 1335.29i − 0.110354i
\(111\) 0 0
\(112\) −3864.09 −0.308043
\(113\) − 9555.08i − 0.748303i −0.927368 0.374151i \(-0.877934\pi\)
0.927368 0.374151i \(-0.122066\pi\)
\(114\) 0 0
\(115\) 306.676 0.0231891
\(116\) − 11191.2i − 0.831691i
\(117\) 0 0
\(118\) 12720.8 0.913587
\(119\) − 27799.6i − 1.96311i
\(120\) 0 0
\(121\) 10577.5 0.722456
\(122\) 7362.27i 0.494643i
\(123\) 0 0
\(124\) −5095.72 −0.331407
\(125\) 8851.20i 0.566477i
\(126\) 0 0
\(127\) 7548.96 0.468037 0.234018 0.972232i \(-0.424812\pi\)
0.234018 + 0.972232i \(0.424812\pi\)
\(128\) 1448.15i 0.0883883i
\(129\) 0 0
\(130\) 6074.41 0.359432
\(131\) − 4822.30i − 0.281004i −0.990080 0.140502i \(-0.955128\pi\)
0.990080 0.140502i \(-0.0448716\pi\)
\(132\) 0 0
\(133\) −11335.1 −0.640801
\(134\) 9568.84i 0.532905i
\(135\) 0 0
\(136\) −10418.5 −0.563286
\(137\) − 10793.0i − 0.575041i −0.957774 0.287521i \(-0.907169\pi\)
0.957774 0.287521i \(-0.0928310\pi\)
\(138\) 0 0
\(139\) 28277.2 1.46355 0.731774 0.681547i \(-0.238693\pi\)
0.731774 + 0.681547i \(0.238693\pi\)
\(140\) 3577.14i 0.182507i
\(141\) 0 0
\(142\) 7837.76 0.388701
\(143\) − 18485.5i − 0.903981i
\(144\) 0 0
\(145\) −10360.2 −0.492755
\(146\) − 9970.67i − 0.467755i
\(147\) 0 0
\(148\) −6781.36 −0.309594
\(149\) − 9765.12i − 0.439850i −0.975517 0.219925i \(-0.929419\pi\)
0.975517 0.219925i \(-0.0705813\pi\)
\(150\) 0 0
\(151\) 766.883 0.0336337 0.0168169 0.999859i \(-0.494647\pi\)
0.0168169 + 0.999859i \(0.494647\pi\)
\(152\) 4248.09i 0.183868i
\(153\) 0 0
\(154\) 10885.9 0.459010
\(155\) 4717.31i 0.196350i
\(156\) 0 0
\(157\) −5191.83 −0.210630 −0.105315 0.994439i \(-0.533585\pi\)
−0.105315 + 0.994439i \(0.533585\pi\)
\(158\) − 16489.1i − 0.660517i
\(159\) 0 0
\(160\) 1340.61 0.0523677
\(161\) 2500.17i 0.0964533i
\(162\) 0 0
\(163\) 24180.8 0.910113 0.455057 0.890462i \(-0.349619\pi\)
0.455057 + 0.890462i \(0.349619\pi\)
\(164\) 4049.32i 0.150555i
\(165\) 0 0
\(166\) 14496.5 0.526075
\(167\) 21765.5i 0.780433i 0.920723 + 0.390216i \(0.127600\pi\)
−0.920723 + 0.390216i \(0.872400\pi\)
\(168\) 0 0
\(169\) 55532.1 1.94433
\(170\) 9644.85i 0.333732i
\(171\) 0 0
\(172\) −11238.9 −0.379897
\(173\) 24005.6i 0.802084i 0.916060 + 0.401042i \(0.131352\pi\)
−0.916060 + 0.401042i \(0.868648\pi\)
\(174\) 0 0
\(175\) −34423.8 −1.12404
\(176\) − 4079.73i − 0.131706i
\(177\) 0 0
\(178\) −3453.89 −0.109011
\(179\) − 41131.4i − 1.28371i −0.766826 0.641855i \(-0.778165\pi\)
0.766826 0.641855i \(-0.221835\pi\)
\(180\) 0 0
\(181\) 32048.3 0.978246 0.489123 0.872215i \(-0.337317\pi\)
0.489123 + 0.872215i \(0.337317\pi\)
\(182\) 49521.4i 1.49503i
\(183\) 0 0
\(184\) 936.993 0.0276758
\(185\) 6277.77i 0.183426i
\(186\) 0 0
\(187\) 29351.0 0.839343
\(188\) 19830.5i 0.561073i
\(189\) 0 0
\(190\) 3932.63 0.108937
\(191\) − 13214.7i − 0.362235i −0.983461 0.181118i \(-0.942029\pi\)
0.983461 0.181118i \(-0.0579715\pi\)
\(192\) 0 0
\(193\) 1786.92 0.0479724 0.0239862 0.999712i \(-0.492364\pi\)
0.0239862 + 0.999712i \(0.492364\pi\)
\(194\) 41677.5i 1.10738i
\(195\) 0 0
\(196\) −9954.53 −0.259125
\(197\) − 17640.9i − 0.454557i −0.973830 0.227278i \(-0.927017\pi\)
0.973830 0.227278i \(-0.0729828\pi\)
\(198\) 0 0
\(199\) 236.938 0.00598314 0.00299157 0.999996i \(-0.499048\pi\)
0.00299157 + 0.999996i \(0.499048\pi\)
\(200\) 12901.1i 0.322527i
\(201\) 0 0
\(202\) 49100.8 1.20333
\(203\) − 84460.9i − 2.04957i
\(204\) 0 0
\(205\) 3748.62 0.0891998
\(206\) 29214.0i 0.688426i
\(207\) 0 0
\(208\) 18559.2 0.428976
\(209\) − 11967.7i − 0.273979i
\(210\) 0 0
\(211\) 35958.3 0.807670 0.403835 0.914832i \(-0.367677\pi\)
0.403835 + 0.914832i \(0.367677\pi\)
\(212\) − 6185.66i − 0.137630i
\(213\) 0 0
\(214\) 20535.7 0.448417
\(215\) 10404.3i 0.225079i
\(216\) 0 0
\(217\) −38457.7 −0.816702
\(218\) − 5358.44i − 0.112752i
\(219\) 0 0
\(220\) −3776.76 −0.0780323
\(221\) 133522.i 2.73380i
\(222\) 0 0
\(223\) −54623.1 −1.09841 −0.549207 0.835686i \(-0.685070\pi\)
