Properties

Label 162.5.d.d.107.4
Level $162$
Weight $5$
Character 162.107
Analytic conductor $16.746$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,5,Mod(53,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.53");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 162.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.7459340196\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.4
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 162.107
Dual form 162.5.d.d.53.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.44949 + 1.41421i) q^{2} +(4.00000 + 6.92820i) q^{4} +(-7.97262 + 4.60300i) q^{5} +(-27.2750 + 47.2417i) q^{7} +22.6274i q^{8} +O(q^{10})\) \(q+(2.44949 + 1.41421i) q^{2} +(4.00000 + 6.92820i) q^{4} +(-7.97262 + 4.60300i) q^{5} +(-27.2750 + 47.2417i) q^{7} +22.6274i q^{8} -26.0385 q^{10} +(-34.3164 - 19.8126i) q^{11} +(-107.873 - 186.842i) q^{13} +(-133.620 + 77.1453i) q^{14} +(-32.0000 + 55.4256i) q^{16} -28.2272i q^{17} -254.435 q^{19} +(-63.7810 - 36.8240i) q^{20} +(-56.0385 - 97.0615i) q^{22} +(-801.737 + 462.883i) q^{23} +(-270.125 + 467.870i) q^{25} -610.222i q^{26} -436.400 q^{28} +(1164.65 + 672.411i) q^{29} +(-588.296 - 1018.96i) q^{31} +(-156.767 + 90.5097i) q^{32} +(39.9193 - 69.1422i) q^{34} -502.187i q^{35} -2344.80 q^{37} +(-623.235 - 359.825i) q^{38} +(-104.154 - 180.400i) q^{40} +(1257.92 - 726.261i) q^{41} +(-837.359 + 1450.35i) q^{43} -317.001i q^{44} -2618.46 q^{46} +(2878.47 + 1661.88i) q^{47} +(-287.350 - 497.705i) q^{49} +(-1323.34 + 764.028i) q^{50} +(862.985 - 1494.73i) q^{52} -1743.30i q^{53} +364.789 q^{55} +(-1068.96 - 617.163i) q^{56} +(1901.86 + 3294.13i) q^{58} +(709.264 - 409.494i) q^{59} +(-393.925 + 682.298i) q^{61} -3327.91i q^{62} -512.000 q^{64} +(1720.06 + 993.079i) q^{65} +(-1428.92 - 2474.97i) q^{67} +(195.564 - 112.909i) q^{68} +(710.199 - 1230.10i) q^{70} +7906.95i q^{71} +7112.40 q^{73} +(-5743.57 - 3316.05i) q^{74} +(-1017.74 - 1762.77i) q^{76} +(1871.96 - 1080.78i) q^{77} +(1737.80 - 3009.96i) q^{79} -589.183i q^{80} +4108.35 q^{82} +(996.961 + 575.596i) q^{83} +(129.930 + 225.045i) q^{85} +(-4102.21 + 2368.41i) q^{86} +(448.308 - 776.492i) q^{88} +10793.5i q^{89} +11768.9 q^{91} +(-6413.89 - 3703.06i) q^{92} +(4700.51 + 8141.53i) q^{94} +(2028.51 - 1171.16i) q^{95} +(-4982.60 + 8630.11i) q^{97} -1625.50i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 32 q^{4} + 52 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 32 q^{4} + 52 q^{7} - 624 q^{10} - 572 q^{13} - 256 q^{16} - 248 q^{19} - 864 q^{22} + 1892 q^{25} + 832 q^{28} - 3584 q^{31} + 1608 q^{34} - 18800 q^{37} - 2496 q^{40} - 3020 q^{43} - 4320 q^{46} - 9324 q^{49} + 4576 q^{52} + 22248 q^{55} + 2952 q^{58} + 4144 q^{61} - 4096 q^{64} + 12076 q^{67} - 18096 q^{70} - 3584 q^{73} - 992 q^{76} + 15004 q^{79} + 10752 q^{82} + 24048 q^{85} + 6912 q^{88} + 24440 q^{91} + 12912 q^{94} - 46304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44949 + 1.41421i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 4.00000 + 6.92820i 0.250000 + 0.433013i
\(5\) −7.97262 + 4.60300i −0.318905 + 0.184120i −0.650904 0.759160i \(-0.725610\pi\)
0.331999 + 0.943280i \(0.392277\pi\)
\(6\) 0 0
\(7\) −27.2750 + 47.2417i −0.556632 + 0.964116i 0.441142 + 0.897437i \(0.354573\pi\)
−0.997775 + 0.0666784i \(0.978760\pi\)
\(8\) 22.6274i 0.353553i
\(9\) 0 0
\(10\) −26.0385 −0.260385
\(11\) −34.3164 19.8126i −0.283607 0.163740i 0.351448 0.936207i \(-0.385689\pi\)
−0.635055 + 0.772467i \(0.719023\pi\)
\(12\) 0 0
\(13\) −107.873 186.842i −0.638302 1.10557i −0.985805 0.167893i \(-0.946304\pi\)
0.347503 0.937679i \(-0.387030\pi\)
\(14\) −133.620 + 77.1453i −0.681733 + 0.393599i
\(15\) 0 0
\(16\) −32.0000 + 55.4256i −0.125000 + 0.216506i
\(17\) 28.2272i 0.0976719i −0.998807 0.0488360i \(-0.984449\pi\)
0.998807 0.0488360i \(-0.0155512\pi\)
\(18\) 0 0
\(19\) −254.435 −0.704805 −0.352402 0.935849i \(-0.614635\pi\)
−0.352402 + 0.935849i \(0.614635\pi\)
\(20\) −63.7810 36.8240i −0.159452 0.0920599i
\(21\) 0 0
\(22\) −56.0385 97.0615i −0.115782 0.200540i
\(23\) −801.737 + 462.883i −1.51557 + 0.875015i −0.515737 + 0.856747i \(0.672482\pi\)
−0.999833 + 0.0182680i \(0.994185\pi\)
\(24\) 0 0
\(25\) −270.125 + 467.870i −0.432200 + 0.748592i
\(26\) 610.222i 0.902696i
\(27\) 0 0
\(28\) −436.400 −0.556632
\(29\) 1164.65 + 672.411i 1.38484 + 0.799537i 0.992728 0.120381i \(-0.0384115\pi\)
0.392111 + 0.919918i \(0.371745\pi\)
\(30\) 0 0
\(31\) −588.296 1018.96i −0.612171 1.06031i −0.990874 0.134793i \(-0.956963\pi\)
0.378703 0.925518i \(-0.376370\pi\)
\(32\) −156.767 + 90.5097i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 39.9193 69.1422i 0.0345322 0.0598116i
\(35\) 502.187i 0.409948i
\(36\) 0 0
\(37\) −2344.80 −1.71279 −0.856393 0.516325i \(-0.827300\pi\)
−0.856393 + 0.516325i \(0.827300\pi\)
\(38\) −623.235 359.825i −0.431603 0.249186i
\(39\) 0 0
\(40\) −104.154 180.400i −0.0650962 0.112750i
\(41\) 1257.92 726.261i 0.748317 0.432041i −0.0767684 0.997049i \(-0.524460\pi\)
0.825086 + 0.565008i \(0.191127\pi\)
\(42\) 0 0
\(43\) −837.359 + 1450.35i −0.452872 + 0.784397i −0.998563 0.0535896i \(-0.982934\pi\)
0.545691 + 0.837986i \(0.316267\pi\)
\(44\) 317.001i 0.163740i
\(45\) 0 0
\(46\) −2618.46 −1.23746
\(47\) 2878.47 + 1661.88i 1.30306 + 0.752324i 0.980928 0.194370i \(-0.0622663\pi\)
0.322134 + 0.946694i \(0.395600\pi\)
\(48\) 0 0
\(49\) −287.350 497.705i −0.119679 0.207291i
\(50\) −1323.34 + 764.028i −0.529334 + 0.305611i
\(51\) 0 0
\(52\) 862.985 1494.73i 0.319151 0.552786i
\(53\) 1743.30i 0.620611i −0.950637 0.310305i \(-0.899569\pi\)
0.950637 0.310305i \(-0.100431\pi\)
\(54\) 0 0
\(55\) 364.789 0.120591
\(56\) −1068.96 617.163i −0.340866 0.196799i
\(57\) 0 0
\(58\) 1901.86 + 3294.13i 0.565358 + 0.979229i
\(59\) 709.264 409.494i 0.203753 0.117637i −0.394652 0.918831i \(-0.629135\pi\)
0.598405 + 0.801194i \(0.295801\pi\)
\(60\) 0 0
