Properties

Label 162.5.f.a.17.7
Level $162$
Weight $5$
Character 162.17
Analytic conductor $16.746$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,5,Mod(17,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.17");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 162.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.7459340196\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(12\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 17.7
Character \(\chi\) \(=\) 162.17
Dual form 162.5.f.a.143.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.967379 - 2.65785i) q^{2} +(-6.12836 - 5.14230i) q^{4} +(-41.7224 - 7.35678i) q^{5} +(19.0320 - 15.9698i) q^{7} +(-19.5959 + 11.3137i) q^{8} +(-59.9146 + 103.775i) q^{10} +(18.0860 - 3.18905i) q^{11} +(-100.351 + 36.5247i) q^{13} +(-24.0341 - 66.0331i) q^{14} +(11.1135 + 63.0277i) q^{16} +(339.433 + 195.972i) q^{17} +(205.064 + 355.182i) q^{19} +(217.859 + 259.634i) q^{20} +(9.02000 - 51.1549i) q^{22} +(-218.656 + 260.583i) q^{23} +(1099.33 + 400.122i) q^{25} +302.051i q^{26} -198.756 q^{28} +(-485.587 + 1334.14i) q^{29} +(-923.152 - 774.616i) q^{31} +(178.269 + 31.4337i) q^{32} +(849.225 - 712.585i) q^{34} +(-911.547 + 526.282i) q^{35} +(755.062 - 1307.80i) q^{37} +(1142.40 - 201.435i) q^{38} +(900.820 - 327.872i) q^{40} +(207.264 + 569.453i) q^{41} +(337.617 + 1914.72i) q^{43} +(-127.237 - 73.4600i) q^{44} +(481.070 + 833.237i) q^{46} +(-2025.36 - 2413.73i) q^{47} +(-309.745 + 1756.65i) q^{49} +(2126.93 - 2534.78i) q^{50} +(802.807 + 292.198i) q^{52} +3309.93i q^{53} -778.052 q^{55} +(-192.273 + 528.265i) q^{56} +(3076.20 + 2581.24i) q^{58} +(4797.62 + 845.950i) q^{59} +(1691.36 - 1419.22i) q^{61} +(-2951.85 + 1704.25i) q^{62} +(256.000 - 443.405i) q^{64} +(4455.58 - 785.639i) q^{65} +(-3252.29 + 1183.74i) q^{67} +(-1072.42 - 2946.45i) q^{68} +(516.968 + 2931.87i) q^{70} +(-5743.28 - 3315.88i) q^{71} +(-2945.25 - 5101.32i) q^{73} +(-2745.52 - 3271.98i) q^{74} +(569.745 - 3231.18i) q^{76} +(293.285 - 349.523i) q^{77} +(-2340.08 - 851.720i) q^{79} -2711.42i q^{80} +1714.03 q^{82} +(-3787.29 + 10405.5i) q^{83} +(-12720.2 - 10673.6i) q^{85} +(5415.65 + 954.924i) q^{86} +(-318.332 + 267.112i) q^{88} +(-6082.16 + 3511.54i) q^{89} +(-1326.59 + 2297.72i) q^{91} +(2680.00 - 472.556i) q^{92} +(-8374.63 + 3048.11i) q^{94} +(-5942.78 - 16327.6i) q^{95} +(350.066 + 1985.32i) q^{97} +(4369.27 + 2522.60i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 18 q^{5} - 720 q^{11} + 288 q^{14} - 288 q^{20} - 1008 q^{22} - 4716 q^{23} - 882 q^{25} + 6084 q^{29} + 3330 q^{31} + 288 q^{34} - 5346 q^{35} - 576 q^{38} + 13356 q^{41} + 1260 q^{43} - 16578 q^{47}+ \cdots - 82944 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.967379 2.65785i 0.241845 0.664463i
\(3\) 0 0
\(4\) −6.12836 5.14230i −0.383022 0.321394i
\(5\) −41.7224 7.35678i −1.66889 0.294271i −0.742226 0.670150i \(-0.766230\pi\)
−0.926669 + 0.375879i \(0.877341\pi\)
\(6\) 0 0
\(7\) 19.0320 15.9698i 0.388409 0.325914i −0.427584 0.903976i \(-0.640635\pi\)
0.815993 + 0.578062i \(0.196191\pi\)
\(8\) −19.5959 + 11.3137i −0.306186 + 0.176777i
\(9\) 0 0
\(10\) −59.9146 + 103.775i −0.599146 + 1.03775i
\(11\) 18.0860 3.18905i 0.149471 0.0263558i −0.0984119 0.995146i \(-0.531376\pi\)
0.247883 + 0.968790i \(0.420265\pi\)
\(12\) 0 0
\(13\) −100.351 + 36.5247i −0.593792 + 0.216123i −0.621397 0.783496i \(-0.713434\pi\)
0.0276042 + 0.999619i \(0.491212\pi\)
\(14\) −24.0341 66.0331i −0.122623 0.336904i
\(15\) 0 0
\(16\) 11.1135 + 63.0277i 0.0434120 + 0.246202i
\(17\) 339.433 + 195.972i 1.17451 + 0.678104i 0.954738 0.297448i \(-0.0961353\pi\)
0.219772 + 0.975551i \(0.429469\pi\)
\(18\) 0 0
\(19\) 205.064 + 355.182i 0.568045 + 0.983883i 0.996759 + 0.0804431i \(0.0256335\pi\)
−0.428714 + 0.903440i \(0.641033\pi\)
\(20\) 217.859 + 259.634i 0.544647 + 0.649085i
\(21\) 0 0
\(22\) 9.02000 51.1549i 0.0186364 0.105692i
\(23\) −218.656 + 260.583i −0.413337 + 0.492596i −0.932038 0.362359i \(-0.881971\pi\)
0.518701 + 0.854956i \(0.326416\pi\)
\(24\) 0 0
\(25\) 1099.33 + 400.122i 1.75892 + 0.640195i
\(26\) 302.051i 0.446821i
\(27\) 0 0
\(28\) −198.756 −0.253516
\(29\) −485.587 + 1334.14i −0.577392 + 1.58637i 0.215167 + 0.976577i \(0.430970\pi\)
−0.792560 + 0.609795i \(0.791252\pi\)
\(30\) 0 0
\(31\) −923.152 774.616i −0.960616 0.806052i 0.0204376 0.999791i \(-0.493494\pi\)
−0.981053 + 0.193739i \(0.937939\pi\)
\(32\) 178.269 + 31.4337i 0.174091 + 0.0306970i
\(33\) 0 0
\(34\) 849.225 712.585i 0.734624 0.616423i
\(35\) −911.547 + 526.282i −0.744120 + 0.429618i
\(36\) 0 0
\(37\) 755.062 1307.80i 0.551542 0.955299i −0.446621 0.894723i \(-0.647373\pi\)
0.998164 0.0605763i \(-0.0192938\pi\)
\(38\) 1142.40 201.435i 0.791133 0.139498i
\(39\) 0 0
\(40\) 900.820 327.872i 0.563013 0.204920i
\(41\) 207.264 + 569.453i 0.123298 + 0.338759i 0.985950 0.167039i \(-0.0534205\pi\)
−0.862652 + 0.505798i \(0.831198\pi\)
\(42\) 0 0
\(43\) 337.617 + 1914.72i 0.182594 + 1.03554i 0.929008 + 0.370061i \(0.120663\pi\)
−0.746413 + 0.665483i \(0.768226\pi\)
\(44\) −127.237 73.4600i −0.0657213 0.0379442i
\(45\) 0 0
\(46\) 481.070 + 833.237i 0.227349 + 0.393779i
\(47\) −2025.36 2413.73i −0.916867 1.09268i −0.995404 0.0957684i \(-0.969469\pi\)
0.0785366 0.996911i \(-0.474975\pi\)
\(48\) 0 0
\(49\) −309.745 + 1756.65i −0.129007 + 0.731632i
\(50\) 2126.93 2534.78i 0.850772 1.01391i
\(51\) 0 0
\(52\) 802.807 + 292.198i 0.296896 + 0.108061i
\(53\) 3309.93i 1.17833i 0.808013 + 0.589165i \(0.200543\pi\)
−0.808013 + 0.589165i \(0.799457\pi\)
\(54\) 0 0
\(55\) −778.052 −0.257207
\(56\) −192.273 + 528.265i −0.0613115 + 0.168452i
\(57\) 0 0
\(58\) 3076.20 + 2581.24i 0.914446 + 0.767311i
\(59\) 4797.62 + 845.950i 1.37823 + 0.243019i 0.813168 0.582029i \(-0.197741\pi\)
0.565062 + 0.825048i \(0.308852\pi\)