−0.549207 + 0.835686i \(0.685070\pi\)
\(224\) 10929.3i 0.217819i
\(225\) 0 0
\(226\) −27025.8 −0.529130
\(227\) − 78164.0i − 1.51689i −0.651735 0.758447i \(-0.725959\pi\)
0.651735 0.758447i \(-0.274041\pi\)
\(228\) 0 0
\(229\) −12039.0 −0.229573 −0.114787 0.993390i \(-0.536618\pi\)
−0.114787 + 0.993390i \(0.536618\pi\)
\(230\) − 867.411i − 0.0163972i
\(231\) 0 0
\(232\) −31653.6 −0.588094
\(233\) 95396.0i 1.75719i 0.477568 + 0.878595i \(0.341518\pi\)
−0.477568 + 0.878595i \(0.658482\pi\)
\(234\) 0 0
\(235\) 18357.9 0.332421
\(236\) − 35979.8i − 0.646004i
\(237\) 0 0
\(238\) −78629.3 −1.38813
\(239\) − 102354.i − 1.79189i −0.444166 0.895944i \(-0.646500\pi\)
0.444166 0.895944i \(-0.353500\pi\)
\(240\) 0 0
\(241\) −53667.8 −0.924016 −0.462008 0.886876i \(-0.652871\pi\)
−0.462008 + 0.886876i \(0.652871\pi\)
\(242\) − 29917.6i − 0.510854i
\(243\) 0 0
\(244\) 20823.6 0.349765
\(245\) 9215.30i 0.153524i
\(246\) 0 0
\(247\) 54442.6 0.892370
\(248\) 14412.9i 0.234340i
\(249\) 0 0
\(250\) 25035.0 0.400560
\(251\) − 99789.6i − 1.58394i −0.610562 0.791969i \(-0.709056\pi\)
0.610562 0.791969i \(-0.290944\pi\)
\(252\) 0 0
\(253\) −2639.69 −0.0412393
\(254\) − 21351.7i − 0.330952i
\(255\) 0 0
\(256\) 4096.00 0.0625000
\(257\) − 2597.38i − 0.0393250i −0.999807 0.0196625i \(-0.993741\pi\)
0.999807 0.0196625i \(-0.00625918\pi\)
\(258\) 0 0
\(259\) −51179.3 −0.762948
\(260\) − 17181.0i − 0.254157i
\(261\) 0 0
\(262\) −13639.5 −0.198700
\(263\) 126218.i 1.82478i 0.409318 + 0.912392i \(0.365767\pi\)
−0.409318 + 0.912392i \(0.634233\pi\)
\(264\) 0 0
\(265\) −5726.31 −0.0815424
\(266\) 32060.6i 0.453115i
\(267\) 0 0
\(268\) 27064.8 0.376821
\(269\) 14374.7i 0.198652i 0.995055 + 0.0993262i \(0.0316687\pi\)
−0.995055 + 0.0993262i \(0.968331\pi\)
\(270\) 0 0
\(271\) −54121.0 −0.736931 −0.368466 0.929641i \(-0.620117\pi\)
−0.368466 + 0.929641i \(0.620117\pi\)
\(272\) 29468.1i 0.398303i
\(273\) 0 0
\(274\) −30527.1 −0.406616
\(275\) − 36344.8i − 0.480592i
\(276\) 0 0
\(277\) 31611.8 0.411993 0.205996 0.978553i \(-0.433956\pi\)
0.205996 + 0.978553i \(0.433956\pi\)
\(278\) − 79980.0i − 1.03488i
\(279\) 0 0
\(280\) 10117.7 0.129052
\(281\) − 102180.i − 1.29406i −0.762466 0.647028i \(-0.776012\pi\)
0.762466 0.647028i \(-0.223988\pi\)
\(282\) 0 0
\(283\) −145334. −1.81466 −0.907329 0.420421i \(-0.861882\pi\)
−0.907329 + 0.420421i \(0.861882\pi\)
\(284\) − 22168.5i − 0.274853i
\(285\) 0 0
\(286\) −52284.9 −0.639211
\(287\) 30560.5i 0.371019i
\(288\) 0 0
\(289\) −128483. −1.53833
\(290\) 29303.0i 0.348430i
\(291\) 0 0
\(292\) −28201.3 −0.330753
\(293\) − 46243.9i − 0.538666i −0.963047 0.269333i \(-0.913197\pi\)
0.963047 0.269333i \(-0.0868032\pi\)
\(294\) 0 0
\(295\) −33307.9 −0.382740
\(296\) 19180.6i 0.218916i
\(297\) 0 0
\(298\) −27619.9 −0.311021
\(299\) − 12008.3i − 0.134319i
\(300\) 0 0
\(301\) −84820.4 −0.936197
\(302\) − 2169.07i − 0.0237826i
\(303\) 0 0
\(304\) 12015.4 0.130014
\(305\) − 19277.3i − 0.207227i
\(306\) 0 0
\(307\) −10736.4 −0.113915 −0.0569576 0.998377i \(-0.518140\pi\)
−0.0569576 + 0.998377i \(0.518140\pi\)
\(308\) − 30789.9i − 0.324569i
\(309\) 0 0
\(310\) 13342.6 0.138840
\(311\) − 222.049i − 0.00229577i −0.999999 0.00114789i \(-0.999635\pi\)
0.999999 0.00114789i \(-0.000365384\pi\)
\(312\) 0 0
\(313\) 146676. 1.49717 0.748586 0.663038i \(-0.230733\pi\)
0.748586 + 0.663038i \(0.230733\pi\)
\(314\) 14684.7i 0.148938i
\(315\) 0 0
\(316\) −46638.3 −0.467056
\(317\) 176443.i 1.75584i 0.478804 + 0.877922i \(0.341070\pi\)
−0.478804 + 0.877922i \(0.658930\pi\)
\(318\) 0 0
\(319\) 89174.2 0.876310
\(320\) − 3791.83i − 0.0370296i
\(321\) 0 0
\(322\) 7071.54 0.0682028
\(323\) 86443.1i 0.828563i
\(324\) 0 0
\(325\) 165337. 1.56532
\(326\) − 68393.6i − 0.643547i
\(327\) 0 0
\(328\) 11453.2 0.106458
\(329\) 149662.i 1.38268i
\(330\) 0 0
\(331\) −96237.1 −0.878389 −0.439194 0.898392i \(-0.644736\pi\)
−0.439194 + 0.898392i \(0.644736\pi\)