\(61\) −393.925 + 682.298i −0.105865 + 0.183364i −0.914091 0.405508i \(-0.867095\pi\)
0.808226 + 0.588872i \(0.200428\pi\)
\(62\) 3327.91i 0.865740i
\(63\) 0 0
\(64\) −512.000 −0.125000
\(65\) 1720.06 + 993.079i 0.407115 + 0.235048i
\(66\) 0 0
\(67\) −1428.92 2474.97i −0.318317 0.551341i 0.661820 0.749663i \(-0.269784\pi\)
−0.980137 + 0.198322i \(0.936451\pi\)
\(68\) 195.564 112.909i 0.0422932 0.0244180i
\(69\) 0 0
\(70\) 710.199 1230.10i 0.144939 0.251041i
\(71\) 7906.95i 1.56853i 0.620427 + 0.784264i \(0.286959\pi\)
−0.620427 + 0.784264i \(0.713041\pi\)
\(72\) 0 0
\(73\) 7112.40 1.33466 0.667330 0.744762i \(-0.267437\pi\)
0.667330 + 0.744762i \(0.267437\pi\)
\(74\) −5743.57 3316.05i −1.04886 0.605561i
\(75\) 0 0
\(76\) −1017.74 1762.77i −0.176201 0.305189i
\(77\) 1871.96 1080.78i 0.315729 0.182286i
\(78\) 0 0
\(79\) 1737.80 3009.96i 0.278449 0.482288i −0.692550 0.721370i \(-0.743513\pi\)
0.971000 + 0.239081i \(0.0768463\pi\)
\(80\) 589.183i 0.0920599i
\(81\) 0 0
\(82\) 4108.35 0.610998
\(83\) 996.961 + 575.596i 0.144718 + 0.0835529i 0.570611 0.821221i \(-0.306707\pi\)
−0.425893 + 0.904774i \(0.640040\pi\)
\(84\) 0 0
\(85\) 129.930 + 225.045i 0.0179833 + 0.0311481i
\(86\) −4102.21 + 2368.41i −0.554652 + 0.320229i
\(87\) 0 0
\(88\) 448.308 776.492i 0.0578910 0.100270i
\(89\) 10793.5i 1.36265i 0.731983 + 0.681323i \(0.238595\pi\)
−0.731983 + 0.681323i \(0.761405\pi\)
\(90\) 0 0
\(91\) 11768.9 1.42120
\(92\) −6413.89 3703.06i −0.757785 0.437507i
\(93\) 0 0
\(94\) 4700.51 + 8141.53i 0.531973 + 0.921404i
\(95\) 2028.51 1171.16i 0.224766 0.129769i
\(96\) 0 0
\(97\) −4982.60 + 8630.11i −0.529556 + 0.917219i 0.469849 + 0.882747i \(0.344308\pi\)
−0.999406 + 0.0344720i \(0.989025\pi\)
\(98\) 1625.50i 0.169252i
\(99\) 0 0
\(100\) −4322.00 −0.432200
\(101\) −8556.31 4939.99i −0.838772 0.484265i 0.0180748 0.999837i \(-0.494246\pi\)
−0.856847 + 0.515572i \(0.827580\pi\)
\(102\) 0 0
\(103\) 6752.51 + 11695.7i 0.636489 + 1.10243i 0.986198 + 0.165572i \(0.0529471\pi\)
−0.349709 + 0.936858i \(0.613720\pi\)
\(104\) 4227.74 2440.89i 0.390879 0.225674i
\(105\) 0 0
\(106\) 2465.39 4270.18i 0.219419 0.380045i
\(107\) 9.72286i 0.000849233i −1.00000 0.000424616i \(-0.999865\pi\)
1.00000 0.000424616i \(-0.000135160\pi\)
\(108\) 0 0
\(109\) 18929.2 1.59324 0.796618 0.604484i \(-0.206620\pi\)
0.796618 + 0.604484i \(0.206620\pi\)
\(110\) 893.547 + 515.890i 0.0738469 + 0.0426355i
\(111\) 0 0
\(112\) −1745.60 3023.47i −0.139158 0.241029i
\(113\) 5106.30 2948.13i 0.399898 0.230881i −0.286542 0.958068i \(-0.592506\pi\)
0.686440 + 0.727186i \(0.259172\pi\)
\(114\) 0 0
\(115\) 4261.30 7380.78i 0.322215 0.558093i
\(116\) 10758.6i 0.799537i
\(117\) 0 0
\(118\) 2316.45 0.166363
\(119\) 1333.50 + 769.896i 0.0941670 + 0.0543674i
\(120\) 0 0
\(121\) −6535.42 11319.7i −0.446378 0.773150i
\(122\) −1929.83 + 1114.19i −0.129658 + 0.0748581i
\(123\) 0 0
\(124\) 4706.37 8151.67i 0.306085 0.530155i
\(125\) 10727.3i 0.686546i
\(126\) 0 0
\(127\) −20216.9 −1.25345 −0.626724 0.779241i \(-0.715605\pi\)
−0.626724 + 0.779241i \(0.715605\pi\)
\(128\) −1254.14 724.077i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) 2808.85 + 4865.07i 0.166204 + 0.287874i
\(131\) 12179.1 7031.58i 0.709694 0.409742i −0.101254 0.994861i \(-0.532285\pi\)
0.810948 + 0.585119i \(0.198952\pi\)
\(132\) 0 0
\(133\) 6939.70 12019.9i 0.392317 0.679513i
\(134\) 8083.22i 0.450168i
\(135\) 0 0
\(136\) 638.708 0.0345322
\(137\) 12773.7 + 7374.92i 0.680576 + 0.392931i 0.800072 0.599904i \(-0.204795\pi\)
−0.119496 + 0.992835i \(0.538128\pi\)
\(138\) 0 0
\(139\) 7069.12 + 12244.1i 0.365878 + 0.633719i 0.988917 0.148472i \(-0.0474355\pi\)
−0.623039 + 0.782191i \(0.714102\pi\)
\(140\) 3479.25 2008.75i 0.177513 0.102487i
\(141\) 0 0
\(142\) −11182.1 + 19368.0i −0.554559 + 0.960524i
\(143\) 8548.98i 0.418064i
\(144\) 0 0
\(145\) −12380.4 −0.588843
\(146\) 17421.8 + 10058.5i 0.817309 + 0.471873i
\(147\) 0 0
\(148\) −9379.22 16245.3i −0.428196 0.741658i
\(149\) −9451.21 + 5456.66i −0.425711 + 0.245784i −0.697518 0.716567i \(-0.745712\pi\)
0.271807 + 0.962352i \(0.412379\pi\)
\(150\) 0 0
\(151\) −1394.36 + 2415.10i −0.0611534 + 0.105921i −0.894981 0.446104i \(-0.852811\pi\)
0.833828 + 0.552025i \(0.186145\pi\)
\(152\) 5757.20i 0.249186i
\(153\) 0 0
\(154\) 6113.80 0.257792
\(155\) 9380.53 + 5415.85i 0.390449 + 0.225426i
\(156\) 0 0
\(157\) 1238.42 + 2145.01i 0.0502423 + 0.0870222i 0.890053 0.455857i \(-0.150667\pi\)
−0.839811 + 0.542880i \(0.817334\pi\)
\(158\) 8513.46 4915.25i 0.341029 0.196893i
\(159\) 0 0
\(160\) 833.231 1443.20i 0.0325481 0.0563750i
\(161\) 50500.5i 1.94825i
\(162\) 0 0
\(163\) −35547.0 −1.33791 −0.668957 0.743301i \(-0.733259\pi\)
−0.668957 + 0.743301i \(0.733259\pi\)
\(164\) 10063.4 + 5810.09i 0.374159 + 0.216021i
\(165\) 0 0
\(166\) 1628.03 + 2819.83i 0.0590808 + 0.102331i
\(167\) −45892.8 + 26496.2i −1.64555 + 0.950060i −0.666743 + 0.745287i \(0.732312\pi\)
−0.978810 + 0.204773i \(0.934354\pi\)
\(168\) 0 0
\(169\) −8992.70 + 15575.8i −0.314859 + 0.545352i
\(170\) 734.993i 0.0254323i
\(171\) 0 0
\(172\) −13397.8 −0.452872
\(173\) −46242.8 26698.3i −1.54508 0.892054i −0.998506 0.0546443i \(-0.982598\pi\)
−0.546576 0.837409i \(-0.684069\pi\)
\(174\) 0 0
\(175\) −14735.3 25522.3i −0.481153 0.833381i
\(176\) 2196.25 1268.01i 0.0709017 0.0409351i
\(177\) 0 0
\(178\) −15264.3 + 26438.6i −0.481768 + 0.834447i
\(179\) 32448.3i 1.01271i 0.862324 + 0.506356i \(0.169008\pi\)
−0.862324 + 0.506356i \(0.830992\pi\)
\(180\) 0 0
\(181\) −50381.3 −1.53784 −0.768921 0.639344i \(-0.779206\pi\)
−0.768921 + 0.639344i \(0.779206\pi\)
\(182\) 28827.9 + 16643.8i 0.870303 + 0.502470i
\(183\) 0 0
\(184\) −10473.8 18141.2i −0.309364 0.535835i
\(185\) 18694.2 10793.1i 0.546216 0.315358i
\(186\) 0 0
\(187\) −559.254 + 968.656i −0.0159928 + 0.0277004i
\(188\) 26590.1i 0.752324i
\(189\) 0 0
\(190\) 6625.09 0.183520