\(60\) 0 0
\(61\) 1691.36 1419.22i 0.454543 0.381407i −0.386575 0.922258i \(-0.626342\pi\)
0.841119 + 0.540851i \(0.181898\pi\)
\(62\) −2951.85 + 1704.25i −0.767912 + 0.443354i
\(63\) 0 0
\(64\) 256.000 443.405i 0.0625000 0.108253i
\(65\) 4455.58 785.639i 1.05458 0.185950i
\(66\) 0 0
\(67\) −3252.29 + 1183.74i −0.724503 + 0.263698i −0.677836 0.735213i \(-0.737082\pi\)
−0.0466669 + 0.998911i \(0.514860\pi\)
\(68\) −1072.42 2946.45i −0.231925 0.637209i
\(69\) 0 0
\(70\) 516.968 + 2931.87i 0.105504 + 0.598341i
\(71\) −5743.28 3315.88i −1.13931 0.657783i −0.193053 0.981188i \(-0.561839\pi\)
−0.946260 + 0.323405i \(0.895172\pi\)
\(72\) 0 0
\(73\) −2945.25 5101.32i −0.552684 0.957276i −0.998080 0.0619425i \(-0.980270\pi\)
0.445396 0.895334i \(-0.353063\pi\)
\(74\) −2745.52 3271.98i −0.501374 0.597514i
\(75\) 0 0
\(76\) 569.745 3231.18i 0.0986400 0.559415i
\(77\) 293.285 349.523i 0.0494662 0.0589515i
\(78\) 0 0
\(79\) −2340.08 851.720i −0.374953 0.136472i 0.147668 0.989037i \(-0.452823\pi\)
−0.522621 + 0.852565i \(0.675046\pi\)
\(80\) 2711.42i 0.423660i
\(81\) 0 0
\(82\) 1714.03 0.254912
\(83\) −3787.29 + 10405.5i −0.549759 + 1.51045i 0.284279 + 0.958742i \(0.408246\pi\)
−0.834038 + 0.551708i \(0.813976\pi\)
\(84\) 0 0
\(85\) −12720.2 10673.6i −1.76059 1.47731i
\(86\) 5415.65 + 954.924i 0.732240 + 0.129114i
\(87\) 0 0
\(88\) −318.332 + 267.112i −0.0411069 + 0.0344928i
\(89\) −6082.16 + 3511.54i −0.767852 + 0.443320i −0.832108 0.554614i \(-0.812866\pi\)
0.0642555 + 0.997933i \(0.479533\pi\)
\(90\) 0 0
\(91\) −1326.59 + 2297.72i −0.160197 + 0.277469i
\(92\) 2680.00 472.556i 0.316635 0.0558313i
\(93\) 0 0
\(94\) −8374.63 + 3048.11i −0.947785 + 0.344965i
\(95\) −5942.78 16327.6i −0.658479 1.80916i
\(96\) 0 0
\(97\) 350.066 + 1985.32i 0.0372054 + 0.211002i 0.997743 0.0671476i \(-0.0213898\pi\)
−0.960538 + 0.278150i \(0.910279\pi\)
\(98\) 4369.27 + 2522.60i 0.454943 + 0.262662i
\(99\) 0 0
\(100\) −4679.51 8105.15i −0.467951 0.810515i
\(101\) 11176.5 + 13319.6i 1.09562 + 1.30571i 0.948563 + 0.316587i \(0.102537\pi\)
0.147061 + 0.989127i \(0.453019\pi\)
\(102\) 0 0
\(103\) −2302.42 + 13057.7i −0.217026 + 1.23081i 0.660331 + 0.750975i \(0.270416\pi\)
−0.877357 + 0.479839i \(0.840695\pi\)
\(104\) 1553.24 1851.08i 0.143606 0.171142i
\(105\) 0 0
\(106\) 8797.30 + 3201.96i 0.782957 + 0.284973i
\(107\) 10520.6i 0.918907i −0.888202 0.459453i \(-0.848045\pi\)
0.888202 0.459453i \(-0.151955\pi\)
\(108\) 0 0
\(109\) −10635.3 −0.895153 −0.447576 0.894246i \(-0.647713\pi\)
−0.447576 + 0.894246i \(0.647713\pi\)
\(110\) −752.671 + 2067.95i −0.0622042 + 0.170905i
\(111\) 0 0
\(112\) 1218.05 + 1022.06i 0.0971022 + 0.0814784i
\(113\) −13895.7 2450.19i −1.08824 0.191885i −0.399382 0.916785i \(-0.630775\pi\)
−0.688855 + 0.724899i \(0.741886\pi\)
\(114\) 0 0
\(115\) 11039.9 9263.56i 0.834773 0.700458i
\(116\) 9836.39 5679.04i 0.731004 0.422045i
\(117\) 0 0
\(118\) 6889.53 11933.0i 0.494795 0.857010i
\(119\) 9589.73 1690.93i 0.677193 0.119407i
\(120\) 0 0
\(121\) −13441.1 + 4892.16i −0.918046 + 0.334141i
\(122\) −2135.88 5868.29i −0.143502 0.394269i
\(123\) 0 0
\(124\) 1674.09 + 9494.25i 0.108877 + 0.617472i
\(125\) −19991.6 11542.1i −1.27946 0.738697i
\(126\) 0 0
\(127\) 5562.96 + 9635.34i 0.344904 + 0.597392i 0.985336 0.170623i \(-0.0545780\pi\)
−0.640432 + 0.768015i \(0.721245\pi\)
\(128\) −930.856 1109.35i −0.0568149 0.0677094i
\(129\) 0 0
\(130\) 2222.12 12602.3i 0.131487 0.745698i
\(131\) 1203.03 1433.72i 0.0701026 0.0835450i −0.729853 0.683604i \(-0.760412\pi\)
0.799956 + 0.600059i \(0.204856\pi\)
\(132\) 0 0
\(133\) 9574.96 + 3485.00i 0.541295 + 0.197015i
\(134\) 9789.24i 0.545179i
\(135\) 0 0
\(136\) −8868.68 −0.479492
\(137\) 6175.92 16968.2i 0.329049 0.904054i −0.659304 0.751876i \(-0.729149\pi\)
0.988353 0.152178i \(-0.0486287\pi\)
\(138\) 0 0
\(139\) 12180.0 + 10220.3i 0.630404 + 0.528972i 0.901055 0.433706i \(-0.142794\pi\)
−0.270650 + 0.962678i \(0.587239\pi\)
\(140\) 8292.58 + 1462.21i 0.423091 + 0.0746024i
\(141\) 0 0
\(142\) −14369.1 + 12057.1i −0.712609 + 0.597950i
\(143\) −1698.47 + 980.611i −0.0830587 + 0.0479540i
\(144\) 0 0
\(145\) 30074.8 52091.1i 1.43043 2.47758i
\(146\) −16407.7 + 2893.13i −0.769738 + 0.135726i
\(147\) 0 0
\(148\) −11352.4 + 4131.94i −0.518280 + 0.188639i
\(149\) −4838.44 13293.5i −0.217938 0.598780i 0.781754 0.623587i \(-0.214325\pi\)
−0.999692 + 0.0248069i \(0.992103\pi\)
\(150\) 0 0
\(151\) −1016.71 5766.02i −0.0445904 0.252885i 0.954362 0.298653i \(-0.0965374\pi\)
−0.998952 + 0.0457686i \(0.985426\pi\)
\(152\) −8036.85 4640.08i −0.347855 0.200834i
\(153\) 0 0
\(154\) −645.264 1117.63i −0.0272079 0.0471255i
\(155\) 32817.4 + 39110.2i 1.36597 + 1.62790i
\(156\) 0 0
\(157\) −5308.10 + 30103.7i −0.215347 + 1.22130i 0.664955 + 0.746883i \(0.268451\pi\)
−0.880303 + 0.474412i \(0.842661\pi\)
\(158\) −4527.49 + 5395.65i −0.181361 + 0.216137i
\(159\) 0 0
\(160\) −7206.56 2622.97i −0.281506 0.102460i
\(161\) 8451.31i 0.326041i
\(162\) 0 0
\(163\) 24783.8 0.932809 0.466405 0.884572i \(-0.345549\pi\)
0.466405 + 0.884572i \(0.345549\pi\)
\(164\) 1658.11 4555.63i 0.0616490 0.169379i
\(165\) 0 0
\(166\) 23992.5 + 20132.1i 0.870681 + 0.730588i
\(167\) 46851.0 + 8261.09i 1.67991 + 0.296213i 0.930608 0.366017i \(-0.119279\pi\)
0.749301 + 0.662230i \(0.230390\pi\)
\(168\) 0 0
\(169\) −13142.7 + 11028.1i −0.460164 + 0.386124i
\(170\) −40674.0 + 23483.2i −1.40741 + 0.812566i
\(171\) 0 0
\(172\) 7777.03 13470.2i 0.262880 0.455321i
\(173\) −2045.69 + 360.711i −0.0683515 + 0.0120522i −0.207719 0.978188i \(-0.566604\pi\)
0.139368 + 0.990241i \(0.455493\pi\)
\(174\) 0 0
\(175\) 27312.2 9940.84i 0.891828 0.324599i
\(176\) 401.997 + 1104.48i 0.0129777 + 0.0356559i
\(177\) 0 0
\(178\) 3449.39 + 19562.5i 0.108869 + 0.617424i