\(332\) − 41002.3i − 0.371991i
\(333\) 0 0
\(334\) 61562.1 0.551849
\(335\) − 25054.9i − 0.223256i
\(336\) 0 0
\(337\) 118823. 1.04626 0.523130 0.852253i \(-0.324764\pi\)
0.523130 + 0.852253i \(0.324764\pi\)
\(338\) − 157068.i − 1.37485i
\(339\) 0 0
\(340\) 27279.8 0.235984
\(341\) − 40603.8i − 0.349187i
\(342\) 0 0
\(343\) 69836.5 0.593600
\(344\) 31788.3i 0.268628i
\(345\) 0 0
\(346\) 67898.0 0.567159
\(347\) 195155.i 1.62077i 0.585901 + 0.810383i \(0.300741\pi\)
−0.585901 + 0.810383i \(0.699259\pi\)
\(348\) 0 0
\(349\) −78195.1 −0.641991 −0.320995 0.947081i \(-0.604017\pi\)
−0.320995 + 0.947081i \(0.604017\pi\)
\(350\) 97365.2i 0.794818i
\(351\) 0 0
\(352\) −11539.2 −0.0931302
\(353\) 6223.18i 0.0499417i 0.999688 + 0.0249708i \(0.00794929\pi\)
−0.999688 + 0.0249708i \(0.992051\pi\)
\(354\) 0 0
\(355\) −20522.3 −0.162843
\(356\) 9769.08i 0.0770822i
\(357\) 0 0
\(358\) −116337. −0.907721
\(359\) − 126328.i − 0.980188i −0.871670 0.490094i \(-0.836962\pi\)
0.871670 0.490094i \(-0.163038\pi\)
\(360\) 0 0
\(361\) −95074.4 −0.729540
\(362\) − 90646.3i − 0.691724i
\(363\) 0 0
\(364\) 140068. 1.05715
\(365\) 26107.1i 0.195962i
\(366\) 0 0
\(367\) 120304. 0.893202 0.446601 0.894733i \(-0.352634\pi\)
0.446601 + 0.894733i \(0.352634\pi\)
\(368\) − 2650.22i − 0.0195698i
\(369\) 0 0
\(370\) 17756.2 0.129702
\(371\) − 46683.6i − 0.339169i
\(372\) 0 0
\(373\) −65510.7 −0.470863 −0.235432 0.971891i \(-0.575650\pi\)
−0.235432 + 0.971891i \(0.575650\pi\)
\(374\) − 83017.1i − 0.593505i
\(375\) 0 0
\(376\) 56089.3 0.396738
\(377\) 405666.i 2.85421i
\(378\) 0 0
\(379\) 129148. 0.899106 0.449553 0.893254i \(-0.351583\pi\)
0.449553 + 0.893254i \(0.351583\pi\)
\(380\) − 11123.1i − 0.0770301i
\(381\) 0 0
\(382\) −37376.8 −0.256139
\(383\) 71561.3i 0.487844i 0.969795 + 0.243922i \(0.0784341\pi\)
−0.969795 + 0.243922i \(0.921566\pi\)
\(384\) 0 0
\(385\) −28503.4 −0.192299
\(386\) − 5054.19i − 0.0339216i
\(387\) 0 0
\(388\) 117882. 0.783038
\(389\) 19856.7i 0.131222i 0.997845 + 0.0656111i \(0.0208997\pi\)
−0.997845 + 0.0656111i \(0.979100\pi\)
\(390\) 0 0
\(391\) 19066.6 0.124715
\(392\) 28155.7i 0.183229i
\(393\) 0 0
\(394\) −49896.0 −0.321420
\(395\) 43174.9i 0.276718i
\(396\) 0 0
\(397\) 35293.6 0.223931 0.111966 0.993712i \(-0.464285\pi\)
0.111966 + 0.993712i \(0.464285\pi\)
\(398\) − 670.163i − 0.00423072i
\(399\) 0 0
\(400\) 36489.8 0.228061
\(401\) − 14851.3i − 0.0923580i −0.998933 0.0461790i \(-0.985296\pi\)
0.998933 0.0461790i \(-0.0147045\pi\)
\(402\) 0 0
\(403\) 184712. 1.13733
\(404\) − 138878.i − 0.850885i
\(405\) 0 0
\(406\) −238891. −1.44927
\(407\) − 54035.3i − 0.326204i
\(408\) 0 0
\(409\) 72058.4 0.430762 0.215381 0.976530i \(-0.430901\pi\)
0.215381 + 0.976530i \(0.430901\pi\)
\(410\) − 10602.7i − 0.0630738i
\(411\) 0 0
\(412\) 82629.8 0.486791
\(413\) − 271542.i − 1.59198i
\(414\) 0 0
\(415\) −37957.5 −0.220395
\(416\) − 52493.5i − 0.303332i
\(417\) 0 0
\(418\) −33849.7 −0.193732
\(419\) − 289136.i − 1.64692i −0.567371 0.823462i \(-0.692040\pi\)
0.567371 0.823462i \(-0.307960\pi\)
\(420\) 0 0
\(421\) 121927. 0.687914 0.343957 0.938985i \(-0.388233\pi\)
0.343957 + 0.938985i \(0.388233\pi\)
\(422\) − 101705.i − 0.571109i
\(423\) 0 0
\(424\) −17495.7 −0.0973195
\(425\) 262520.i 1.45340i
\(426\) 0 0
\(427\) 157157. 0.861943
\(428\) − 58083.7i − 0.317079i
\(429\) 0 0
\(430\) 29427.7 0.159155
\(431\) − 207467.i − 1.11685i −0.829555 0.558426i \(-0.811406\pi\)
0.829555 0.558426i \(-0.188594\pi\)
\(432\) 0 0
\(433\) 88879.4 0.474051 0.237026 0.971503i \(-0.423827\pi\)
0.237026 + 0.971503i \(0.423827\pi\)
\(434\) 108775.i 0.577495i
\(435\) 0 0
\(436\) −15156.0 −0.0797280
\(437\) − 7774.28i − 0.0407096i
\(438\) 0 0
\(439\) 148284. 0.769421 0.384711 0.923037i \(-0.374301\pi\)
0.384711 + 0.923037i \(0.374301\pi\)
\(440\) 10682.3i 0.0551772i
\(441\) 0 0
\(442\) 377656. 1.93309
\(443\) − 205300.i − 1.04612i −0.852296 0.523060i \(-0.824790\pi\)