\(191\) 1953.74 + 1127.99i 0.0535551 + 0.0309201i 0.526538 0.850151i \(-0.323490\pi\)
−0.472983 + 0.881071i \(0.656823\pi\)
\(192\) 0 0
\(193\) −12016.0 20812.3i −0.322586 0.558736i 0.658435 0.752638i \(-0.271219\pi\)
−0.981021 + 0.193902i \(0.937886\pi\)
\(194\) −24409.6 + 14092.9i −0.648572 + 0.374453i
\(195\) 0 0
\(196\) 2298.80 3981.64i 0.0598397 0.103645i
\(197\) 66824.6i 1.72189i −0.508702 0.860943i \(-0.669875\pi\)
0.508702 0.860943i \(-0.330125\pi\)
\(198\) 0 0
\(199\) −8425.29 −0.212754 −0.106377 0.994326i \(-0.533925\pi\)
−0.106377 + 0.994326i \(0.533925\pi\)
\(200\) −10586.7 6112.23i −0.264667 0.152806i
\(201\) 0 0
\(202\) −13972.4 24200.9i −0.342427 0.593101i
\(203\) −63531.6 + 36680.0i −1.54169 + 0.890097i
\(204\) 0 0
\(205\) −6685.95 + 11580.4i −0.159095 + 0.275560i
\(206\) 38197.9i 0.900131i
\(207\) 0 0
\(208\) 13807.8 0.319151
\(209\) 8731.28 + 5041.01i 0.199887 + 0.115405i
\(210\) 0 0
\(211\) 16850.0 + 29185.0i 0.378473 + 0.655534i 0.990840 0.135039i \(-0.0431160\pi\)
−0.612367 + 0.790573i \(0.709783\pi\)
\(212\) 12077.9 6973.18i 0.268732 0.155153i
\(213\) 0 0
\(214\) 13.7502 23.8161i 0.000300249 0.000520047i
\(215\) 15417.4i 0.333531i
\(216\) 0 0
\(217\) 64183.1 1.36302
\(218\) 46367.0 + 26770.0i 0.975653 + 0.563294i
\(219\) 0 0
\(220\) 1459.16 + 2527.33i 0.0301479 + 0.0522176i
\(221\) −5274.01 + 3044.95i −0.107983 + 0.0623442i
\(222\) 0 0
\(223\) 10265.6 17780.6i 0.206432 0.357550i −0.744156 0.668006i \(-0.767148\pi\)
0.950588 + 0.310455i \(0.100482\pi\)
\(224\) 9874.60i 0.196799i
\(225\) 0 0
\(226\) 16677.1 0.326516
\(227\) −50720.2 29283.3i −0.984305 0.568289i −0.0807378 0.996735i \(-0.525728\pi\)
−0.903567 + 0.428447i \(0.859061\pi\)
\(228\) 0 0
\(229\) 3644.28 + 6312.07i 0.0694929 + 0.120365i 0.898678 0.438609i \(-0.144529\pi\)
−0.829185 + 0.558974i \(0.811195\pi\)
\(230\) 20876.0 12052.8i 0.394631 0.227841i
\(231\) 0 0
\(232\) −15214.9 + 26353.0i −0.282679 + 0.489615i
\(233\) 13584.9i 0.250232i 0.992142 + 0.125116i \(0.0399304\pi\)
−0.992142 + 0.125116i \(0.960070\pi\)
\(234\) 0 0
\(235\) −30598.6 −0.554071
\(236\) 5674.11 + 3275.95i 0.101876 + 0.0588184i
\(237\) 0 0
\(238\) 2177.60 + 3771.71i 0.0384435 + 0.0665862i
\(239\) 22418.8 12943.5i 0.392479 0.226598i −0.290755 0.956798i \(-0.593906\pi\)
0.683234 + 0.730200i \(0.260573\pi\)
\(240\) 0 0
\(241\) 4680.48 8106.84i 0.0805855 0.139578i −0.822916 0.568163i \(-0.807654\pi\)
0.903502 + 0.428585i \(0.140988\pi\)
\(242\) 36969.9i 0.631274i
\(243\) 0 0
\(244\) −6302.80 −0.105865
\(245\) 4581.87 + 2645.34i 0.0763327 + 0.0440707i
\(246\) 0 0
\(247\) 27446.6 + 47539.0i 0.449878 + 0.779212i
\(248\) 23056.4 13311.6i 0.374877 0.216435i
\(249\) 0 0
\(250\) 15170.7 26276.4i 0.242731 0.420422i
\(251\) 109546.i 1.73879i 0.494117 + 0.869396i \(0.335492\pi\)
−0.494117 + 0.869396i \(0.664508\pi\)
\(252\) 0 0
\(253\) 36683.6 0.573101
\(254\) −49521.0 28591.0i −0.767577 0.443161i
\(255\) 0 0
\(256\) −2048.00 3547.24i −0.0312500 0.0541266i
\(257\) 83266.7 48074.1i 1.26068 0.727855i 0.287475 0.957788i \(-0.407184\pi\)
0.973206 + 0.229933i \(0.0738508\pi\)
\(258\) 0 0
\(259\) 63954.5 110772.i 0.953392 1.65132i
\(260\) 15889.3i 0.235048i
\(261\) 0 0
\(262\) 39776.6 0.579463
\(263\) 11913.5 + 6878.28i 0.172238 + 0.0994417i 0.583641 0.812012i \(-0.301628\pi\)
−0.411403 + 0.911454i \(0.634961\pi\)
\(264\) 0 0
\(265\) 8024.38 + 13898.6i 0.114267 + 0.197916i
\(266\) 33997.4 19628.4i 0.480489 0.277410i
\(267\) 0 0
\(268\) 11431.4 19799.8i 0.159158 0.275670i
\(269\) 65136.7i 0.900163i −0.892988 0.450081i \(-0.851395\pi\)
0.892988 0.450081i \(-0.148605\pi\)
\(270\) 0 0
\(271\) 9569.63 0.130304 0.0651518 0.997875i \(-0.479247\pi\)
0.0651518 + 0.997875i \(0.479247\pi\)
\(272\) 1564.51 + 903.270i 0.0211466 + 0.0122090i
\(273\) 0 0
\(274\) 20859.4 + 36129.6i 0.277844 + 0.481240i
\(275\) 18539.4 10703.7i 0.245150 0.141537i
\(276\) 0 0
\(277\) −22168.3 + 38396.6i −0.288916 + 0.500418i −0.973551 0.228468i \(-0.926628\pi\)
0.684635 + 0.728886i \(0.259962\pi\)
\(278\) 39989.0i 0.517429i
\(279\) 0 0
\(280\) 11363.2 0.144939
\(281\) −105192. 60732.4i −1.33220 0.769145i −0.346561 0.938027i \(-0.612651\pi\)
−0.985636 + 0.168883i \(0.945984\pi\)
\(282\) 0 0
\(283\) 58191.1 + 100790.i 0.726581 + 1.25848i 0.958320 + 0.285697i \(0.0922251\pi\)
−0.231739 + 0.972778i \(0.574442\pi\)
\(284\) −54781.0 + 31627.8i −0.679193 + 0.392132i
\(285\) 0 0
\(286\) −12090.1 + 20940.6i −0.147808 + 0.256011i
\(287\) 79235.1i 0.961952i
\(288\) 0 0
\(289\) 82724.2 0.990460
\(290\) −30325.7 17508.6i −0.360591 0.208187i
\(291\) 0 0
\(292\) 28449.6 + 49276.2i 0.333665 + 0.577925i
\(293\) 137541. 79409.4i 1.60213 0.924990i 0.611068 0.791578i \(-0.290740\pi\)
0.991061 0.133412i \(-0.0425933\pi\)
\(294\) 0 0
\(295\) −3769.79 + 6529.47i −0.0433185 + 0.0750299i
\(296\) 53056.9i 0.605561i
\(297\) 0 0
\(298\) −30867.5 −0.347592
\(299\) 172972. + 99865.2i 1.93478 + 1.11705i
\(300\) 0 0
\(301\) −45677.9 79116.5i −0.504166 0.873241i
\(302\) −6830.94 + 3943.84i −0.0748973 + 0.0432420i
\(303\) 0 0
\(304\) 8141.91 14102.2i 0.0881006 0.152595i
\(305\) 7252.94i 0.0779676i
\(306\) 0 0
\(307\) 100162. 1.06274 0.531370 0.847140i \(-0.321677\pi\)
0.531370 + 0.847140i \(0.321677\pi\)
\(308\) 14975.7 + 8646.21i 0.157865 + 0.0911432i
\(309\) 0 0
\(310\) 15318.3 + 26532.1i 0.159400 + 0.276089i
\(311\) −46738.2 + 26984.3i −0.483227 + 0.278991i −0.721760 0.692143i \(-0.756667\pi\)
0.238534 + 0.971134i \(0.423333\pi\)
\(312\) 0 0
\(313\) −37756.9 + 65396.9i −0.385396 + 0.667526i −0.991824 0.127613i \(-0.959269\pi\)
0.606428 + 0.795139i \(0.292602\pi\)
\(314\) 7005.58i 0.0710534i
\(315\) 0 0
\(316\) 27804.8 0.278449
\(317\) −57648.6 33283.4i −0.573680 0.331215i 0.184938 0.982750i \(-0.440792\pi\)
−0.758618 + 0.651536i \(0.774125\pi\)
\(318\) 0 0
\(319\) −26644.4 46149.5i −0.261833 0.453508i
\(320\) 4081.98 2356.73i 0.0398631 0.0230150i
\(321\) 0 0
\(322\) 71418.5 123700.i 0.688809 1.19305i