\(179\) 16467.1 + 9507.30i 0.513939 + 0.296723i 0.734451 0.678661i \(-0.237440\pi\)
−0.220512 + 0.975384i \(0.570773\pi\)
\(180\) 0 0
\(181\) 18376.7 + 31829.5i 0.560934 + 0.971566i 0.997415 + 0.0718525i \(0.0228911\pi\)
−0.436482 + 0.899713i \(0.643776\pi\)
\(182\) 4823.69 + 5748.65i 0.145625 + 0.173549i
\(183\) 0 0
\(184\) 1336.59 7580.18i 0.0394787 0.223895i
\(185\) −41124.2 + 49009.9i −1.20158 + 1.43199i
\(186\) 0 0
\(187\) 6763.96 + 2461.88i 0.193427 + 0.0704018i
\(188\) 25207.2i 0.713196i
\(189\) 0 0
\(190\) −49145.4 −1.36137
\(191\) 2106.78 5788.32i 0.0577500 0.158667i −0.907463 0.420132i \(-0.861984\pi\)
0.965213 + 0.261466i \(0.0842058\pi\)
\(192\) 0 0
\(193\) −24419.1 20490.1i −0.655565 0.550084i 0.253189 0.967417i \(-0.418521\pi\)
−0.908754 + 0.417333i \(0.862965\pi\)
\(194\) 5615.34 + 990.136i 0.149201 + 0.0263082i
\(195\) 0 0
\(196\) 10931.4 9172.57i 0.284555 0.238770i
\(197\) 19300.3 11143.0i 0.497314 0.287124i −0.230290 0.973122i \(-0.573967\pi\)
0.727604 + 0.685998i \(0.240634\pi\)
\(198\) 0 0
\(199\) −7630.55 + 13216.5i −0.192686 + 0.333742i −0.946139 0.323759i \(-0.895053\pi\)
0.753454 + 0.657501i \(0.228386\pi\)
\(200\) −26069.2 + 4596.70i −0.651729 + 0.114917i
\(201\) 0 0
\(202\) 46213.4 16820.3i 1.13257 0.412222i
\(203\) 12064.2 + 33146.1i 0.292756 + 0.804340i
\(204\) 0 0
\(205\) −4458.20 25283.7i −0.106085 0.601636i
\(206\) 32478.1 + 18751.2i 0.765343 + 0.441871i
\(207\) 0 0
\(208\) −3417.32 5918.97i −0.0789876 0.136811i
\(209\) 4841.49 + 5769.86i 0.110837 + 0.132091i
\(210\) 0 0
\(211\) −3131.77 + 17761.2i −0.0703438 + 0.398939i 0.929223 + 0.369519i \(0.120477\pi\)
−0.999567 + 0.0294207i \(0.990634\pi\)
\(212\) 17020.6 20284.4i 0.378708 0.451327i
\(213\) 0 0
\(214\) −27962.1 10177.4i −0.610580 0.222233i
\(215\) 82370.4i 1.78195i
\(216\) 0 0
\(217\) −29939.9 −0.635815
\(218\) −10288.4 + 28267.1i −0.216488 + 0.594796i
\(219\) 0 0
\(220\) 4768.18 + 4000.98i 0.0985161 + 0.0826648i
\(221\) −41220.3 7268.25i −0.843969 0.148814i
\(222\) 0 0
\(223\) 26982.1 22640.7i 0.542583 0.455282i −0.329837 0.944038i \(-0.606994\pi\)
0.872420 + 0.488756i \(0.162549\pi\)
\(224\) 3894.81 2248.67i 0.0776230 0.0448157i
\(225\) 0 0
\(226\) −19954.6 + 34562.4i −0.390685 + 0.676686i
\(227\) −43109.9 + 7601.44i −0.836614 + 0.147518i −0.575512 0.817793i \(-0.695197\pi\)
−0.261102 + 0.965311i \(0.584086\pi\)
\(228\) 0 0
\(229\) −36596.7 + 13320.1i −0.697864 + 0.254002i −0.666499 0.745506i \(-0.732208\pi\)
−0.0313656 + 0.999508i \(0.509986\pi\)
\(230\) −13941.4 38303.7i −0.263543 0.724078i
\(231\) 0 0
\(232\) −5578.54 31637.5i −0.103644 0.587795i
\(233\) 13129.6 + 7580.39i 0.241847 + 0.139630i 0.616025 0.787726i \(-0.288742\pi\)
−0.374178 + 0.927357i \(0.622075\pi\)
\(234\) 0 0
\(235\) 66745.5 + 115607.i 1.20861 + 2.09337i
\(236\) −25051.4 29855.1i −0.449788 0.536036i
\(237\) 0 0
\(238\) 4782.67 27123.9i 0.0844338 0.478848i
\(239\) −12810.9 + 15267.4i −0.224277 + 0.267282i −0.866435 0.499289i \(-0.833595\pi\)
0.642159 + 0.766572i \(0.278039\pi\)
\(240\) 0 0
\(241\) 61204.6 + 22276.7i 1.05378 + 0.383545i 0.810088 0.586308i \(-0.199419\pi\)
0.243692 + 0.969853i \(0.421641\pi\)
\(242\) 40457.0i 0.690818i
\(243\) 0 0
\(244\) −17663.3 −0.296682
\(245\) 25846.6 71012.8i 0.430597 1.18305i
\(246\) 0 0
\(247\) −33551.3 28152.9i −0.549941 0.461455i
\(248\) 26853.8 + 4735.05i 0.436618 + 0.0769876i
\(249\) 0 0
\(250\) −50016.8 + 41969.0i −0.800268 + 0.671505i
\(251\) 75304.6 43477.1i 1.19529 0.690102i 0.235790 0.971804i \(-0.424232\pi\)
0.959502 + 0.281702i \(0.0908990\pi\)
\(252\) 0 0
\(253\) −3123.59 + 5410.22i −0.0487992 + 0.0845227i
\(254\) 30990.8 5464.51i 0.480358 0.0847001i
\(255\) 0 0
\(256\) −3848.98 + 1400.91i −0.0587308 + 0.0213763i
\(257\) −12558.6 34504.6i −0.190141 0.522409i 0.807589 0.589746i \(-0.200772\pi\)
−0.997730 + 0.0673367i \(0.978550\pi\)
\(258\) 0 0
\(259\) −6514.99 36948.3i −0.0971212 0.550802i
\(260\) −31345.4 18097.3i −0.463689 0.267711i
\(261\) 0 0
\(262\) −2646.82 4584.43i −0.0385586 0.0667855i
\(263\) −44991.3 53618.5i −0.650455 0.775182i 0.335528 0.942030i \(-0.391085\pi\)
−0.985983 + 0.166849i \(0.946641\pi\)
\(264\) 0 0
\(265\) 24350.4 138098.i 0.346748 1.96651i
\(266\) 18525.2 22077.5i 0.261819 0.312023i
\(267\) 0 0
\(268\) 26018.4 + 9469.91i 0.362252 + 0.131849i
\(269\) 27399.8i 0.378654i −0.981914 0.189327i \(-0.939369\pi\)
0.981914 0.189327i \(-0.0606306\pi\)
\(270\) 0 0
\(271\) −80278.7 −1.09310 −0.546552 0.837425i \(-0.684060\pi\)
−0.546552 + 0.837425i \(0.684060\pi\)
\(272\) −8579.37 + 23571.6i −0.115963 + 0.318605i
\(273\) 0 0
\(274\) −39124.5 32829.3i −0.521132 0.437281i
\(275\) 21158.4 + 3730.80i 0.279781 + 0.0493329i
\(276\) 0 0
\(277\) 14943.4 12539.0i 0.194756 0.163420i −0.540195 0.841540i \(-0.681650\pi\)
0.734951 + 0.678120i \(0.237205\pi\)
\(278\) 38946.7 22485.9i 0.503942 0.290951i
\(279\) 0 0
\(280\) 11908.4 20626.0i 0.151893 0.263086i
\(281\) 6479.42 1142.50i 0.0820585 0.0144691i −0.132468 0.991187i \(-0.542290\pi\)
0.214527 + 0.976718i \(0.431179\pi\)
\(282\) 0 0
\(283\) 22664.0 8249.01i 0.282985 0.102998i −0.196628 0.980478i \(-0.562999\pi\)
0.479613 + 0.877480i \(0.340777\pi\)
\(284\) 18145.6 + 49854.6i 0.224975 + 0.618114i
\(285\) 0 0
\(286\) 963.256 + 5462.90i 0.0117763 + 0.0667869i
\(287\) 13038.7 + 7527.89i 0.158296 + 0.0913923i
\(288\) 0 0
\(289\) 35049.5 + 60707.6i 0.419649 + 0.726854i
\(290\) −109357. 130326.i −1.30032 1.54966i
\(291\) 0 0
\(292\) −8183.00 + 46408.1i −0.0959725 + 0.544287i
\(293\) −40800.2 + 48623.8i −0.475256 + 0.566388i −0.949404 0.314057i \(-0.898312\pi\)
0.474148 + 0.880445i \(0.342756\pi\)
\(294\) 0 0
\(295\) −193945. 70590.1i −2.22861 0.811147i
\(296\) 34170.2i 0.389999i
\(297\) 0 0
\(298\) −40012.8 −0.450574
\(299\) 12424.5 34136.1i 0.138975 0.381832i
\(300\) 0 0