0.852296 0.523060i \(-0.175210\pi\)
\(444\) 0 0
\(445\) 9043.63 0.0456691
\(446\) 154497.i 0.776697i
\(447\) 0 0
\(448\) 30912.7 0.154022
\(449\) 112334.i 0.557211i 0.960406 + 0.278606i \(0.0898722\pi\)
−0.960406 + 0.278606i \(0.910128\pi\)
\(450\) 0 0
\(451\) −32265.9 −0.158632
\(452\) 76440.6i 0.374151i
\(453\) 0 0
\(454\) −221081. −1.07261
\(455\) − 129666.i − 0.626331i
\(456\) 0 0
\(457\) −231021. −1.10616 −0.553082 0.833127i \(-0.686549\pi\)
−0.553082 + 0.833127i \(0.686549\pi\)
\(458\) 34051.5i 0.162333i
\(459\) 0 0
\(460\) −2453.41 −0.0115946
\(461\) 214794.i 1.01069i 0.862916 + 0.505347i \(0.168636\pi\)
−0.862916 + 0.505347i \(0.831364\pi\)
\(462\) 0 0
\(463\) −219326. −1.02312 −0.511561 0.859247i \(-0.670932\pi\)
−0.511561 + 0.859247i \(0.670932\pi\)
\(464\) 89529.9i 0.415846i
\(465\) 0 0
\(466\) 269821. 1.24252
\(467\) − 62261.6i − 0.285487i −0.989760 0.142744i \(-0.954408\pi\)
0.989760 0.142744i \(-0.0455924\pi\)
\(468\) 0 0
\(469\) 204259. 0.928616
\(470\) − 51924.0i − 0.235057i
\(471\) 0 0
\(472\) −101766. −0.456794
\(473\) − 89553.7i − 0.400278i
\(474\) 0 0
\(475\) 107041. 0.474420
\(476\) 222397.i 0.981557i
\(477\) 0 0
\(478\) −289502. −1.26706
\(479\) − 215383.i − 0.938730i −0.883004 0.469365i \(-0.844483\pi\)
0.883004 0.469365i \(-0.155517\pi\)
\(480\) 0 0
\(481\) 245814. 1.06247
\(482\) 151795.i 0.653378i
\(483\) 0 0
\(484\) −84619.9 −0.361228
\(485\) − 109128.i − 0.463929i
\(486\) 0 0
\(487\) −387518. −1.63393 −0.816966 0.576687i \(-0.804345\pi\)
−0.816966 + 0.576687i \(0.804345\pi\)
\(488\) − 58898.1i − 0.247321i
\(489\) 0 0
\(490\) 26064.8 0.108558
\(491\) 79826.4i 0.331118i 0.986200 + 0.165559i \(0.0529429\pi\)
−0.986200 + 0.165559i \(0.947057\pi\)
\(492\) 0 0
\(493\) −644110. −2.65012
\(494\) − 153987.i − 0.631001i
\(495\) 0 0
\(496\) 40765.7 0.165704
\(497\) − 167307.i − 0.677333i
\(498\) 0 0
\(499\) 73445.5 0.294960 0.147480 0.989065i \(-0.452884\pi\)
0.147480 + 0.989065i \(0.452884\pi\)
\(500\) − 70809.6i − 0.283238i
\(501\) 0 0
\(502\) −282248. −1.12001
\(503\) 465077.i 1.83818i 0.394045 + 0.919091i \(0.371075\pi\)
−0.394045 + 0.919091i \(0.628925\pi\)
\(504\) 0 0
\(505\) −128565. −0.504127
\(506\) 7466.16i 0.0291606i
\(507\) 0 0
\(508\) −60391.7 −0.234018
\(509\) − 95308.5i − 0.367872i −0.982938 0.183936i \(-0.941116\pi\)
0.982938 0.183936i \(-0.0588839\pi\)
\(510\) 0 0
\(511\) −212837. −0.815089
\(512\) − 11585.2i − 0.0441942i
\(513\) 0 0
\(514\) −7346.50 −0.0278070
\(515\) − 76493.7i − 0.288410i
\(516\) 0 0
\(517\) −158014. −0.591173
\(518\) 144757.i 0.539485i
\(519\) 0 0
\(520\) −48595.3 −0.179716
\(521\) 173345.i 0.638612i 0.947652 + 0.319306i \(0.103450\pi\)
−0.947652 + 0.319306i \(0.896550\pi\)
\(522\) 0 0
\(523\) −403535. −1.47529 −0.737646 0.675187i \(-0.764063\pi\)
−0.737646 + 0.675187i \(0.764063\pi\)
\(524\) 38578.4i 0.140502i
\(525\) 0 0
\(526\) 357000. 1.29032
\(527\) 293283.i 1.05600i
\(528\) 0 0
\(529\) 278126. 0.993872
\(530\) 16196.5i 0.0576592i
\(531\) 0 0
\(532\) 90681.0 0.320400
\(533\) − 146782.i − 0.516676i
\(534\) 0 0
\(535\) −53770.4 −0.187861
\(536\) − 76550.7i − 0.266452i
\(537\) 0 0
\(538\) 40657.7 0.140468
\(539\) − 79319.8i − 0.273026i
\(540\) 0 0
\(541\) 280182. 0.957295 0.478648 0.878007i \(-0.341127\pi\)
0.478648 + 0.878007i \(0.341127\pi\)
\(542\) 153077.i 0.521089i
\(543\) 0 0
\(544\) 83348.3 0.281643
\(545\) 14030.5i 0.0472367i
\(546\) 0 0
\(547\) −96439.8 −0.322316 −0.161158 0.986929i \(-0.551523\pi\)
−0.161158 + 0.986929i \(0.551523\pi\)
\(548\) 86343.6i 0.287521i
\(549\) 0 0
\(550\) −102799. −0.339830
\(551\) 262632.i 0.865055i
\(552\) 0 0
\(553\) −351982. −1.15099
\(554\) − 89411.7i − 0.291323i
\(555\) 0 0
\(556\) −226218. −0.731774
\(557\) − 403818.i − 1.30159i −0.759252 0.650797i \(-0.774435\pi\)
0.759252 0.650797i \(-0.225565\pi\)
\(558\) 0 0
\(559\) 407392. 1.30373
\(560\) − 28617.1i − 0.0912537i
\(561\) 0 0