\(323\) 7181.97i 0.0688397i
\(324\) 0 0
\(325\) 116557. 1.10350
\(326\) −87072.1 50271.1i −0.819302 0.473024i
\(327\) 0 0
\(328\) 16433.4 + 28463.5i 0.152750 + 0.264570i
\(329\) −157020. + 90655.7i −1.45065 + 0.837535i
\(330\) 0 0
\(331\) 34710.1 60119.7i 0.316811 0.548732i −0.663010 0.748611i \(-0.730721\pi\)
0.979821 + 0.199878i \(0.0640546\pi\)
\(332\) 9209.53i 0.0835529i
\(333\) 0 0
\(334\) −149885. −1.34359
\(335\) 22784.5 + 13154.7i 0.203026 + 0.117217i
\(336\) 0 0
\(337\) −44393.0 76890.9i −0.390890 0.677041i 0.601677 0.798739i \(-0.294499\pi\)
−0.992567 + 0.121698i \(0.961166\pi\)
\(338\) −44055.0 + 25435.2i −0.385622 + 0.222639i
\(339\) 0 0
\(340\) −1039.44 + 1800.36i −0.00899167 + 0.0155740i
\(341\) 46622.7i 0.400948i
\(342\) 0 0
\(343\) −99624.6 −0.846795
\(344\) −32817.7 18947.3i −0.277326 0.160114i
\(345\) 0 0
\(346\) −75514.1 130794.i −0.630777 1.09254i
\(347\) 95033.8 54867.8i 0.789259 0.455679i −0.0504428 0.998727i \(-0.516063\pi\)
0.839701 + 0.543048i \(0.182730\pi\)
\(348\) 0 0
\(349\) −69389.6 + 120186.i −0.569696 + 0.986743i 0.426899 + 0.904299i \(0.359606\pi\)
−0.996596 + 0.0824438i \(0.973728\pi\)
\(350\) 83355.5i 0.680453i
\(351\) 0 0
\(352\) 7172.92 0.0578910
\(353\) 67397.6 + 38912.0i 0.540873 + 0.312273i 0.745433 0.666581i \(-0.232243\pi\)
−0.204560 + 0.978854i \(0.565576\pi\)
\(354\) 0 0
\(355\) −36395.7 63039.2i −0.288797 0.500212i
\(356\) −74779.7 + 43174.1i −0.590043 + 0.340662i
\(357\) 0 0
\(358\) −45888.9 + 79481.8i −0.358048 + 0.620157i
\(359\) 195283.i 1.51522i 0.652708 + 0.757610i \(0.273633\pi\)
−0.652708 + 0.757610i \(0.726367\pi\)
\(360\) 0 0
\(361\) −65584.1 −0.503250
\(362\) −123408. 71249.8i −0.941732 0.543709i
\(363\) 0 0
\(364\) 47075.8 + 81537.7i 0.355300 + 0.615397i
\(365\) −56704.5 + 32738.4i −0.425630 + 0.245737i
\(366\) 0 0
\(367\) −42902.7 + 74309.6i −0.318531 + 0.551713i −0.980182 0.198100i \(-0.936523\pi\)
0.661650 + 0.749812i \(0.269856\pi\)
\(368\) 59249.0i 0.437507i
\(369\) 0 0
\(370\) 61055.1 0.445983
\(371\) 82356.2 + 47548.4i 0.598340 + 0.345452i
\(372\) 0 0
\(373\) −6159.02 10667.7i −0.0442684 0.0766751i 0.843042 0.537847i \(-0.180762\pi\)
−0.887311 + 0.461172i \(0.847429\pi\)
\(374\) −2739.77 + 1581.81i −0.0195872 + 0.0113086i
\(375\) 0 0
\(376\) −37604.1 + 65132.2i −0.265987 + 0.460702i
\(377\) 290140.i 2.04139i
\(378\) 0 0
\(379\) −216174. −1.50496 −0.752479 0.658617i \(-0.771142\pi\)
−0.752479 + 0.658617i \(0.771142\pi\)
\(380\) 16228.1 + 9369.29i 0.112383 + 0.0648843i
\(381\) 0 0
\(382\) 3190.45 + 5526.02i 0.0218638 + 0.0378692i
\(383\) −205867. + 118857.i −1.40342 + 0.810266i −0.994742 0.102411i \(-0.967344\pi\)
−0.408680 + 0.912678i \(0.634011\pi\)
\(384\) 0 0
\(385\) −9949.62 + 17233.2i −0.0671251 + 0.116264i
\(386\) 67972.8i 0.456206i
\(387\) 0 0
\(388\) −79721.5 −0.529556
\(389\) 161345. + 93152.6i 1.06624 + 0.615596i 0.927153 0.374684i \(-0.122249\pi\)
0.139091 + 0.990280i \(0.455582\pi\)
\(390\) 0 0
\(391\) 13065.9 + 22630.8i 0.0854644 + 0.148029i
\(392\) 11261.8 6501.99i 0.0732884 0.0423131i
\(393\) 0 0
\(394\) 94504.3 163686.i 0.608778 1.05444i
\(395\) 31996.4i 0.205072i
\(396\) 0 0
\(397\) 5004.70 0.0317539 0.0158769 0.999874i \(-0.494946\pi\)
0.0158769 + 0.999874i \(0.494946\pi\)
\(398\) −20637.7 11915.2i −0.130285 0.0752200i
\(399\) 0 0
\(400\) −17288.0 29943.7i −0.108050 0.187148i
\(401\) 152835. 88239.4i 0.950461 0.548749i 0.0572371 0.998361i \(-0.481771\pi\)
0.893224 + 0.449612i \(0.148438\pi\)
\(402\) 0 0
\(403\) −126923. + 219836.i −0.781500 + 1.35360i
\(404\) 79039.8i 0.484265i
\(405\) 0 0
\(406\) −207493. −1.25879
\(407\) 80465.3 + 46456.6i 0.485758 + 0.280452i
\(408\) 0 0
\(409\) −94356.8 163431.i −0.564062 0.976984i −0.997136 0.0756254i \(-0.975905\pi\)
0.433075 0.901358i \(-0.357429\pi\)
\(410\) −32754.3 + 18910.7i −0.194850 + 0.112497i
\(411\) 0 0
\(412\) −54020.1 + 93565.5i −0.318244 + 0.551215i
\(413\) 44675.7i 0.261922i
\(414\) 0 0
\(415\) −10597.9 −0.0615349
\(416\) 33821.9 + 19527.1i 0.195439 + 0.112837i
\(417\) 0 0
\(418\) 14258.1 + 24695.8i 0.0816037 + 0.141342i
\(419\) −10397.0 + 6002.70i −0.0592215 + 0.0341915i −0.529318 0.848423i \(-0.677552\pi\)
0.470097 + 0.882615i \(0.344219\pi\)
\(420\) 0 0
\(421\) 27797.6 48146.8i 0.156835 0.271646i −0.776891 0.629635i \(-0.783204\pi\)
0.933726 + 0.357989i \(0.116538\pi\)
\(422\) 95317.9i 0.535241i
\(423\) 0 0
\(424\) 39446.3 0.219419
\(425\) 13206.7 + 7624.87i 0.0731164 + 0.0422138i
\(426\) 0 0
\(427\) −21488.6 37219.3i −0.117856 0.204133i
\(428\) 67.3620 38.8915i 0.000367728 0.000212308i
\(429\) 0 0
\(430\) 21803.6 37764.9i 0.117921 0.204245i
\(431\) 52071.6i 0.280315i −0.990129 0.140158i \(-0.955239\pi\)
0.990129 0.140158i \(-0.0447609\pi\)
\(432\) 0 0
\(433\) −205361. −1.09532 −0.547662 0.836700i \(-0.684482\pi\)
−0.547662 + 0.836700i \(0.684482\pi\)
\(434\) 157216. + 90768.6i 0.834674 + 0.481899i
\(435\) 0 0
\(436\) 75716.9 + 131146.i 0.398309 + 0.689891i
\(437\) 203990. 117773.i 1.06818 0.616715i
\(438\) 0 0
\(439\) 162282. 281081.i 0.842058 1.45849i −0.0460931 0.998937i \(-0.514677\pi\)
0.888152 0.459551i \(-0.151990\pi\)
\(440\) 8254.24i 0.0426355i
\(441\) 0 0
\(442\) −17224.9 −0.0881680
\(443\) −148975. 86010.6i −0.759111 0.438273i 0.0698657 0.997556i \(-0.477743\pi\)
−0.828976 + 0.559284i \(0.811076\pi\)
\(444\) 0 0
\(445\) −49682.5 86052.7i −0.250890 0.434555i
\(446\) 50291.2 29035.6i 0.252826 0.145969i
\(447\) 0 0
\(448\) 13964.8 24187.7i 0.0695791 0.120514i
\(449\) 121635.i 0.603345i −0.953412 0.301672i \(-0.902455\pi\)
0.953412 0.301672i \(-0.0975449\pi\)
\(450\) 0 0
\(451\) −57556.5 −0.282970
\(452\) 40850.4 + 23585.0i 0.199949 + 0.115441i
\(453\) 0 0
\(454\) −82825.8 143459.i −0.401841 0.696009i
\(455\) −93829.4 + 54172.4i −0.453227 + 0.261671i
\(456\) 0 0
\(457\) −23274.4 + 40312.4i −0.111441 + 0.193022i −0.916352 0.400375i \(-0.868880\pi\)
0.804910 + 0.593396i \(0.202213\pi\)