\(301\) 37003.2 + 31049.3i 0.408419 + 0.342704i
\(302\) −16308.8 2875.68i −0.178816 0.0315302i
\(303\) 0 0
\(304\) −20107.3 + 16872.0i −0.217574 + 0.182566i
\(305\) −81008.2 + 46770.1i −0.870822 + 0.502769i
\(306\) 0 0
\(307\) 26678.0 46207.7i 0.283059 0.490272i −0.689078 0.724687i \(-0.741984\pi\)
0.972137 + 0.234415i \(0.0753175\pi\)
\(308\) −3594.71 + 633.844i −0.0378933 + 0.00668161i
\(309\) 0 0
\(310\) 135696. 49389.3i 1.41203 0.513937i
\(311\) 10062.8 + 27647.2i 0.104039 + 0.285845i 0.980780 0.195118i \(-0.0625091\pi\)
−0.876741 + 0.480964i \(0.840287\pi\)
\(312\) 0 0
\(313\) −25540.7 144848.i −0.260701 1.47851i −0.781002 0.624528i \(-0.785291\pi\)
0.520301 0.853983i \(-0.325820\pi\)
\(314\) 74876.3 + 43229.8i 0.759425 + 0.438454i
\(315\) 0 0
\(316\) 9961.05 + 17253.0i 0.0997541 + 0.172779i
\(317\) −73982.5 88168.9i −0.736225 0.877399i 0.259874 0.965643i \(-0.416319\pi\)
−0.996099 + 0.0882440i \(0.971874\pi\)
\(318\) 0 0
\(319\) −4527.69 + 25677.8i −0.0444934 + 0.252334i
\(320\) −13943.0 + 16616.6i −0.136162 + 0.162271i
\(321\) 0 0
\(322\) 22462.3 + 8175.62i 0.216642 + 0.0788513i
\(323\) 160747.i 1.54077i
\(324\) 0 0
\(325\) −124933. −1.18279
\(326\) 23975.3 65871.7i 0.225595 0.619817i
\(327\) 0 0
\(328\) −10504.2 8814.04i −0.0976368 0.0819270i
\(329\) −77093.4 13593.6i −0.712238 0.125587i
\(330\) 0 0
\(331\) −45867.3 + 38487.3i −0.418646 + 0.351286i −0.827648 0.561248i \(-0.810322\pi\)
0.409001 + 0.912534i \(0.365877\pi\)
\(332\) 76718.0 44293.1i 0.696019 0.401847i
\(333\) 0 0
\(334\) 67279.4 116531.i 0.603100 1.04460i
\(335\) 144402. 25462.0i 1.28672 0.226883i
\(336\) 0 0
\(337\) −56576.9 + 20592.3i −0.498172 + 0.181320i −0.578872 0.815419i \(-0.696507\pi\)
0.0806994 + 0.996738i \(0.474285\pi\)
\(338\) 16597.0 + 45599.8i 0.145277 + 0.399144i
\(339\) 0 0
\(340\) 23067.6 + 130823.i 0.199546 + 1.13168i
\(341\) −19166.4 11065.7i −0.164828 0.0951637i
\(342\) 0 0
\(343\) 51984.1 + 90039.1i 0.441857 + 0.765320i
\(344\) −28278.5 33701.0i −0.238968 0.284791i
\(345\) 0 0
\(346\) −1020.24 + 5786.09i −0.00852220 + 0.0483318i
\(347\) 16062.2 19142.1i 0.133397 0.158976i −0.695211 0.718806i \(-0.744689\pi\)
0.828608 + 0.559830i \(0.189134\pi\)
\(348\) 0 0
\(349\) −127113. 46265.2i −1.04361 0.379843i −0.237362 0.971421i \(-0.576283\pi\)
−0.806247 + 0.591579i \(0.798505\pi\)
\(350\) 82208.5i 0.671089i
\(351\) 0 0
\(352\) 3324.42 0.0268306
\(353\) −70858.1 + 194681.i −0.568643 + 1.56233i 0.237981 + 0.971270i \(0.423515\pi\)
−0.806624 + 0.591065i \(0.798708\pi\)
\(354\) 0 0
\(355\) 215229. + 180599.i 1.70783 + 1.43304i
\(356\) 55331.0 + 9756.35i 0.436585 + 0.0769817i
\(357\) 0 0
\(358\) 41199.0 34570.0i 0.321455 0.269733i
\(359\) 9886.99 5708.26i 0.0767141 0.0442909i −0.461152 0.887321i \(-0.652564\pi\)
0.537866 + 0.843030i \(0.319230\pi\)
\(360\) 0 0
\(361\) −18942.3 + 32809.0i −0.145351 + 0.251755i
\(362\) 102375. 18051.5i 0.781228 0.137752i
\(363\) 0 0
\(364\) 19945.4 7259.52i 0.150536 0.0547905i
\(365\) 85353.5 + 234507.i 0.640672 + 1.76023i
\(366\) 0 0
\(367\) 32552.8 + 184616.i 0.241688 + 1.37068i 0.828059 + 0.560640i \(0.189445\pi\)
−0.586371 + 0.810043i \(0.699444\pi\)
\(368\) −18854.0 10885.4i −0.139222 0.0803799i
\(369\) 0 0
\(370\) 90478.4 + 156713.i 0.660908 + 1.14473i
\(371\) 52858.8 + 62994.6i 0.384034 + 0.457674i
\(372\) 0 0
\(373\) 13751.3 77987.7i 0.0988387 0.560542i −0.894665 0.446739i \(-0.852585\pi\)
0.993503 0.113804i \(-0.0363035\pi\)
\(374\) 13086.6 15596.0i 0.0935587 0.111499i
\(375\) 0 0
\(376\) 66997.0 + 24384.9i 0.473892 + 0.172483i
\(377\) 151618.i 1.06676i
\(378\) 0 0
\(379\) −122815. −0.855015 −0.427507 0.904012i \(-0.640608\pi\)
−0.427507 + 0.904012i \(0.640608\pi\)
\(380\) −47542.2 + 130621.i −0.329240 + 0.904579i
\(381\) 0 0
\(382\) −13346.5 11199.0i −0.0914617 0.0767455i
\(383\) −95401.9 16821.9i −0.650369 0.114678i −0.161276 0.986909i \(-0.551561\pi\)
−0.489093 + 0.872232i \(0.662672\pi\)
\(384\) 0 0
\(385\) −14807.9 + 12425.3i −0.0999015 + 0.0838273i
\(386\) −78082.2 + 45080.8i −0.524055 + 0.302564i
\(387\) 0 0
\(388\) 8063.80 13966.9i 0.0535644 0.0927762i
\(389\) −207400. + 36570.3i −1.37060 + 0.241674i −0.810008 0.586419i \(-0.800537\pi\)
−0.560591 + 0.828093i \(0.689426\pi\)
\(390\) 0 0
\(391\) −125286. + 45600.4i −0.819500 + 0.298274i
\(392\) −13804.5 37927.5i −0.0898355 0.246821i
\(393\) 0 0
\(394\) −10945.8 62076.8i −0.0705108 0.399886i
\(395\) 91367.8 + 52751.2i 0.585597 + 0.338095i
\(396\) 0 0
\(397\) 96424.6 + 167012.i 0.611796 + 1.05966i 0.990938 + 0.134323i \(0.0428860\pi\)
−0.379141 + 0.925339i \(0.623781\pi\)
\(398\) 27745.9 + 33066.2i 0.175159 + 0.208746i
\(399\) 0 0
\(400\) −13001.4 + 73734.7i −0.0812589 + 0.460842i
\(401\) 15527.7 18505.2i 0.0965650 0.115082i −0.715598 0.698513i \(-0.753846\pi\)
0.812163 + 0.583431i \(0.198290\pi\)
\(402\) 0 0
\(403\) 120932. + 44015.6i 0.744612 + 0.271017i
\(404\) 139100.i 0.852245i
\(405\) 0 0
\(406\) 99768.0 0.605256
\(407\) 9485.39 26060.9i 0.0572620 0.157326i
\(408\) 0 0
\(409\) −129469. 108637.i −0.773961 0.649430i 0.167759 0.985828i \(-0.446347\pi\)
−0.941720 + 0.336398i \(0.890791\pi\)
\(410\) −71513.2 12609.7i −0.425421 0.0750131i
\(411\) 0 0
\(412\) 81256.7 68182.5i 0.478701 0.401678i
\(413\) 104818. 60516.7i 0.614520 0.354793i
\(414\) 0 0
\(415\) 234565. 406279.i 1.36197 2.35900i
\(416\) −19037.6 + 3356.84i −0.110008 + 0.0193974i
\(417\) 0 0
\(418\) 20019.0 7286.32i 0.114575 0.0417019i
\(419\) −16582.6 45560.4i −0.0944551 0.259513i 0.883463 0.468500i \(-0.155206\pi\)
−0.977918 + 0.208987i \(0.932983\pi\)
\(420\) 0 0
\(421\) −31948.4 181189.i −0.180254 1.02227i −0.931903 0.362708i \(-0.881852\pi\)
0.751649 0.659564i \(-0.229259\pi\)
\(422\) 44177.0 + 25505.6i 0.248068 + 0.143222i
\(423\) 0 0
\(424\) −37447.6 64861.1i −0.208301 0.360788i