\(562\) −289008. −0.915035
\(563\) − 14791.0i − 0.0466639i −0.999728 0.0233320i \(-0.992573\pi\)
0.999728 0.0233320i \(-0.00742747\pi\)
\(564\) 0 0
\(565\) 70764.1 0.221675
\(566\) 411067.i 1.28316i
\(567\) 0 0
\(568\) −62702.1 −0.194350
\(569\) − 243297.i − 0.751470i −0.926727 0.375735i \(-0.877390\pi\)
0.926727 0.375735i \(-0.122610\pi\)
\(570\) 0 0
\(571\) −434303. −1.33205 −0.666025 0.745930i \(-0.732005\pi\)
−0.666025 + 0.745930i \(0.732005\pi\)
\(572\) 147884.i 0.451990i
\(573\) 0 0
\(574\) 86438.1 0.262350
\(575\) − 23609.8i − 0.0714096i
\(576\) 0 0
\(577\) −404030. −1.21356 −0.606781 0.794869i \(-0.707540\pi\)
−0.606781 + 0.794869i \(0.707540\pi\)
\(578\) 363404.i 1.08776i
\(579\) 0 0
\(580\) 82881.4 0.246377
\(581\) − 309447.i − 0.916714i
\(582\) 0 0
\(583\) 49288.7 0.145014
\(584\) 79765.4i 0.233878i
\(585\) 0 0
\(586\) −130798. −0.380894
\(587\) 204320.i 0.592972i 0.955037 + 0.296486i \(0.0958147\pi\)
−0.955037 + 0.296486i \(0.904185\pi\)
\(588\) 0 0
\(589\) 119584. 0.344702
\(590\) 94209.1i 0.270638i
\(591\) 0 0
\(592\) 54250.9 0.154797
\(593\) − 569645.i − 1.61993i −0.586481 0.809963i \(-0.699487\pi\)
0.586481 0.809963i \(-0.300513\pi\)
\(594\) 0 0
\(595\) 205882. 0.581546
\(596\) 78120.9i 0.219925i
\(597\) 0 0
\(598\) −33964.6 −0.0949782
\(599\) 279594.i 0.779246i 0.920975 + 0.389623i \(0.127395\pi\)
−0.920975 + 0.389623i \(0.872605\pi\)
\(600\) 0 0
\(601\) 228527. 0.632687 0.316344 0.948645i \(-0.397545\pi\)
0.316344 + 0.948645i \(0.397545\pi\)
\(602\) 239908.i 0.661991i
\(603\) 0 0
\(604\) −6135.06 −0.0168169
\(605\) 78336.0i 0.214018i
\(606\) 0 0
\(607\) −191339. −0.519308 −0.259654 0.965702i \(-0.583609\pi\)
−0.259654 + 0.965702i \(0.583609\pi\)
\(608\) − 33984.7i − 0.0919341i
\(609\) 0 0
\(610\) −54524.3 −0.146531
\(611\) − 718828.i − 1.92550i
\(612\) 0 0
\(613\) −446105. −1.18718 −0.593589 0.804768i \(-0.702290\pi\)
−0.593589 + 0.804768i \(0.702290\pi\)
\(614\) 30367.1i 0.0805502i
\(615\) 0 0
\(616\) −87087.1 −0.229505
\(617\) − 327242.i − 0.859604i −0.902923 0.429802i \(-0.858583\pi\)
0.902923 0.429802i \(-0.141417\pi\)
\(618\) 0 0
\(619\) 110326. 0.287937 0.143968 0.989582i \(-0.454014\pi\)
0.143968 + 0.989582i \(0.454014\pi\)
\(620\) − 37738.5i − 0.0981749i
\(621\) 0 0
\(622\) −628.051 −0.00162336
\(623\) 73727.8i 0.189957i
\(624\) 0 0
\(625\) 290794. 0.744433
\(626\) − 414864.i − 1.05866i
\(627\) 0 0
\(628\) 41534.6 0.105315
\(629\) 390300.i 0.986500i
\(630\) 0 0
\(631\) 321684. 0.807925 0.403962 0.914776i \(-0.367633\pi\)
0.403962 + 0.914776i \(0.367633\pi\)
\(632\) 131913.i 0.330258i
\(633\) 0 0
\(634\) 499056. 1.24157
\(635\) 55907.0i 0.138650i
\(636\) 0 0
\(637\) 360837. 0.889267
\(638\) − 252223.i − 0.619645i
\(639\) 0 0
\(640\) −10724.9 −0.0261839
\(641\) − 248351.i − 0.604436i −0.953239 0.302218i \(-0.902273\pi\)
0.953239 0.302218i \(-0.0977271\pi\)
\(642\) 0 0
\(643\) 437361. 1.05784 0.528918 0.848673i \(-0.322598\pi\)
0.528918 + 0.848673i \(0.322598\pi\)
\(644\) − 20001.3i − 0.0482266i
\(645\) 0 0
\(646\) 244498. 0.585882
\(647\) 721599.i 1.72380i 0.507076 + 0.861901i \(0.330726\pi\)
−0.507076 + 0.861901i \(0.669274\pi\)
\(648\) 0 0
\(649\) 286695. 0.680661
\(650\) − 467645.i − 1.10685i
\(651\) 0 0
\(652\) −193446. −0.455057
\(653\) − 127461.i − 0.298918i −0.988768 0.149459i \(-0.952247\pi\)
0.988768 0.149459i \(-0.0477532\pi\)
\(654\) 0 0
\(655\) 35713.6 0.0832436
\(656\) − 32394.6i − 0.0752775i
\(657\) 0 0
\(658\) 423309. 0.977700
\(659\) − 158294.i − 0.364496i −0.983253 0.182248i \(-0.941663\pi\)
0.983253 0.182248i \(-0.0583374\pi\)
\(660\) 0 0
\(661\) −570017. −1.30462 −0.652311 0.757951i \(-0.726201\pi\)
−0.652311 + 0.757951i \(0.726201\pi\)
\(662\) 272200.i 0.621114i
\(663\) 0 0
\(664\) −115972. −0.263037
\(665\) − 83947.0i − 0.189829i
\(666\) 0 0
\(667\) 57928.1 0.130208
\(668\) − 174124.i − 0.390216i
\(669\) 0 0
\(670\) −70866.0 −0.157866
\(671\) 165927.i 0.368530i
\(672\) 0 0