\(458\) 20615.1i 0.0982778i
\(459\) 0 0
\(460\) 68180.7 0.322215
\(461\) 176904. + 102136.i 0.832409 + 0.480591i 0.854677 0.519161i \(-0.173755\pi\)
−0.0222679 + 0.999752i \(0.507089\pi\)
\(462\) 0 0
\(463\) 8635.53 + 14957.2i 0.0402835 + 0.0697731i 0.885464 0.464708i \(-0.153841\pi\)
−0.845181 + 0.534481i \(0.820507\pi\)
\(464\) −74537.6 + 43034.3i −0.346210 + 0.199884i
\(465\) 0 0
\(466\) −19211.9 + 33276.0i −0.0884705 + 0.153235i
\(467\) 219664.i 1.00722i −0.863930 0.503611i \(-0.832004\pi\)
0.863930 0.503611i \(-0.167996\pi\)
\(468\) 0 0
\(469\) 155896. 0.708742
\(470\) −74950.9 43272.9i −0.339298 0.195894i
\(471\) 0 0
\(472\) 9265.78 + 16048.8i 0.0415909 + 0.0720375i
\(473\) 57470.4 33180.5i 0.256875 0.148307i
\(474\) 0 0
\(475\) 68729.1 119042.i 0.304617 0.527611i
\(476\) 12318.3i 0.0543674i
\(477\) 0 0
\(478\) 73219.4 0.320457
\(479\) −78854.6 45526.7i −0.343682 0.198425i 0.318217 0.948018i \(-0.396916\pi\)
−0.661899 + 0.749593i \(0.730249\pi\)
\(480\) 0 0
\(481\) 252941. + 438107.i 1.09327 + 1.89361i
\(482\) 22929.6 13238.4i 0.0986966 0.0569825i
\(483\) 0 0
\(484\) 52283.4 90557.5i 0.223189 0.386575i
\(485\) 91739.5i 0.390007i
\(486\) 0 0
\(487\) 146600. 0.618126 0.309063 0.951042i \(-0.399985\pi\)
0.309063 + 0.951042i \(0.399985\pi\)
\(488\) −15438.6 8913.50i −0.0648290 0.0374290i
\(489\) 0 0
\(490\) 7482.16 + 12959.5i 0.0311627 + 0.0539754i
\(491\) 41966.3 24229.2i 0.174075 0.100502i −0.410431 0.911892i \(-0.634622\pi\)
0.584506 + 0.811389i \(0.301288\pi\)
\(492\) 0 0
\(493\) 18980.3 32874.8i 0.0780924 0.135260i
\(494\) 155262.i 0.636224i
\(495\) 0 0
\(496\) 75301.9 0.306085
\(497\) −373538. 215662.i −1.51224 0.873094i
\(498\) 0 0
\(499\) 124007. + 214786.i 0.498016 + 0.862590i 0.999997 0.00228889i \(-0.000728578\pi\)
−0.501981 + 0.864879i \(0.667395\pi\)
\(500\) 74320.8 42909.1i 0.297283 0.171636i
\(501\) 0 0
\(502\) −154921. + 268331.i −0.614755 + 1.06479i
\(503\) 486322.i 1.92215i 0.276286 + 0.961076i \(0.410896\pi\)
−0.276286 + 0.961076i \(0.589104\pi\)
\(504\) 0 0
\(505\) 90955.0 0.356651
\(506\) 89856.2 + 51878.5i 0.350951 + 0.202622i
\(507\) 0 0
\(508\) −80867.4 140066.i −0.313362 0.542759i
\(509\) −246292. + 142196.i −0.950635 + 0.548850i −0.893278 0.449504i \(-0.851601\pi\)
−0.0573571 + 0.998354i \(0.518267\pi\)
\(510\) 0 0
\(511\) −193991. + 336002.i −0.742915 + 1.28677i
\(512\) 11585.2i 0.0441942i
\(513\) 0 0
\(514\) 271948. 1.02934
\(515\) −107670. 62163.5i −0.405959 0.234380i
\(516\) 0 0
\(517\) −65852.4 114060.i −0.246372 0.426728i
\(518\) 313312. 180891.i 1.16766 0.674150i
\(519\) 0 0
\(520\) −22470.8 + 38920.6i −0.0831021 + 0.143937i
\(521\) 248390.i 0.915079i 0.889189 + 0.457539i \(0.151269\pi\)
−0.889189 + 0.457539i \(0.848731\pi\)
\(522\) 0 0
\(523\) 113565. 0.415186 0.207593 0.978215i \(-0.433437\pi\)
0.207593 + 0.978215i \(0.433437\pi\)
\(524\) 97432.5 + 56252.7i 0.354847 + 0.204871i
\(525\) 0 0
\(526\) 19454.7 + 33696.6i 0.0703159 + 0.121791i
\(527\) −28762.3 + 16605.9i −0.103563 + 0.0597919i
\(528\) 0 0
\(529\) 288601. 499871.i 1.03130 1.78627i
\(530\) 45392.8i 0.161598i
\(531\) 0 0
\(532\) 111035. 0.392317
\(533\) −271392. 156688.i −0.955305 0.551546i
\(534\) 0 0
\(535\) 44.7543 + 77.5167i 0.000156361 + 0.000270824i
\(536\) 56002.2 32332.9i 0.194928 0.112542i
\(537\) 0 0
\(538\) 92117.2 159552.i 0.318256 0.551235i
\(539\) 22772.6i 0.0783854i
\(540\) 0 0
\(541\) 68803.4 0.235080 0.117540 0.993068i \(-0.462499\pi\)
0.117540 + 0.993068i \(0.462499\pi\)
\(542\) 23440.7 + 13533.5i 0.0797943 + 0.0460693i
\(543\) 0 0
\(544\) 2554.83 + 4425.10i 0.00863306 + 0.0149529i
\(545\) −150916. + 87131.2i −0.508091 + 0.293346i
\(546\) 0 0
\(547\) 70749.2 122541.i 0.236454 0.409551i −0.723240 0.690597i \(-0.757348\pi\)
0.959694 + 0.281046i \(0.0906814\pi\)
\(548\) 117999.i 0.392931i
\(549\) 0 0
\(550\) 60549.5 0.200164
\(551\) −296327. 171085.i −0.976041 0.563518i
\(552\) 0 0
\(553\) 94797.1 + 164193.i 0.309988 + 0.536915i
\(554\) −108602. + 62701.3i −0.353849 + 0.204295i
\(555\) 0 0
\(556\) −56553.0 + 97952.7i −0.182939 + 0.316859i
\(557\) 59163.4i 0.190697i 0.995444 + 0.0953483i \(0.0303965\pi\)
−0.995444 + 0.0953483i \(0.969604\pi\)
\(558\) 0 0
\(559\) 361314. 1.15628
\(560\) 27834.0 + 16070.0i 0.0887564 + 0.0512435i
\(561\) 0 0
\(562\) −171777. 297527.i −0.543867 0.942006i
\(563\) 359369. 207482.i 1.13377 0.654580i 0.188886 0.981999i \(-0.439512\pi\)
0.944879 + 0.327419i \(0.106179\pi\)
\(564\) 0 0
\(565\) −27140.4 + 47008.6i −0.0850197 + 0.147258i
\(566\) 329179.i 1.02754i
\(567\) 0 0
\(568\) −178914. −0.554559
\(569\) −229601. 132560.i −0.709169 0.409439i 0.101584 0.994827i \(-0.467609\pi\)
−0.810753 + 0.585388i \(0.800942\pi\)
\(570\) 0 0
\(571\) 16370.1 + 28353.8i 0.0502086 + 0.0869639i 0.890037 0.455887i \(-0.150678\pi\)
−0.839829 + 0.542851i \(0.817345\pi\)
\(572\) −59229.1 + 34195.9i −0.181027 + 0.104516i
\(573\) 0 0
\(574\) −112055. + 194085.i −0.340102 + 0.589073i
\(575\) 500145.i 1.51272i
\(576\) 0 0
\(577\) 136483. 0.409946 0.204973 0.978768i \(-0.434289\pi\)
0.204973 + 0.978768i \(0.434289\pi\)
\(578\) 202632. + 116990.i 0.606531 + 0.350181i
\(579\) 0 0
\(580\) −49521.7 85774.0i −0.147211 0.254976i
\(581\) −54384.2 + 31398.7i −0.161109 + 0.0930165i
\(582\) 0 0
\(583\) −34539.2 + 59823.7i −0.101619 + 0.176009i
\(584\) 160935.i 0.471873i
\(585\) 0 0
\(586\) 449208. 1.30813
\(587\) 249463. + 144027.i 0.723984 + 0.417992i 0.816217 0.577745i \(-0.196067\pi\)
−0.0922331 + 0.995737i \(0.529401\pi\)
\(588\) 0 0
\(589\) 149683. + 259258.i 0.431461 + 0.747312i
\(590\) −18468.1 + 10662.6i −0.0530541 + 0.0306308i
\(591\) 0 0
\(592\) 75033.7 129962.i 0.214098 0.370829i
\(593\) 272778.i 0.775711i 0.921720 + 0.387856i \(0.126784\pi\)
−0.921720 + 0.387856i \(0.873216\pi\)
\(594\) 0 0
\(595\) −14175.3 −0.0400404
\(596\) −75609.7 43653.3i −0.212856 0.122892i
\(597\) 0 0
\(598\) 282461. + 489238.i 0.789872 + 1.36810i