\(425\) 294735. + 351252.i 1.63175 + 1.94465i
\(426\) 0 0
\(427\) 9525.38 54021.1i 0.0522428 0.296284i
\(428\) −54099.9 + 64473.8i −0.295331 + 0.351962i
\(429\) 0 0
\(430\) −218928. 79683.4i −1.18404 0.430954i
\(431\) 137027.i 0.737651i 0.929499 + 0.368825i \(0.120240\pi\)
−0.929499 + 0.368825i \(0.879760\pi\)
\(432\) 0 0
\(433\) −113894. −0.607471 −0.303735 0.952756i \(-0.598234\pi\)
−0.303735 + 0.952756i \(0.598234\pi\)
\(434\) −28963.2 + 79575.8i −0.153768 + 0.422475i
\(435\) 0 0
\(436\) 65177.0 + 54690.0i 0.342863 + 0.287697i
\(437\) −137393. 24226.1i −0.719452 0.126859i
\(438\) 0 0
\(439\) 220226. 184792.i 1.14272 0.958857i 0.143197 0.989694i \(-0.454262\pi\)
0.999524 + 0.0308371i \(0.00981731\pi\)
\(440\) 15246.6 8802.65i 0.0787533 0.0454682i
\(441\) 0 0
\(442\) −59193.6 + 102526.i −0.302991 + 0.524796i
\(443\) −178409. + 31458.4i −0.909098 + 0.160298i −0.608594 0.793482i \(-0.708266\pi\)
−0.300504 + 0.953781i \(0.597155\pi\)
\(444\) 0 0
\(445\) 279596. 101764.i 1.41192 0.513897i
\(446\) −34073.7 93616.7i −0.171297 0.470634i
\(447\) 0 0
\(448\) −2208.88 12527.2i −0.0110056 0.0624161i
\(449\) −210245. 121385.i −1.04288 0.602104i −0.122229 0.992502i \(-0.539004\pi\)
−0.920646 + 0.390398i \(0.872338\pi\)
\(450\) 0 0
\(451\) 5564.59 + 9638.16i 0.0273578 + 0.0473850i
\(452\) 72558.1 + 86471.4i 0.355148 + 0.423249i
\(453\) 0 0
\(454\) −21500.1 + 121933.i −0.104311 + 0.591576i
\(455\) 72252.3 86106.9i 0.349003 0.415925i
\(456\) 0 0
\(457\) 253917. + 92418.3i 1.21579 + 0.442513i 0.868710 0.495321i \(-0.164950\pi\)
0.347084 + 0.937834i \(0.387172\pi\)
\(458\) 110154.i 0.525134i
\(459\) 0 0
\(460\) −115292. −0.544860
\(461\) 103651. 284779.i 0.487722 1.34000i −0.415016 0.909814i \(-0.636224\pi\)
0.902738 0.430190i \(-0.141554\pi\)
\(462\) 0 0
\(463\) 27480.3 + 23058.7i 0.128192 + 0.107566i 0.704629 0.709575i \(-0.251113\pi\)
−0.576438 + 0.817141i \(0.695558\pi\)
\(464\) −89484.2 15778.5i −0.415634 0.0732874i
\(465\) 0 0
\(466\) 32848.9 27563.5i 0.151269 0.126929i
\(467\) −8908.51 + 5143.33i −0.0408481 + 0.0235836i −0.520285 0.853993i \(-0.674174\pi\)
0.479437 + 0.877576i \(0.340841\pi\)
\(468\) 0 0
\(469\) −42993.7 + 74467.3i −0.195461 + 0.338548i
\(470\) 371833. 65564.3i 1.68327 0.296805i
\(471\) 0 0
\(472\) −103585. + 37701.7i −0.464955 + 0.169230i
\(473\) 12212.3 + 33553.0i 0.0545851 + 0.149971i
\(474\) 0 0
\(475\) 83316.5 + 472511.i 0.369270 + 2.09423i
\(476\) −67464.5 38950.7i −0.297757 0.171910i
\(477\) 0 0
\(478\) 28185.6 + 48818.9i 0.123359 + 0.213664i
\(479\) 47147.7 + 56188.5i 0.205490 + 0.244893i 0.858940 0.512076i \(-0.171124\pi\)
−0.653450 + 0.756969i \(0.726679\pi\)
\(480\) 0 0
\(481\) −28003.9 + 158818.i −0.121040 + 0.686450i
\(482\) 118416. 141123.i 0.509702 0.607440i
\(483\) 0 0
\(484\) 107529. + 39137.3i 0.459023 + 0.167071i
\(485\) 85407.7i 0.363089i
\(486\) 0 0
\(487\) 380836. 1.60576 0.802879 0.596143i \(-0.203301\pi\)
0.802879 + 0.596143i \(0.203301\pi\)
\(488\) −17087.1 + 46946.4i −0.0717510 + 0.197134i
\(489\) 0 0
\(490\) −163738. 137393.i −0.681958 0.572231i
\(491\) 49659.2 + 8756.25i 0.205985 + 0.0363208i 0.275689 0.961247i \(-0.411094\pi\)
−0.0697032 + 0.997568i \(0.522205\pi\)
\(492\) 0 0
\(493\) −426278. + 357690.i −1.75388 + 1.47168i
\(494\) −107283. + 61939.9i −0.439620 + 0.253815i
\(495\) 0 0
\(496\) 38562.8 66792.8i 0.156749 0.271498i
\(497\) −162260. + 28610.8i −0.656900 + 0.115829i
\(498\) 0 0
\(499\) −337063. + 122681.i −1.35366 + 0.492693i −0.914089 0.405514i \(-0.867093\pi\)
−0.439573 + 0.898207i \(0.644870\pi\)
\(500\) 63162.3 + 173537.i 0.252649 + 0.694148i
\(501\) 0 0
\(502\) −42707.7 242207.i −0.169472 0.961125i
\(503\) 97150.7 + 56090.0i 0.383981 + 0.221692i 0.679549 0.733630i \(-0.262176\pi\)
−0.295568 + 0.955322i \(0.595509\pi\)
\(504\) 0 0
\(505\) −368319. 637948.i −1.44425 2.50151i
\(506\) 11357.9 + 13535.8i 0.0443604 + 0.0528667i
\(507\) 0 0
\(508\) 15456.0 87655.2i 0.0598920 0.339665i
\(509\) 229653. 273689.i 0.886413 1.05639i −0.111624 0.993751i \(-0.535605\pi\)
0.998036 0.0626352i \(-0.0199505\pi\)
\(510\) 0 0
\(511\) −137521. 50053.6i −0.526656 0.191687i
\(512\) 11585.2i 0.0441942i
\(513\) 0 0
\(514\) −103857. −0.393106
\(515\) 192125. 527860.i 0.724386 1.99023i
\(516\) 0 0
\(517\) −44328.2 37195.7i −0.165844 0.139159i
\(518\) −104506. 18427.2i −0.389476 0.0686751i
\(519\) 0 0
\(520\) −78422.7 + 65804.5i −0.290025 + 0.243360i
\(521\) −278941. + 161047.i −1.02763 + 0.593302i −0.916305 0.400482i \(-0.868843\pi\)
−0.111325 + 0.993784i \(0.535509\pi\)
\(522\) 0 0
\(523\) 108461. 187860.i 0.396525 0.686801i −0.596770 0.802413i \(-0.703549\pi\)
0.993295 + 0.115611i \(0.0368827\pi\)
\(524\) −14745.2 + 2599.98i −0.0537017 + 0.00946906i
\(525\) 0 0
\(526\) −186034. + 67710.8i −0.672389 + 0.244729i
\(527\) −161545. 443842.i −0.581666 1.59811i
\(528\) 0 0
\(529\) 28500.4 + 161634.i 0.101845 + 0.577591i
\(530\) −343488. 198313.i −1.22281 0.705991i
\(531\) 0 0
\(532\) −40757.8 70594.7i −0.144008 0.249430i
\(533\) −41598.3 49574.9i −0.146427 0.174505i
\(534\) 0 0
\(535\) −77397.5 + 438943.i −0.270408 + 1.53356i
\(536\) 50339.2 59991.9i 0.175217 0.208816i
\(537\) 0 0
\(538\) −72824.6 26506.0i −0.251602 0.0915755i
\(539\) 32758.6i 0.112758i
\(540\) 0 0
\(541\) −316743. −1.08221 −0.541106 0.840955i \(-0.681994\pi\)
−0.541106 + 0.840955i \(0.681994\pi\)
\(542\) −77659.9 + 213369.i −0.264362 + 0.726327i
\(543\) 0 0
\(544\) 54350.4 + 45605.4i 0.183656 + 0.154106i
\(545\) 443730. + 78241.6i 1.49392 + 0.263418i
\(546\) 0 0
\(547\) 39894.6 33475.5i 0.133333 0.111880i −0.573682 0.819078i \(-0.694486\pi\)
0.707016 + 0.707198i \(0.250041\pi\)
\(548\) −125104. + 72228.7i −0.416590 + 0.240519i
\(549\) 0 0
\(550\) 30384.1 52626.8i 0.100443 0.173973i
\(551\) −573438. + 101113.i −1.88879 + 0.333045i
\(552\) 0 0