\(673\) −269354. −0.594694 −0.297347 0.954770i \(-0.596102\pi\)
−0.297347 + 0.954770i \(0.596102\pi\)
\(674\) − 336081.i − 0.739817i
\(675\) 0 0
\(676\) −444257. −0.972166
\(677\) − 454479.i − 0.991600i −0.868437 0.495800i \(-0.834875\pi\)
0.868437 0.495800i \(-0.165125\pi\)
\(678\) 0 0
\(679\) 889660. 1.92968
\(680\) − 77158.8i − 0.166866i
\(681\) 0 0
\(682\) −114845. −0.246912
\(683\) 225234.i 0.482827i 0.970422 + 0.241414i \(0.0776110\pi\)
−0.970422 + 0.241414i \(0.922389\pi\)
\(684\) 0 0
\(685\) 79931.7 0.170348
\(686\) − 197527.i − 0.419739i
\(687\) 0 0
\(688\) 89911.0 0.189948
\(689\) 224221.i 0.472322i
\(690\) 0 0
\(691\) −504881. −1.05738 −0.528692 0.848814i \(-0.677317\pi\)
−0.528692 + 0.848814i \(0.677317\pi\)
\(692\) − 192045.i − 0.401042i
\(693\) 0 0
\(694\) 551981. 1.14605
\(695\) 209419.i 0.433557i
\(696\) 0 0
\(697\) 233058. 0.479732
\(698\) 221169.i 0.453956i
\(699\) 0 0
\(700\) 275390. 0.562021
\(701\) 19860.8i 0.0404166i 0.999796 + 0.0202083i \(0.00643294\pi\)
−0.999796 + 0.0202083i \(0.993567\pi\)
\(702\) 0 0
\(703\) 159142. 0.322014
\(704\) 32637.8i 0.0658530i
\(705\) 0 0
\(706\) 17601.8 0.0353141
\(707\) − 1.04812e6i − 2.09688i
\(708\) 0 0
\(709\) 630841. 1.25495 0.627476 0.778636i \(-0.284088\pi\)
0.627476 + 0.778636i \(0.284088\pi\)
\(710\) 58045.8i 0.115147i
\(711\) 0 0
\(712\) 27631.1 0.0545053
\(713\) − 26376.5i − 0.0518845i
\(714\) 0 0
\(715\) 136902. 0.267792
\(716\) 329051.i 0.641855i
\(717\) 0 0
\(718\) −357308. −0.693097
\(719\) 337555.i 0.652960i 0.945204 + 0.326480i \(0.105863\pi\)
−0.945204 + 0.326480i \(0.894137\pi\)
\(720\) 0 0
\(721\) 623612. 1.19962
\(722\) 268911.i 0.515863i
\(723\) 0 0
\(724\) −256387. −0.489123
\(725\) 797589.i 1.51741i
\(726\) 0 0
\(727\) −514962. −0.974330 −0.487165 0.873310i \(-0.661969\pi\)
−0.487165 + 0.873310i \(0.661969\pi\)
\(728\) − 396171.i − 0.747515i
\(729\) 0 0
\(730\) 73841.9 0.138566
\(731\) 646851.i 1.21051i
\(732\) 0 0
\(733\) 1.01614e6 1.89123 0.945617 0.325282i \(-0.105459\pi\)
0.945617 + 0.325282i \(0.105459\pi\)
\(734\) − 340272.i − 0.631589i
\(735\) 0 0
\(736\) −7495.94 −0.0138379
\(737\) 215658.i 0.397036i
\(738\) 0 0
\(739\) −663801. −1.21548 −0.607742 0.794135i \(-0.707924\pi\)
−0.607742 + 0.794135i \(0.707924\pi\)
\(740\) − 50222.2i − 0.0917132i
\(741\) 0 0
\(742\) −132041. −0.239829
\(743\) 715436.i 1.29596i 0.761656 + 0.647982i \(0.224387\pi\)
−0.761656 + 0.647982i \(0.775613\pi\)
\(744\) 0 0
\(745\) 72319.6 0.130300
\(746\) 185292.i 0.332950i
\(747\) 0 0
\(748\) −234808. −0.419671
\(749\) − 438361.i − 0.781391i
\(750\) 0 0
\(751\) −443186. −0.785790 −0.392895 0.919583i \(-0.628526\pi\)
−0.392895 + 0.919583i \(0.628526\pi\)
\(752\) − 158644.i − 0.280536i
\(753\) 0 0
\(754\) 1.14740e6 2.01823
\(755\) 5679.47i 0.00996355i
\(756\) 0 0
\(757\) −270550. −0.472123 −0.236061 0.971738i \(-0.575857\pi\)
−0.236061 + 0.971738i \(0.575857\pi\)
\(758\) − 365287.i − 0.635764i
\(759\) 0 0
\(760\) −31461.0 −0.0544685
\(761\) − 586298.i − 1.01239i −0.862418 0.506196i \(-0.831051\pi\)
0.862418 0.506196i \(-0.168949\pi\)
\(762\) 0 0
\(763\) −114383. −0.196477
\(764\) 105718.i 0.181118i
\(765\) 0 0
\(766\) 202406. 0.344958
\(767\) 1.30422e6i 2.21696i
\(768\) 0 0
\(769\) −452818. −0.765721 −0.382861 0.923806i \(-0.625061\pi\)
−0.382861 + 0.923806i \(0.625061\pi\)
\(770\) 80619.9i 0.135976i
\(771\) 0 0
\(772\) −14295.4 −0.0239862
\(773\) 217175.i 0.363455i 0.983349 + 0.181728i \(0.0581689\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(774\) 0 0
\(775\) 363167. 0.604648
\(776\) − 333420.i − 0.553691i
\(777\) 0 0
\(778\) 56163.2 0.0927881
\(779\) − 95028.0i − 0.156595i
\(780\) 0 0
\(781\) 176644. 0.289598
\(782\) − 53928.4i − 0.0881870i
\(783\) 0 0
\(784\) 79636.2 0.129562
\(785\) − 38450.2i − 0.0623964i
\(786\) 0 0
\(787\) −46838.0 −0.0756221 −0.0378110 0.999285i \(-0.512038\pi\)
−0.0378110 + 0.999285i \(0.512038\pi\)
\(788\) 141127.i 0.227278i