\(599\) −68974.2 + 39822.3i −0.192235 + 0.110987i −0.593029 0.805181i \(-0.702068\pi\)
0.400793 + 0.916169i \(0.368735\pi\)
\(600\) 0 0
\(601\) −59878.8 + 103713.i −0.165777 + 0.287134i −0.936931 0.349515i \(-0.886347\pi\)
0.771154 + 0.636649i \(0.219680\pi\)
\(602\) 258393.i 0.712998i
\(603\) 0 0
\(604\) −22309.7 −0.0611534
\(605\) 104209. + 60165.0i 0.284704 + 0.164374i
\(606\) 0 0
\(607\) −57220.1 99108.1i −0.155300 0.268987i 0.777868 0.628427i \(-0.216301\pi\)
−0.933168 + 0.359440i \(0.882968\pi\)
\(608\) 39887.0 23028.8i 0.107901 0.0622965i
\(609\) 0 0
\(610\) 10257.2 17766.0i 0.0275657 0.0477452i
\(611\) 717090.i 1.92084i
\(612\) 0 0
\(613\) −598912. −1.59383 −0.796915 0.604091i \(-0.793536\pi\)
−0.796915 + 0.604091i \(0.793536\pi\)
\(614\) 245346. + 141651.i 0.650793 + 0.375735i
\(615\) 0 0
\(616\) 24455.2 + 42357.6i 0.0644480 + 0.111627i
\(617\) −150704. + 87008.9i −0.395871 + 0.228556i −0.684701 0.728824i \(-0.740067\pi\)
0.288830 + 0.957381i \(0.406734\pi\)
\(618\) 0 0
\(619\) 368424. 638130.i 0.961540 1.66544i 0.242902 0.970051i \(-0.421901\pi\)
0.718638 0.695384i \(-0.244766\pi\)
\(620\) 86653.6i 0.225426i
\(621\) 0 0
\(622\) −152646. −0.394553
\(623\) −509904. 294393.i −1.31375 0.758493i
\(624\) 0 0
\(625\) −119450. 206894.i −0.305793 0.529649i
\(626\) −184970. + 106793.i −0.472012 + 0.272516i
\(627\) 0 0
\(628\) −9907.38 + 17160.1i −0.0251212 + 0.0435111i
\(629\) 66187.2i 0.167291i
\(630\) 0 0
\(631\) −26188.6 −0.0657739 −0.0328869 0.999459i \(-0.510470\pi\)
−0.0328869 + 0.999459i \(0.510470\pi\)
\(632\) 68107.6 + 39322.0i 0.170515 + 0.0984467i
\(633\) 0 0
\(634\) −94139.7 163055.i −0.234204 0.405653i
\(635\) 161181. 93058.1i 0.399731 0.230785i
\(636\) 0 0
\(637\) −61994.7 + 107378.i −0.152783 + 0.264628i
\(638\) 150724.i 0.370288i
\(639\) 0 0
\(640\) 13331.7 0.0325481
\(641\) 343687. + 198428.i 0.836462 + 0.482932i 0.856060 0.516876i \(-0.172905\pi\)
−0.0195978 + 0.999808i \(0.506239\pi\)
\(642\) 0 0
\(643\) 32175.0 + 55728.7i 0.0778209 + 0.134790i 0.902309 0.431089i \(-0.141870\pi\)
−0.824489 + 0.565879i \(0.808537\pi\)
\(644\) 349878. 202002.i 0.843616 0.487062i
\(645\) 0 0
\(646\) −10156.8 + 17592.2i −0.0243385 + 0.0421555i
\(647\) 16209.2i 0.0387215i 0.999813 + 0.0193607i \(0.00616310\pi\)
−0.999813 + 0.0193607i \(0.993837\pi\)
\(648\) 0 0
\(649\) −32452.5 −0.0770476
\(650\) 285505. + 164836.i 0.675751 + 0.390145i
\(651\) 0 0
\(652\) −142188. 246277.i −0.334478 0.579334i
\(653\) 96132.7 55502.2i 0.225447 0.130162i −0.383023 0.923739i \(-0.625117\pi\)
0.608470 + 0.793577i \(0.291784\pi\)
\(654\) 0 0
\(655\) −64732.7 + 112120.i −0.150883 + 0.261337i
\(656\) 92961.4i 0.216021i
\(657\) 0 0
\(658\) −512826. −1.18445
\(659\) 625726. + 361263.i 1.44083 + 0.831865i 0.997905 0.0646920i \(-0.0206065\pi\)
0.442928 + 0.896557i \(0.353940\pi\)
\(660\) 0 0
\(661\) −1621.86 2809.15i −0.00371203 0.00642942i 0.864163 0.503211i \(-0.167848\pi\)
−0.867875 + 0.496782i \(0.834515\pi\)
\(662\) 170044. 98175.0i 0.388012 0.224019i
\(663\) 0 0
\(664\) −13024.2 + 22558.6i −0.0295404 + 0.0511655i
\(665\) 127774.i 0.288934i
\(666\) 0 0
\(667\) −1.24499e6 −2.79843
\(668\) −367143. 211970.i −0.822776 0.475030i
\(669\) 0 0
\(670\) 37207.0 + 64444.4i 0.0828848 + 0.143561i
\(671\) 27036.2 15609.3i 0.0600482 0.0346689i
\(672\) 0 0
\(673\) −340188. + 589223.i −0.751085 + 1.30092i 0.196212 + 0.980561i \(0.437136\pi\)
−0.947297 + 0.320356i \(0.896198\pi\)
\(674\) 251125.i 0.552802i
\(675\) 0 0
\(676\) −143883. −0.314859
\(677\) 71954.5 + 41542.9i 0.156993 + 0.0906400i 0.576438 0.817141i \(-0.304442\pi\)
−0.419445 + 0.907781i \(0.637775\pi\)
\(678\) 0 0
\(679\) −271801. 470772.i −0.589537 1.02111i
\(680\) −5092.18 + 2939.97i −0.0110125 + 0.00635807i
\(681\) 0 0
\(682\) −65934.4 + 114202.i −0.141757 + 0.245530i
\(683\) 6386.51i 0.0136906i −0.999977 0.00684529i \(-0.997821\pi\)
0.999977 0.00684529i \(-0.00217894\pi\)
\(684\) 0 0
\(685\) −135787. −0.289385
\(686\) −244029. 140890.i −0.518554 0.299387i
\(687\) 0 0
\(688\) −53591.0 92822.3i −0.113218 0.196099i
\(689\) −325720. + 188055.i −0.686130 + 0.396137i
\(690\) 0 0
\(691\) −224531. + 388900.i −0.470242 + 0.814483i −0.999421 0.0340275i \(-0.989167\pi\)
0.529179 + 0.848510i \(0.322500\pi\)
\(692\) 427172.i 0.892054i
\(693\) 0 0
\(694\) 310379. 0.644427
\(695\) −112719. 65078.3i −0.233360 0.134731i
\(696\) 0 0
\(697\) −20500.3 35507.6i −0.0421983 0.0730896i
\(698\) −339938. + 196263.i −0.697733 + 0.402836i
\(699\) 0 0
\(700\) 117882. 204178.i 0.240576 0.416691i
\(701\) 408122.i 0.830527i 0.909701 + 0.415264i \(0.136311\pi\)
−0.909701 + 0.415264i \(0.863689\pi\)
\(702\) 0 0
\(703\) 596599. 1.20718
\(704\) 17570.0 + 10144.0i 0.0354508 + 0.0204676i
\(705\) 0 0
\(706\) 110060. + 190629.i 0.220810 + 0.382455i
\(707\) 466747. 269476.i 0.933775 0.539115i
\(708\) 0 0
\(709\) 425844. 737584.i 0.847146 1.46730i −0.0365985 0.999330i \(-0.511652\pi\)
0.883744 0.467970i \(-0.155014\pi\)
\(710\) 205885.i 0.408421i
\(711\) 0 0
\(712\) −244230. −0.481768
\(713\) 943317. + 544624.i 1.85558 + 1.07132i
\(714\) 0 0
\(715\) −39350.9 68157.8i −0.0769738 0.133323i
\(716\) −224809. + 129793.i −0.438517 + 0.253178i
\(717\) 0 0
\(718\) −276172. + 478344.i −0.535711 + 0.927879i
\(719\) 951431.i 1.84043i −0.391412 0.920215i \(-0.628013\pi\)
0.391412 0.920215i \(-0.371987\pi\)
\(720\) 0 0
\(721\) −736698. −1.41716
\(722\) −160647. 92749.9i −0.308176 0.177926i
\(723\) 0 0
\(724\) −201525. 349052.i −0.384461 0.665905i
\(725\) −629202. + 363270.i −1.19705 + 0.691120i
\(726\) 0 0
\(727\) −410863. + 711636.i −0.777371 + 1.34645i 0.156081 + 0.987744i \(0.450114\pi\)
−0.933452 + 0.358702i \(0.883219\pi\)
\(728\) 266301.i 0.502470i
\(729\) 0 0
\(730\) −185196. −0.347525
\(731\) 40939.3 + 23636.3i 0.0766135 + 0.0442328i
\(732\) 0 0
\(733\) 224965. + 389651.i 0.418704 + 0.725217i 0.995809 0.0914530i \(-0.0291511\pi\)