\(553\) −58138.3 + 21160.6i −0.190113 + 0.0691955i
\(554\) −18870.9 51847.5i −0.0614857 0.168930i
\(555\) 0 0
\(556\) −22087.9 125267.i −0.0714505 0.405216i
\(557\) −142300. 82157.1i −0.458665 0.264810i 0.252818 0.967514i \(-0.418643\pi\)
−0.711483 + 0.702704i \(0.751976\pi\)
\(558\) 0 0
\(559\) −103815. 179813.i −0.332228 0.575435i
\(560\) −43300.8 51603.9i −0.138077 0.164553i
\(561\) 0 0
\(562\) 3231.47 18326.6i 0.0102312 0.0580241i
\(563\) 297776. 354876.i 0.939449 1.11959i −0.0532025 0.998584i \(-0.516943\pi\)
0.992652 0.121008i \(-0.0386127\pi\)
\(564\) 0 0
\(565\) 561736. + 204455.i 1.75969 + 0.640473i
\(566\) 68217.4i 0.212943i
\(567\) 0 0
\(568\) 150060. 0.465123
\(569\) 12912.6 35477.2i 0.0398833 0.109578i −0.918152 0.396227i \(-0.870319\pi\)
0.958036 + 0.286649i \(0.0925414\pi\)
\(570\) 0 0
\(571\) −355124. 297984.i −1.08920 0.913948i −0.0925485 0.995708i \(-0.529501\pi\)
−0.996652 + 0.0817604i \(0.973946\pi\)
\(572\) 15451.4 + 2724.50i 0.0472254 + 0.00832712i
\(573\) 0 0
\(574\) 32621.4 27372.6i 0.0990099 0.0830792i
\(575\) −344639. + 198977.i −1.04239 + 0.601822i
\(576\) 0 0
\(577\) 92607.3 160401.i 0.278159 0.481786i −0.692768 0.721161i \(-0.743609\pi\)
0.970927 + 0.239374i \(0.0769423\pi\)
\(578\) 195258. 34429.2i 0.584458 0.103056i
\(579\) 0 0
\(580\) −452177. + 164579.i −1.34416 + 0.489236i
\(581\) 94093.4 + 258520.i 0.278745 + 0.765845i
\(582\) 0 0
\(583\) 10555.5 + 59863.4i 0.0310558 + 0.176126i
\(584\) 115430. + 66643.4i 0.338448 + 0.195403i
\(585\) 0 0
\(586\) 89765.6 + 155479.i 0.261406 + 0.452768i
\(587\) 133194. + 158735.i 0.386553 + 0.460676i 0.923871 0.382704i \(-0.125007\pi\)
−0.537318 + 0.843380i \(0.680562\pi\)
\(588\) 0 0
\(589\) 85824.1 486733.i 0.247388 1.40301i
\(590\) −375236. + 447189.i −1.07795 + 1.28466i
\(591\) 0 0
\(592\) 90819.3 + 33055.5i 0.259140 + 0.0943193i
\(593\) 405120.i 1.15206i 0.817429 + 0.576029i \(0.195399\pi\)
−0.817429 + 0.576029i \(0.804601\pi\)
\(594\) 0 0
\(595\) −412546. −1.16530
\(596\) −38707.5 + 106348.i −0.108969 + 0.299390i
\(597\) 0 0
\(598\) −78709.5 66045.1i −0.220103 0.184688i
\(599\) 221080. + 38982.4i 0.616165 + 0.108646i 0.473015 0.881055i \(-0.343166\pi\)
0.143150 + 0.989701i \(0.454277\pi\)
\(600\) 0 0
\(601\) 396010. 332292.i 1.09637 0.919964i 0.0991945 0.995068i \(-0.468373\pi\)
0.997176 + 0.0751043i \(0.0239290\pi\)
\(602\) 118321. 68312.4i 0.326488 0.188498i
\(603\) 0 0
\(604\) −23419.9 + 40564.4i −0.0641965 + 0.111192i
\(605\) 596785. 105229.i 1.63045 0.287492i
\(606\) 0 0
\(607\) 548701. 199711.i 1.48922 0.542031i 0.535975 0.844234i \(-0.319944\pi\)
0.953244 + 0.302203i \(0.0977220\pi\)
\(608\) 25392.0 + 69763.9i 0.0686894 + 0.188723i
\(609\) 0 0
\(610\) 45942.4 + 260552.i 0.123468 + 0.700221i
\(611\) 291407. + 168244.i 0.780582 + 0.450669i
\(612\) 0 0
\(613\) 359959. + 623468.i 0.957927 + 1.65918i 0.727524 + 0.686082i \(0.240671\pi\)
0.230403 + 0.973095i \(0.425996\pi\)
\(614\) −97005.4 115607.i −0.257312 0.306652i
\(615\) 0 0
\(616\) −1792.78 + 10167.4i −0.00472461 + 0.0267946i
\(617\) 258721. 308331.i 0.679611 0.809929i −0.310446 0.950591i \(-0.600478\pi\)
0.990058 + 0.140662i \(0.0449229\pi\)
\(618\) 0 0
\(619\) −446744. 162601.i −1.16594 0.424368i −0.314726 0.949183i \(-0.601913\pi\)
−0.851217 + 0.524814i \(0.824135\pi\)
\(620\) 408438.i 1.06253i
\(621\) 0 0
\(622\) 83216.7 0.215095
\(623\) −59677.4 + 163962.i −0.153757 + 0.422443i
\(624\) 0 0
\(625\) 189072. + 158650.i 0.484023 + 0.406144i
\(626\) −409693. 72239.9i −1.04547 0.184344i
\(627\) 0 0
\(628\) 187332. 157190.i 0.475000 0.398572i
\(629\) 512586. 295942.i 1.29558 0.748006i
\(630\) 0 0
\(631\) −126509. + 219120.i −0.317733 + 0.550329i −0.980015 0.198925i \(-0.936255\pi\)
0.662282 + 0.749255i \(0.269588\pi\)
\(632\) 55492.2 9784.76i 0.138930 0.0244972i
\(633\) 0 0
\(634\) −305909. + 111342.i −0.761051 + 0.277000i
\(635\) −161215. 442935.i −0.399814 1.09848i
\(636\) 0 0
\(637\) −33078.0 187595.i −0.0815193 0.462319i
\(638\) 63867.8 + 36874.1i 0.156906 + 0.0905899i
\(639\) 0 0
\(640\) 30676.3 + 53132.8i 0.0748932 + 0.129719i
\(641\) 262760. + 313145.i 0.639504 + 0.762132i 0.984292 0.176549i \(-0.0564934\pi\)
−0.344787 + 0.938681i \(0.612049\pi\)
\(642\) 0 0
\(643\) −24638.0 + 139729.i −0.0595915 + 0.337960i −0.999998 0.00209281i \(-0.999334\pi\)
0.940406 + 0.340053i \(0.110445\pi\)
\(644\) 43459.2 51792.6i 0.104788 0.124881i
\(645\) 0 0
\(646\) 427243. + 155504.i 1.02379 + 0.372628i
\(647\) 340407.i 0.813186i 0.913609 + 0.406593i \(0.133283\pi\)
−0.913609 + 0.406593i \(0.866717\pi\)
\(648\) 0 0
\(649\) 89467.5 0.212411
\(650\) −120857. + 332053.i −0.286053 + 0.785923i
\(651\) 0 0
\(652\) −151884. 127446.i −0.357287 0.299799i
\(653\) −413322. 72879.9i −0.969310 0.170915i −0.333491 0.942753i \(-0.608227\pi\)
−0.635819 + 0.771838i \(0.719338\pi\)
\(654\) 0 0
\(655\) −60740.8 + 50967.6i −0.141579 + 0.118799i
\(656\) −33587.9 + 19392.0i −0.0780504 + 0.0450624i
\(657\) 0 0
\(658\) −110708. + 191753.i −0.255699 + 0.442883i
\(659\) −540473. + 95299.9i −1.24452 + 0.219443i −0.756853 0.653585i \(-0.773264\pi\)
−0.487670 + 0.873028i \(0.662153\pi\)
\(660\) 0 0
\(661\) 577773. 210292.i 1.32237 0.481305i 0.418156 0.908375i \(-0.362676\pi\)
0.904219 + 0.427070i \(0.140454\pi\)
\(662\) 57922.3 + 159140.i 0.132169 + 0.363132i
\(663\) 0 0
\(664\) −43509.3 246753.i −0.0986837 0.559663i
\(665\) −373852. 215843.i −0.845388 0.488085i
\(666\) 0 0
\(667\) −241478. 418253.i −0.542783 0.940128i
\(668\) −244638. 291549.i −0.548241 0.653369i
\(669\) 0 0
\(670\) 72017.3 408430.i 0.160431 0.909847i
\(671\) 26063.9 31061.8i 0.0578888 0.0689892i
\(672\) 0 0
\(673\) 831958. + 302808.i 1.83684 + 0.668555i 0.990782 + 0.135465i \(0.0432528\pi\)
0.846058 + 0.533090i \(0.178969\pi\)
\(674\) 170294.i 0.374868i
\(675\) 0 0
\(676\) 137253. 0.300351