\(789\) 0 0
\(790\) 122117. 0.195669
\(791\) 576902.i 0.922038i
\(792\) 0 0
\(793\) −754826. −1.20033
\(794\) − 99825.3i − 0.158343i
\(795\) 0 0
\(796\) −1895.51 −0.00299157
\(797\) 374693.i 0.589874i 0.955517 + 0.294937i \(0.0952987\pi\)
−0.955517 + 0.294937i \(0.904701\pi\)
\(798\) 0 0
\(799\) 1.14134e6 1.78782
\(800\) − 103209.i − 0.161263i
\(801\) 0 0
\(802\) −42005.7 −0.0653070
\(803\) − 224714.i − 0.348497i
\(804\) 0 0
\(805\) −18516.0 −0.0285730
\(806\) − 522445.i − 0.804212i
\(807\) 0 0
\(808\) −392807. −0.601667
\(809\) − 1.02586e6i − 1.56745i −0.621109 0.783724i \(-0.713318\pi\)
0.621109 0.783724i \(-0.286682\pi\)
\(810\) 0 0
\(811\) 869028. 1.32127 0.660636 0.750707i \(-0.270287\pi\)
0.660636 + 0.750707i \(0.270287\pi\)
\(812\) 675687.i 1.02479i
\(813\) 0 0
\(814\) −152835. −0.230661
\(815\) 179081.i 0.269609i
\(816\) 0 0
\(817\) 263749. 0.395137
\(818\) − 203812.i − 0.304595i
\(819\) 0 0
\(820\) −29989.0 −0.0445999
\(821\) 542695.i 0.805137i 0.915390 + 0.402568i \(0.131882\pi\)
−0.915390 + 0.402568i \(0.868118\pi\)
\(822\) 0 0
\(823\) −571565. −0.843851 −0.421926 0.906630i \(-0.638646\pi\)
−0.421926 + 0.906630i \(0.638646\pi\)
\(824\) − 233712.i − 0.344213i
\(825\) 0 0
\(826\) −768036. −1.12570
\(827\) − 143023.i − 0.209120i −0.994519 0.104560i \(-0.966657\pi\)
0.994519 0.104560i \(-0.0333434\pi\)
\(828\) 0 0
\(829\) −17805.6 −0.0259087 −0.0129544 0.999916i \(-0.504124\pi\)
−0.0129544 + 0.999916i \(0.504124\pi\)
\(830\) 107360.i 0.155843i
\(831\) 0 0
\(832\) −148474. −0.214488
\(833\) 572931.i 0.825681i
\(834\) 0 0
\(835\) −161193. −0.231193
\(836\) 95741.4i 0.136990i
\(837\) 0 0
\(838\) −817799. −1.16455
\(839\) 963976.i 1.36944i 0.728807 + 0.684719i \(0.240075\pi\)
−0.728807 + 0.684719i \(0.759925\pi\)
\(840\) 0 0
\(841\) −1.24965e6 −1.76684
\(842\) − 344860.i − 0.486429i
\(843\) 0 0
\(844\) −287666. −0.403835
\(845\) 411266.i 0.575983i
\(846\) 0 0
\(847\) −638631. −0.890191
\(848\) 49485.3i 0.0688152i
\(849\) 0 0
\(850\) 742519. 1.02771
\(851\) − 35101.7i − 0.0484695i
\(852\) 0 0
\(853\) −1.07360e6 −1.47552 −0.737760 0.675063i \(-0.764117\pi\)
−0.737760 + 0.675063i \(0.764117\pi\)
\(854\) − 444508.i − 0.609486i
\(855\) 0 0
\(856\) −164286. −0.224208
\(857\) − 1.09814e6i − 1.49519i −0.664155 0.747595i \(-0.731209\pi\)
0.664155 0.747595i \(-0.268791\pi\)
\(858\) 0 0
\(859\) −892.808 −0.00120996 −0.000604981 1.00000i \(-0.500193\pi\)
−0.000604981 1.00000i \(0.500193\pi\)
\(860\) − 83234.1i − 0.112539i
\(861\) 0 0
\(862\) −586807. −0.789733
\(863\) − 395494.i − 0.531029i −0.964107 0.265514i \(-0.914458\pi\)
0.964107 0.265514i \(-0.0855418\pi\)
\(864\) 0 0
\(865\) −177783. −0.237607
\(866\) − 251389.i − 0.335205i
\(867\) 0 0
\(868\) 307661. 0.408351
\(869\) − 371624.i − 0.492113i
\(870\) 0 0
\(871\) −981057. −1.29318
\(872\) 42867.6i 0.0563762i
\(873\) 0 0
\(874\) −21989.0 −0.0287861
\(875\) − 534404.i − 0.697997i
\(876\) 0 0
\(877\) −661587. −0.860177 −0.430088 0.902787i \(-0.641518\pi\)
−0.430088 + 0.902787i \(0.641518\pi\)
\(878\) − 419410.i − 0.544063i
\(879\) 0 0
\(880\) 30214.1 0.0390162
\(881\) − 419496.i − 0.540476i −0.962794 0.270238i \(-0.912898\pi\)
0.962794 0.270238i \(-0.0871024\pi\)
\(882\) 0 0
\(883\) −498161. −0.638923 −0.319461 0.947599i \(-0.603502\pi\)
−0.319461 + 0.947599i \(0.603502\pi\)
\(884\) − 1.06817e6i − 1.36690i
\(885\) 0 0
\(886\) −580676. −0.739719
\(887\) 384460.i 0.488656i 0.969693 + 0.244328i \(0.0785674\pi\)
−0.969693 + 0.244328i \(0.921433\pi\)
\(888\) 0 0
\(889\) −455780. −0.576702
\(890\) − 25579.2i − 0.0322929i
\(891\) 0 0
\(892\) 436985. 0.549207
\(893\) − 465376.i − 0.583580i
\(894\) 0 0
\(895\) 304616. 0.380282
\(896\) − 87434.4i − 0.108910i
\(897\) 0 0
\(898\) 317729. 0.394008
\(899\) 891053.i 1.10251i
\(900\) 0 0
\(901\) −356015. −0.438549
\(902\) 91261.7i 0.112170i
\(903\) 0 0
\(904\) 216207. 0.264565
\(905\) 237347.i 0.289792i
\(906\) 0 0