−0.577105 + 0.816670i \(0.695818\pi\)
\(734\) −210179. + 121347.i −0.390120 + 0.225236i
\(735\) 0 0
\(736\) 83790.8 145130.i 0.154682 0.267917i
\(737\) 113243.i 0.208485i
\(738\) 0 0
\(739\) 533367. 0.976647 0.488323 0.872663i \(-0.337609\pi\)
0.488323 + 0.872663i \(0.337609\pi\)
\(740\) 149554. + 86345.0i 0.273108 + 0.157679i
\(741\) 0 0
\(742\) 134487. + 232938.i 0.244271 + 0.423091i
\(743\) −505677. + 291952.i −0.915999 + 0.528852i −0.882357 0.470581i \(-0.844044\pi\)
−0.0336428 + 0.999434i \(0.510711\pi\)
\(744\) 0 0
\(745\) 50234.0 87007.8i 0.0905076 0.156764i
\(746\) 34840.7i 0.0626050i
\(747\) 0 0
\(748\) −8948.06 −0.0159928
\(749\) 459.324 + 265.191i 0.000818758 + 0.000472710i
\(750\) 0 0
\(751\) −296313. 513229.i −0.525377 0.909979i −0.999563 0.0295548i \(-0.990591\pi\)
0.474186 0.880424i \(-0.342742\pi\)
\(752\) −184222. + 106361.i −0.325766 + 0.188081i
\(753\) 0 0
\(754\) 410320. 710695.i 0.721739 1.25009i
\(755\) 25672.9i 0.0450382i
\(756\) 0 0
\(757\) −30185.2 −0.0526747 −0.0263373 0.999653i \(-0.508384\pi\)
−0.0263373 + 0.999653i \(0.508384\pi\)
\(758\) −529515. 305716.i −0.921594 0.532083i
\(759\) 0 0
\(760\) 26500.4 + 45900.0i 0.0458801 + 0.0794667i
\(761\) 265213. 153121.i 0.457957 0.264402i −0.253228 0.967407i \(-0.581492\pi\)
0.711185 + 0.703005i \(0.248159\pi\)
\(762\) 0 0
\(763\) −516295. + 894248.i −0.886846 + 1.53606i
\(764\) 18047.9i 0.0309201i
\(765\) 0 0
\(766\) −672358. −1.14589
\(767\) −153021. 88346.6i −0.260112 0.150176i
\(768\) 0 0
\(769\) −444182. 769346.i −0.751118 1.30097i −0.947281 0.320403i \(-0.896182\pi\)
0.196163 0.980571i \(-0.437152\pi\)
\(770\) −48743.0 + 28141.8i −0.0822111 + 0.0474646i
\(771\) 0 0
\(772\) 96128.1 166499.i 0.161293 0.279368i
\(773\) 456476.i 0.763939i 0.924175 + 0.381970i \(0.124754\pi\)
−0.924175 + 0.381970i \(0.875246\pi\)
\(774\) 0 0
\(775\) 635654. 1.05832
\(776\) −195277. 112743.i −0.324286 0.187226i
\(777\) 0 0
\(778\) 263475. + 456353.i 0.435292 + 0.753948i
\(779\) −320059. + 184786.i −0.527418 + 0.304505i
\(780\) 0 0
\(781\) 156657. 271338.i 0.256832 0.444845i
\(782\) 73911.8i 0.120865i
\(783\) 0 0
\(784\) 36780.8 0.0598397
\(785\) −19747.0 11400.9i −0.0320450 0.0185012i
\(786\) 0 0
\(787\) −269736. 467196.i −0.435501 0.754310i 0.561835 0.827249i \(-0.310095\pi\)
−0.997336 + 0.0729393i \(0.976762\pi\)
\(788\) 462975. 267299.i 0.745598 0.430471i
\(789\) 0 0
\(790\) −45249.7 + 78374.8i −0.0725039 + 0.125581i
\(791\) 321640.i 0.514064i
\(792\) 0 0
\(793\) 169975. 0.270296
\(794\) 12258.9 + 7077.71i 0.0194452 + 0.0112267i
\(795\) 0 0
\(796\) −33701.1 58372.1i −0.0531886 0.0921254i
\(797\) 435416. 251387.i 0.685468 0.395755i −0.116444 0.993197i \(-0.537150\pi\)
0.801912 + 0.597442i \(0.203816\pi\)
\(798\) 0 0
\(799\) 46910.3 81251.0i 0.0734809 0.127273i
\(800\) 97795.6i 0.152806i
\(801\) 0 0
\(802\) 499157. 0.776048
\(803\) −244072. 140915.i −0.378519 0.218538i
\(804\) 0 0
\(805\) 232454. + 402621.i 0.358711 + 0.621305i
\(806\) −621791. + 358991.i −0.957138 + 0.552604i
\(807\) 0 0
\(808\) 111779. 193607.i 0.171214 0.296551i
\(809\) 699315.i 1.06850i 0.845326 + 0.534251i \(0.179406\pi\)
−0.845326 + 0.534251i \(0.820594\pi\)
\(810\) 0 0
\(811\) 741168. 1.12687 0.563437 0.826159i \(-0.309479\pi\)
0.563437 + 0.826159i \(0.309479\pi\)
\(812\) −508253. 293440.i −0.770846 0.445048i
\(813\) 0 0
\(814\) 131399. + 227590.i 0.198310 + 0.343483i
\(815\) 283403. 163623.i 0.426667 0.246336i
\(816\) 0 0
\(817\) 213053. 369019.i 0.319186 0.552846i
\(818\) 533763.i 0.797704i
\(819\) 0 0
\(820\) −106975. −0.159095
\(821\) 58936.9 + 34027.3i 0.0874382 + 0.0504825i 0.543082 0.839680i \(-0.317257\pi\)
−0.455643 + 0.890162i \(0.650591\pi\)
\(822\) 0 0
\(823\) −325915. 564502.i −0.481177 0.833423i 0.518590 0.855023i \(-0.326457\pi\)
−0.999767 + 0.0216000i \(0.993124\pi\)
\(824\) −264643. + 152792.i −0.389768 + 0.225033i
\(825\) 0 0
\(826\) −63181.0 + 109433.i −0.0926033 + 0.160394i
\(827\) 36453.4i 0.0532999i −0.999645 0.0266500i \(-0.991516\pi\)
0.999645 0.0266500i \(-0.00848395\pi\)
\(828\) 0 0
\(829\) 78480.8 0.114197 0.0570984 0.998369i \(-0.481815\pi\)
0.0570984 + 0.998369i \(0.481815\pi\)
\(830\) −25959.3 14987.6i −0.0376823 0.0217559i
\(831\) 0 0
\(832\) 55231.0 + 95662.9i 0.0797878 + 0.138196i
\(833\) −14048.8 + 8111.09i −0.0202465 + 0.0116893i
\(834\) 0 0
\(835\) 243924. 422489.i 0.349850 0.605958i
\(836\) 80656.1i 0.115405i
\(837\) 0 0
\(838\) −33956.4 −0.0483541
\(839\) 59633.8 + 34429.6i 0.0847166 + 0.0489111i 0.541760 0.840533i \(-0.317758\pi\)
−0.457043 + 0.889444i \(0.651092\pi\)
\(840\) 0 0
\(841\) 550632. + 953723.i 0.778520 + 1.34844i
\(842\) 136180. 78623.4i 0.192083 0.110899i
\(843\) 0 0
\(844\) −134800. + 233480.i −0.189236 + 0.327767i
\(845\) 165573.i 0.231887i
\(846\) 0 0
\(847\) 713014. 0.993874
\(848\) 96623.2 + 55785.5i 0.134366 + 0.0775763i
\(849\) 0 0
\(850\) 21566.4 + 37354.1i 0.0298497 + 0.0517011i
\(851\) 1.87992e6 1.08537e6i 2.59585 1.49871i
\(852\) 0 0
\(853\) −412386. + 714273.i −0.566768 + 0.981671i 0.430115 + 0.902774i \(0.358473\pi\)
−0.996883 + 0.0788970i \(0.974860\pi\)
\(854\) 121558.i 0.166674i
\(855\) 0 0
\(856\) 220.003 0.000300249
\(857\) 561077. + 323938.i 0.763942 + 0.441062i 0.830709 0.556706i \(-0.187935\pi\)
−0.0667670 + 0.997769i \(0.521268\pi\)
\(858\) 0 0
\(859\) 657566. + 1.13894e6i 0.891154 + 1.54352i 0.838493 + 0.544912i \(0.183437\pi\)
0.0526607 + 0.998612i \(0.483230\pi\)
\(860\) 106815. 61669.8i 0.144423 0.0833826i
\(861\) 0 0
\(862\) 73640.4 127549.i 0.0991063 0.171657i
\(863\) 1.27319e6i 1.70951i 0.519028 + 0.854757i \(0.326294\pi\)
−0.519028 + 0.854757i \(0.673706\pi\)
\(864\) 0 0
\(865\) 491568. 0.656979
\(866\) −503030. 290424.i −0.670746 0.387255i
\(867\) 0 0
\(868\) 256732. + 444673.i 0.340754 + 0.590203i
\(869\) −119270. + 68860.7i −0.157940 + 0.0911868i
\(870\) 0 0
\(871\) −308285. + 533965.i −0.406365 + 0.703844i
\(872\) 428320.i 0.563294i
\(873\) 0 0