\(677\) −88016.3 + 241823.i −0.192037 + 0.527618i −0.997921 0.0644563i \(-0.979469\pi\)
0.805883 + 0.592075i \(0.201691\pi\)
\(678\) 0 0
\(679\) 38367.6 + 32194.2i 0.0832195 + 0.0698294i
\(680\) 370022. + 65244.9i 0.800221 + 0.141101i
\(681\) 0 0
\(682\) −47952.3 + 40236.7i −0.103096 + 0.0865075i
\(683\) −314393. + 181515.i −0.673956 + 0.389109i −0.797574 0.603221i \(-0.793884\pi\)
0.123618 + 0.992330i \(0.460550\pi\)
\(684\) 0 0
\(685\) −382505. + 662518.i −0.815185 + 1.41194i
\(686\) 289599. 51064.1i 0.615387 0.108509i
\(687\) 0 0
\(688\) −116928. + 42558.4i −0.247026 + 0.0899101i
\(689\) −120894. 332154.i −0.254664 0.699683i
\(690\) 0 0
\(691\) −45340.3 257138.i −0.0949573 0.538530i −0.994760 0.102234i \(-0.967401\pi\)
0.899803 0.436296i \(-0.143710\pi\)
\(692\) 14391.6 + 8309.00i 0.0300537 + 0.0173515i
\(693\) 0 0
\(694\) −35338.8 61208.5i −0.0733723 0.127085i
\(695\) −432992. 516020.i −0.896417 1.06831i
\(696\) 0 0
\(697\) −41244.5 + 233909.i −0.0848987 + 0.481484i
\(698\) −245932. + 293091.i −0.504783 + 0.601577i
\(699\) 0 0
\(700\) −218498. 79526.7i −0.445914 0.162299i
\(701\) 374534.i 0.762176i −0.924539 0.381088i \(-0.875550\pi\)
0.924539 0.381088i \(-0.124450\pi\)
\(702\) 0 0
\(703\) 619345. 1.25320
\(704\) 3215.98 8835.82i 0.00648885 0.0178280i
\(705\) 0 0
\(706\) 448887. + 376661.i 0.900590 + 0.755685i
\(707\) 425422. + 75013.3i 0.851100 + 0.150072i
\(708\) 0 0
\(709\) −427788. + 358957.i −0.851012 + 0.714084i −0.960012 0.279958i \(-0.909680\pi\)
0.109000 + 0.994042i \(0.465235\pi\)
\(710\) 688212. 397339.i 1.36523 0.788216i
\(711\) 0 0
\(712\) 79457.0 137624.i 0.156737 0.271477i
\(713\) 403704. 71184.0i 0.794117 0.140024i
\(714\) 0 0
\(715\) 78078.2 28418.1i 0.152728 0.0555883i
\(716\) −52027.0 142943.i −0.101485 0.278828i
\(717\) 0 0
\(718\) −5607.24 31800.2i −0.0108768 0.0616852i
\(719\) 156648. + 90440.6i 0.303017 + 0.174947i 0.643797 0.765196i \(-0.277358\pi\)
−0.340781 + 0.940143i \(0.610691\pi\)
\(720\) 0 0
\(721\) 164709. + 285284.i 0.316844 + 0.548790i
\(722\) 68877.1 + 82084.6i 0.132130 + 0.157466i
\(723\) 0 0
\(724\) 51057.4 289561.i 0.0974051 0.552412i
\(725\) −1.06764e6 + 1.27236e6i −2.03117 + 2.42066i
\(726\) 0 0
\(727\) −570109. 207503.i −1.07867 0.392604i −0.259258 0.965808i \(-0.583478\pi\)
−0.819413 + 0.573204i \(0.805700\pi\)
\(728\) 60034.6i 0.113276i
\(729\) 0 0
\(730\) 705854. 1.32455
\(731\) −260633. + 716083.i −0.487747 + 1.34007i
\(732\) 0 0
\(733\) 46094.5 + 38677.9i 0.0857908 + 0.0719871i 0.684674 0.728849i \(-0.259944\pi\)
−0.598884 + 0.800836i \(0.704389\pi\)
\(734\) 522173. + 92073.1i 0.969219 + 0.170899i
\(735\) 0 0
\(736\) −47170.6 + 39580.9i −0.0870796 + 0.0730684i
\(737\) −55046.0 + 31780.8i −0.101342 + 0.0585100i
\(738\) 0 0
\(739\) −128656. + 222839.i −0.235581 + 0.408039i −0.959441 0.281908i \(-0.909033\pi\)
0.723860 + 0.689947i \(0.242366\pi\)
\(740\) 504047. 88877.1i 0.920466 0.162303i
\(741\) 0 0
\(742\) 218565. 79551.1i 0.396984 0.144490i
\(743\) 246217. + 676475.i 0.446005 + 1.22539i 0.935483 + 0.353373i \(0.114965\pi\)
−0.489478 + 0.872016i \(0.662813\pi\)
\(744\) 0 0
\(745\) 104074. + 590232.i 0.187512 + 1.06343i
\(746\) −193977. 111993.i −0.348556 0.201239i
\(747\) 0 0
\(748\) −28792.2 49869.6i −0.0514602 0.0891318i
\(749\) −168011. 200228.i −0.299484 0.356911i
\(750\) 0 0
\(751\) 1891.59 10727.7i 0.00335387 0.0190207i −0.983085 0.183150i \(-0.941370\pi\)
0.986439 + 0.164130i \(0.0524816\pi\)
\(752\) 129623. 154479.i 0.229217 0.273170i
\(753\) 0 0
\(754\) −402978. 146672.i −0.708825 0.257991i
\(755\) 248052.i 0.435160i
\(756\) 0 0
\(757\) 299286. 0.522270 0.261135 0.965302i \(-0.415903\pi\)
0.261135 + 0.965302i \(0.415903\pi\)
\(758\) −118809. + 326425.i −0.206781 + 0.568126i
\(759\) 0 0
\(760\) 301180. + 252720.i 0.521434 + 0.437535i
\(761\) 544360. + 95985.3i 0.939976 + 0.165743i 0.622586 0.782552i \(-0.286082\pi\)
0.317391 + 0.948295i \(0.397193\pi\)
\(762\) 0 0
\(763\) −202411. + 169843.i −0.347685 + 0.291742i
\(764\) −42676.4 + 24639.2i −0.0731140 + 0.0422124i
\(765\) 0 0
\(766\) −137000. + 237291.i −0.233487 + 0.404412i
\(767\) −512344. + 90340.0i −0.870905 + 0.153564i
\(768\) 0 0
\(769\) −380525. + 138500.i −0.643474 + 0.234205i −0.643085 0.765795i \(-0.722346\pi\)
−0.000388607 1.00000i \(0.500124\pi\)
\(770\) 18699.8 + 51377.2i 0.0315395 + 0.0866541i
\(771\) 0 0
\(772\) 44282.9 + 251141.i 0.0743022 + 0.421389i
\(773\) 867332. + 500754.i 1.45153 + 0.838042i 0.998569 0.0534876i \(-0.0170338\pi\)
0.452963 + 0.891529i \(0.350367\pi\)
\(774\) 0 0
\(775\) −704903. 1.22093e6i −1.17362 2.03276i
\(776\) −29321.2 34943.7i −0.0486921 0.0580290i
\(777\) 0 0
\(778\) −103436. + 586617.i −0.170889 + 0.969160i
\(779\) −159757. + 190391.i −0.263260 + 0.313741i
\(780\) 0 0
\(781\) −114447. 41655.5i −0.187631 0.0682920i
\(782\) 377105.i 0.616664i
\(783\) 0 0
\(784\) −114160. −0.185730
\(785\) 442933. 1.21695e6i 0.718784 1.97484i
\(786\) 0 0
\(787\) 813406. + 682528.i 1.31328 + 1.10197i 0.987683 + 0.156465i \(0.0500099\pi\)
0.325598 + 0.945508i \(0.394435\pi\)
\(788\) −175580. 30959.4i −0.282762 0.0498586i
\(789\) 0 0
\(790\) 228592. 191812.i 0.366275 0.307341i
\(791\) −303592. + 175279.i −0.485219 + 0.280141i
\(792\) 0 0
\(793\) −117893. + 204196.i −0.187474 + 0.324714i
\(794\) 537173. 94718.1i 0.852066 0.150242i
\(795\) 0 0
\(796\) 114726. 41756.8i 0.181065 0.0659024i
\(797\) 137866. + 378783.i 0.217040 + 0.596312i 0.999657 0.0261912i \(-0.00833787\pi\)
−0.782617 + 0.622503i \(0.786116\pi\)
\(798\) 0 0
\(799\) −214451. 1.21621e6i −0.335920 1.90509i
\(800\) 183399. + 105885.i 0.286560 + 0.165446i
\(801\) 0 0
\(802\) −34163.0 59172.0i −0.0531138 0.0919958i
\(803\) −69536.2 82870.0i −0.107840 0.128519i
\(804\) 0 0
\(805\) 62174.4 352609.i 0.0959445 0.544128i