\(907\) 99712.2 0.121209 0.0606043 0.998162i \(-0.480697\pi\)
0.0606043 + 0.998162i \(0.480697\pi\)
\(908\) 625312.i 0.758447i
\(909\) 0 0
\(910\) −366751. −0.442883
\(911\) − 1.09399e6i − 1.31819i −0.752060 0.659095i \(-0.770940\pi\)
0.752060 0.659095i \(-0.229060\pi\)
\(912\) 0 0
\(913\) 326715. 0.391948
\(914\) 653427.i 0.782177i
\(915\) 0 0
\(916\) 96312.3 0.114787
\(917\) 291154.i 0.346245i
\(918\) 0 0
\(919\) 102313. 0.121143 0.0605717 0.998164i \(-0.480708\pi\)
0.0605717 + 0.998164i \(0.480708\pi\)
\(920\) 6939.29i 0.00819859i
\(921\) 0 0
\(922\) 607529. 0.714669
\(923\) 803577.i 0.943244i
\(924\) 0 0
\(925\) 483301. 0.564851
\(926\) 620346.i 0.723456i
\(927\) 0 0
\(928\) 253229. 0.294047
\(929\) 1.08787e6i 1.26051i 0.776387 + 0.630256i \(0.217050\pi\)
−0.776387 + 0.630256i \(0.782950\pi\)
\(930\) 0 0
\(931\) 233609. 0.269520
\(932\) − 763168.i − 0.878595i
\(933\) 0 0
\(934\) −176102. −0.201870
\(935\) 217371.i 0.248644i
\(936\) 0 0
\(937\) 1.30162e6 1.48253 0.741265 0.671213i \(-0.234226\pi\)
0.741265 + 0.671213i \(0.234226\pi\)
\(938\) − 577733.i − 0.656631i
\(939\) 0 0
\(940\) −146863. −0.166210
\(941\) − 1.09614e6i − 1.23790i −0.785431 0.618950i \(-0.787558\pi\)
0.785431 0.618950i \(-0.212442\pi\)
\(942\) 0 0
\(943\) −20960.1 −0.0235706
\(944\) 287839.i 0.323002i
\(945\) 0 0
\(946\) −253296. −0.283039
\(947\) − 996741.i − 1.11143i −0.831373 0.555716i \(-0.812444\pi\)
0.831373 0.555716i \(-0.187556\pi\)
\(948\) 0 0
\(949\) 1.02226e6 1.13508
\(950\) − 302757.i − 0.335465i
\(951\) 0 0
\(952\) 629034. 0.694065
\(953\) − 501410.i − 0.552087i −0.961145 0.276044i \(-0.910977\pi\)
0.961145 0.276044i \(-0.0890234\pi\)
\(954\) 0 0
\(955\) 97867.0 0.107307
\(956\) 818836.i 0.895944i
\(957\) 0 0
\(958\) −609195. −0.663782
\(959\) 651640.i 0.708550i
\(960\) 0 0
\(961\) −517797. −0.560677
\(962\) − 695267.i − 0.751280i
\(963\) 0 0
\(964\) 429342. 0.462008
\(965\) 13233.8i 0.0142112i
\(966\) 0 0
\(967\) 210241. 0.224835 0.112418 0.993661i \(-0.464141\pi\)
0.112418 + 0.993661i \(0.464141\pi\)
\(968\) 239341.i 0.255427i
\(969\) 0 0
\(970\) −308660. −0.328047
\(971\) − 1.41640e6i − 1.50227i −0.660151 0.751133i \(-0.729508\pi\)
0.660151 0.751133i \(-0.270492\pi\)
\(972\) 0 0
\(973\) −1.70728e6 −1.80334
\(974\) 1.09607e6i 1.15536i
\(975\) 0 0
\(976\) −166589. −0.174883
\(977\) − 1.80397e6i − 1.88990i −0.327212 0.944951i \(-0.606109\pi\)
0.327212 0.944951i \(-0.393891\pi\)
\(978\) 0 0
\(979\) −77842.2 −0.0812175
\(980\) − 73722.4i − 0.0767622i
\(981\) 0 0
\(982\) 225783. 0.234136
\(983\) 1.11624e6i 1.15518i 0.816327 + 0.577590i \(0.196007\pi\)
−0.816327 + 0.577590i \(0.803993\pi\)
\(984\) 0 0
\(985\) 130647. 0.134656
\(986\) 1.82182e6i 1.87392i
\(987\) 0 0
\(988\) −435541. −0.446185
\(989\) − 58174.7i − 0.0594759i
\(990\) 0 0
\(991\) −888178. −0.904383 −0.452192 0.891921i \(-0.649358\pi\)
−0.452192 + 0.891921i \(0.649358\pi\)
\(992\) − 115303.i − 0.117170i
\(993\) 0 0
\(994\) −473216. −0.478947
\(995\) 1754.75i 0.00177243i
\(996\) 0 0
\(997\) 809681. 0.814561 0.407280 0.913303i \(-0.366477\pi\)
0.407280 + 0.913303i \(0.366477\pi\)
\(998\) − 207735.i − 0.208569i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.5.b.c.161.3 8
3.2 odd 2 inner 162.5.b.c.161.6 8
4.3 odd 2 1296.5.e.e.161.6 8
9.2 odd 6 18.5.d.a.5.3 8
9.4 even 3 18.5.d.a.11.3 yes 8
9.5 odd 6 54.5.d.a.35.1 8
9.7 even 3 54.5.d.a.17.1 8
12.11 even 2 1296.5.e.e.161.3 8
36.7 odd 6 432.5.q.b.17.2 8
36.11 even 6 144.5.q.b.113.3 8
36.23 even 6 432.5.q.b.305.2 8
36.31 odd 6 144.5.q.b.65.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.5.d.a.5.3 8 9.2 odd 6
18.5.d.a.11.3 yes 8 9.4 even 3
54.5.d.a.17.1 8 9.7 even 3
54.5.d.a.35.1 8 9.5 odd 6
144.5.q.b.65.3 8 36.31 odd 6
144.5.q.b.113.3 8 36.11 even 6
162.5.b.c.161.3 8 1.1 even 1 trivial
162.5.b.c.161.6 8 3.2 odd 2 inner
432.5.q.b.17.2 8 36.7 odd 6
432.5.q.b.305.2 8 36.23 even 6
1296.5.e.e.161.3 8 12.11 even 2
1296.5.e.e.161.6 8 4.3 odd 2