\(874\) 666227. 0.872166
\(875\) 506775. + 292586.i 0.661910 + 0.382154i
\(876\) 0 0
\(877\) 352514. + 610572.i 0.458329 + 0.793848i 0.998873 0.0474673i \(-0.0151150\pi\)
−0.540544 + 0.841316i \(0.681782\pi\)
\(878\) 795018. 459004.i 1.03131 0.595425i
\(879\) 0 0
\(880\) −11673.3 + 20218.7i −0.0150739 + 0.0261088i
\(881\) 750647.i 0.967128i 0.875309 + 0.483564i \(0.160658\pi\)
−0.875309 + 0.483564i \(0.839342\pi\)
\(882\) 0 0
\(883\) −638249. −0.818594 −0.409297 0.912401i \(-0.634226\pi\)
−0.409297 + 0.912401i \(0.634226\pi\)
\(884\) −42192.1 24359.6i −0.0539917 0.0311721i
\(885\) 0 0
\(886\) −243275. 421364.i −0.309906 0.536772i
\(887\) −985132. + 568766.i −1.25212 + 0.722914i −0.971531 0.236914i \(-0.923864\pi\)
−0.280592 + 0.959827i \(0.590531\pi\)
\(888\) 0 0
\(889\) 551415. 955078.i 0.697710 1.20847i
\(890\) 281047.i 0.354812i
\(891\) 0 0
\(892\) 164250. 0.206432
\(893\) −732381. 422840.i −0.918405 0.530241i
\(894\) 0 0
\(895\) −149359. 258698.i −0.186460 0.322959i
\(896\) 68413.2 39498.4i 0.0852166 0.0491998i
\(897\) 0 0
\(898\) 172018. 297944.i 0.213315 0.369472i
\(899\) 1.58231e6i 1.95781i
\(900\) 0 0
\(901\) −49208.3 −0.0606162
\(902\) −140984. 81397.1i −0.173283 0.100045i
\(903\) 0 0
\(904\) 66708.5 + 115542.i 0.0816289 + 0.141385i
\(905\) 401671. 231905.i 0.490425 0.283147i
\(906\) 0 0
\(907\) 652106. 1.12948e6i 0.792690 1.37298i −0.131606 0.991302i \(-0.542013\pi\)
0.924296 0.381677i \(-0.124653\pi\)
\(908\) 468534.i 0.568289i
\(909\) 0 0
\(910\) −306445. −0.370059
\(911\) −936156. 540490.i −1.12801 0.651254i −0.184573 0.982819i \(-0.559090\pi\)
−0.943433 + 0.331564i \(0.892424\pi\)
\(912\) 0 0
\(913\) −22808.1 39504.8i −0.0273620 0.0473923i
\(914\) −114021. + 65829.8i −0.136487 + 0.0788008i
\(915\) 0 0
\(916\) −29154.2 + 50496.6i −0.0347465 + 0.0601826i
\(917\) 767145.i 0.912303i
\(918\) 0 0
\(919\) 558574. 0.661378 0.330689 0.943740i \(-0.392719\pi\)
0.330689 + 0.943740i \(0.392719\pi\)
\(920\) 167008. + 96422.1i 0.197316 + 0.113920i
\(921\) 0 0
\(922\) 288884. + 500361.i 0.339829 + 0.588602i
\(923\) 1.47735e6 852947.i 1.73412 1.00120i
\(924\) 0 0
\(925\) 633390. 1.09706e6i 0.740266 1.28218i
\(926\) 48849.9i 0.0569695i
\(927\) 0 0
\(928\) −243439. −0.282679
\(929\) 764452. + 441357.i 0.885765 + 0.511397i 0.872555 0.488516i \(-0.162462\pi\)
0.0132104 + 0.999913i \(0.495795\pi\)
\(930\) 0 0
\(931\) 73111.8 + 126633.i 0.0843506 + 0.146100i
\(932\) −94118.7 + 54339.5i −0.108354 + 0.0625581i
\(933\) 0 0
\(934\) 310652. 538065.i 0.356107 0.616795i
\(935\) 10297.0i 0.0117784i
\(936\) 0 0
\(937\) 893683. 1.01790 0.508949 0.860797i \(-0.330034\pi\)
0.508949 + 0.860797i \(0.330034\pi\)
\(938\) 381865. + 220470.i 0.434014 + 0.250578i
\(939\) 0 0
\(940\) −122394. 211993.i −0.138518 0.239920i
\(941\) −408726. + 235978.i −0.461587 + 0.266497i −0.712711 0.701458i \(-0.752533\pi\)
0.251125 + 0.967955i \(0.419200\pi\)
\(942\) 0 0
\(943\) −672348. + 1.16454e6i −0.756085 + 1.30958i
\(944\) 52415.2i 0.0588184i
\(945\) 0 0
\(946\) 187697. 0.209737
\(947\) −629058. 363187.i −0.701441 0.404977i 0.106443 0.994319i \(-0.466054\pi\)
−0.807884 + 0.589342i \(0.799387\pi\)
\(948\) 0 0
\(949\) −767237. 1.32889e6i −0.851916 1.47556i
\(950\) 336702. 194395.i 0.373078 0.215396i
\(951\) 0 0
\(952\) −17420.8 + 30173.7i −0.0192218 + 0.0332931i
\(953\) 41574.8i 0.0457767i 0.999738 + 0.0228884i \(0.00728623\pi\)
−0.999738 + 0.0228884i \(0.992714\pi\)
\(954\) 0 0
\(955\) −20768.6 −0.0227720
\(956\) 179350. + 103548.i 0.196239 + 0.113299i
\(957\) 0 0
\(958\) −128769. 223035.i −0.140307 0.243020i
\(959\) −696807. + 402302.i −0.757662 + 0.437436i
\(960\) 0 0
\(961\) −230424. + 399106.i −0.249506 + 0.432157i
\(962\) 1.43085e6i 1.54612i
\(963\) 0 0
\(964\) 74887.7 0.0805855
\(965\) 191598. + 110619.i 0.205749 + 0.118789i
\(966\) 0 0
\(967\) 600282. + 1.03972e6i 0.641952 + 1.11189i 0.984996 + 0.172575i \(0.0552086\pi\)
−0.343044 + 0.939319i \(0.611458\pi\)
\(968\) 256135. 147880.i 0.273350 0.157819i
\(969\) 0 0
\(970\) 129739. 224715.i 0.137888 0.238830i
\(971\) 1.38244e6i 1.46625i −0.680092 0.733127i \(-0.738060\pi\)
0.680092 0.733127i \(-0.261940\pi\)
\(972\) 0 0
\(973\) −771241. −0.814638
\(974\) 359096. + 207324.i 0.378523 + 0.218541i
\(975\) 0 0
\(976\) −25211.2 43667.1i −0.0264663 0.0458410i
\(977\) −124404. + 71824.7i −0.130330 + 0.0752463i −0.563748 0.825947i \(-0.690641\pi\)
0.433417 + 0.901193i \(0.357308\pi\)
\(978\) 0 0
\(979\) 213848. 370395.i 0.223120 0.386456i
\(980\) 42325.5i 0.0440707i
\(981\) 0 0
\(982\) 137061. 0.142132
\(983\) −492098. 284113.i −0.509266 0.294025i 0.223266 0.974758i \(-0.428328\pi\)
−0.732532 + 0.680733i \(0.761661\pi\)
\(984\) 0 0
\(985\) 307594. + 532768.i 0.317033 + 0.549118i
\(986\) 92983.9 53684.3i 0.0956432 0.0552196i
\(987\) 0 0
\(988\) −219573. + 380312.i −0.224939 + 0.389606i
\(989\) 1.55040e6i 1.58508i
\(990\) 0 0
\(991\) −920749. −0.937549 −0.468774 0.883318i \(-0.655304\pi\)
−0.468774 + 0.883318i \(0.655304\pi\)
\(992\) 184451. + 106493.i 0.187438 + 0.108218i
\(993\) 0 0
\(994\) −609985. 1.05652e6i −0.617371 1.06932i
\(995\) 67171.6 38781.6i 0.0678484 0.0391723i
\(996\) 0 0
\(997\) −500709. + 867254.i −0.503727 + 0.872481i 0.496264 + 0.868172i \(0.334705\pi\)
−0.999991 + 0.00430895i \(0.998628\pi\)
\(998\) 701487.i 0.704302i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.5.d.d.107.4 8
3.2 odd 2 inner 162.5.d.d.107.1 8
9.2 odd 6 162.5.b.a.161.3 yes 4
9.4 even 3 inner 162.5.d.d.53.1 8
9.5 odd 6 inner 162.5.d.d.53.4 8
9.7 even 3 162.5.b.a.161.2 4
36.7 odd 6 1296.5.e.b.161.2 4
36.11 even 6 1296.5.e.b.161.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.5.b.a.161.2 4 9.7 even 3
162.5.b.a.161.3 yes 4 9.2 odd 6
162.5.d.d.53.1 8 9.4 even 3 inner
162.5.d.d.53.4 8 9.5 odd 6 inner
162.5.d.d.107.1 8 3.2 odd 2 inner
162.5.d.d.107.4 8 1.1 even 1 trivial
1296.5.e.b.161.2 4 36.7 odd 6
1296.5.e.b.161.3 4 36.11 even 6