\(806\) 233974. 278839.i 0.360161 0.429223i
\(807\) 0 0
\(808\) −369707. 134562.i −0.566285 0.206111i
\(809\) 350362.i 0.535328i −0.963512 0.267664i \(-0.913748\pi\)
0.963512 0.267664i \(-0.0862518\pi\)
\(810\) 0 0
\(811\) 928027. 1.41097 0.705486 0.708723i \(-0.250729\pi\)
0.705486 + 0.708723i \(0.250729\pi\)
\(812\) 96513.5 265169.i 0.146378 0.402170i
\(813\) 0 0
\(814\) −60090.0 50421.5i −0.0906888 0.0760969i
\(815\) −1.03404e6 182329.i −1.55676 0.274499i
\(816\) 0 0
\(817\) −610841. + 512556.i −0.915132 + 0.767887i
\(818\) −413987. + 239016.i −0.618701 + 0.357207i
\(819\) 0 0
\(820\) −102695. + 177873.i −0.152729 + 0.264535i
\(821\) −328299. + 57887.9i −0.487061 + 0.0858819i −0.411785 0.911281i \(-0.635095\pi\)
−0.0752753 + 0.997163i \(0.523984\pi\)
\(822\) 0 0
\(823\) 204886. 74572.3i 0.302491 0.110098i −0.186316 0.982490i \(-0.559655\pi\)
0.488806 + 0.872392i \(0.337432\pi\)
\(824\) −102613. 281927.i −0.151129 0.415223i
\(825\) 0 0
\(826\) −59445.7 337133.i −0.0871286 0.494131i
\(827\) 398393. + 230012.i 0.582506 + 0.336310i 0.762129 0.647425i \(-0.224154\pi\)
−0.179622 + 0.983736i \(0.557488\pi\)
\(828\) 0 0
\(829\) −647870. 1.12214e6i −0.942711 1.63282i −0.760271 0.649606i \(-0.774934\pi\)
−0.182440 0.983217i \(-0.558400\pi\)
\(830\) −852916. 1.01647e6i −1.23808 1.47549i
\(831\) 0 0
\(832\) −9494.58 + 53846.4i −0.0137160 + 0.0777876i
\(833\) −449392. + 535564.i −0.647642 + 0.771830i
\(834\) 0 0
\(835\) −1.89396e6 689345.i −2.71642 0.988697i
\(836\) 60256.1i 0.0862162i
\(837\) 0 0
\(838\) −137135. −0.195280
\(839\) 129441. 355636.i 0.183886 0.505222i −0.813159 0.582041i \(-0.802254\pi\)
0.997045 + 0.0768192i \(0.0244764\pi\)
\(840\) 0 0
\(841\) −1.00232e6 841049.i −1.41715 1.18913i
\(842\) −512478. 90363.8i −0.722855 0.127459i
\(843\) 0 0
\(844\) 110526. 92742.3i 0.155160 0.130195i
\(845\) 629478. 363429.i 0.881590 0.508986i
\(846\) 0 0
\(847\) −177685. + 307759.i −0.247676 + 0.428987i
\(848\) −208617. + 36784.8i −0.290107 + 0.0511537i
\(849\) 0 0
\(850\) 1.21870e6 443569.i 1.68678 0.613936i
\(851\) 175694. + 482715.i 0.242604 + 0.666549i
\(852\) 0 0
\(853\) 81624.8 + 462917.i 0.112182 + 0.636217i 0.988107 + 0.153769i \(0.0491412\pi\)
−0.875925 + 0.482448i \(0.839748\pi\)
\(854\) −134365. 77576.0i −0.184235 0.106368i
\(855\) 0 0
\(856\) 119027. + 206160.i 0.162441 + 0.281357i
\(857\) 275329. + 328124.i 0.374878 + 0.446762i 0.920191 0.391471i \(-0.128034\pi\)
−0.545313 + 0.838233i \(0.683589\pi\)
\(858\) 0 0
\(859\) 35852.1 203327.i 0.0485879 0.275555i −0.950828 0.309718i \(-0.899765\pi\)
0.999416 + 0.0341627i \(0.0108764\pi\)
\(860\) −423573. + 504795.i −0.572706 + 0.682525i
\(861\) 0 0
\(862\) 364197. + 132557.i 0.490142 + 0.178397i
\(863\) 1.22796e6i 1.64878i −0.566023 0.824390i \(-0.691519\pi\)
0.566023 0.824390i \(-0.308481\pi\)
\(864\) 0 0
\(865\) 88004.8 0.117618
\(866\) −110179. + 302714.i −0.146914 + 0.403642i
\(867\) 0 0
\(868\) 183482. + 153960.i 0.243531 + 0.204347i
\(869\) −45038.9 7941.57i −0.0596414 0.0105164i
\(870\) 0 0
\(871\) 283135. 237578.i 0.373213 0.313163i
\(872\) 208409. 120325.i 0.274083 0.158242i
\(873\) 0 0
\(874\) −197300. + 341734.i −0.258289 + 0.447369i
\(875\) −564806. + 99590.5i −0.737705 + 0.130077i
\(876\) 0 0
\(877\) −13247.3 + 4821.62i −0.0172238 + 0.00626894i −0.350618 0.936519i \(-0.614028\pi\)
0.333394 + 0.942788i \(0.391806\pi\)
\(878\) −278107. 764093.i −0.360764 0.991191i
\(879\) 0 0
\(880\) −8646.87 49038.8i −0.0111659 0.0633249i
\(881\) −665335. 384131.i −0.857213 0.494912i 0.00586512 0.999983i \(-0.498133\pi\)
−0.863078 + 0.505071i \(0.831466\pi\)
\(882\) 0 0
\(883\) 678306. + 1.17486e6i 0.869971 + 1.50683i 0.862026 + 0.506865i \(0.169196\pi\)
0.00794492 + 0.999968i \(0.497471\pi\)
\(884\) 215237. + 256509.i 0.275431 + 0.328246i
\(885\) 0 0
\(886\) −88977.8 + 504618.i −0.113348 + 0.642829i
\(887\) −34310.2 + 40889.3i −0.0436090 + 0.0519711i −0.787408 0.616432i \(-0.788577\pi\)
0.743799 + 0.668403i \(0.233022\pi\)
\(888\) 0 0
\(889\) 259749. + 94540.7i 0.328662 + 0.119623i
\(890\) 841569.i 1.06245i
\(891\) 0 0
\(892\) −281781. −0.354146
\(893\) 441984. 1.21434e6i 0.554247 1.52278i
\(894\) 0 0
\(895\) −617104. 517812.i −0.770394 0.646437i
\(896\) −35432.1 6247.64i −0.0441348 0.00778216i
\(897\) 0 0
\(898\) −526009. + 441374.i −0.652290 + 0.547336i
\(899\) 1.48172e6 855469.i 1.83335 1.05849i
\(900\) 0 0
\(901\) −648653. + 1.12350e6i −0.799030 + 1.38396i
\(902\) 30999.9 5466.11i 0.0381019 0.00671840i
\(903\) 0 0
\(904\) 300020. 109198.i 0.367124 0.133622i
\(905\) −532559. 1.46319e6i −0.650235 1.78651i
\(906\) 0 0
\(907\) 294.186 + 1668.41i 0.000357608 + 0.00202810i 0.984986 0.172634i \(-0.0552278\pi\)
−0.984628 + 0.174662i \(0.944117\pi\)
\(908\) 303282. + 175100.i 0.367853 + 0.212380i
\(909\) 0 0
\(910\) −158964. 275334.i −0.191962 0.332489i
\(911\) 137089. + 163377.i 0.165184 + 0.196858i 0.842286 0.539030i \(-0.181209\pi\)
−0.677103 + 0.735889i \(0.736765\pi\)
\(912\) 0 0
\(913\) −35313.3 + 200271.i −0.0423639 + 0.240258i
\(914\) 491269. 585471.i 0.588067 0.700831i
\(915\) 0 0
\(916\) 292774. + 106561.i 0.348932 + 0.127001i
\(917\) 46498.6i 0.0552970i
\(918\) 0 0
\(919\) 67384.9 0.0797868 0.0398934 0.999204i \(-0.487298\pi\)
0.0398934 + 0.999204i \(0.487298\pi\)
\(920\) −111531. + 306430.i −0.131771 + 0.362039i
\(921\) 0 0
\(922\) −656631. 550979.i −0.772430 0.648146i
\(923\) 697455. + 122980.i 0.818677 + 0.144355i
\(924\) 0 0
\(925\) 1.35334e6 1.13559e6i 1.58170 1.32720i
\(926\) 87870.6 50732.1i 0.102476 0.0591644i
\(927\) 0 0
\(928\) −128502. + 222572.i −0.149216 + 0.258449i
\(929\) −70523.8 + 12435.2i −0.0817155 + 0.0144086i −0.214356 0.976756i \(-0.568765\pi\)
0.132641 + 0.991164i \(0.457654\pi\)
\(930\) 0 0
\(931\) −687448. + 250211.i −0.793123 + 0.288673i
\(932\) −41482.4 113972.i −0.0477564 0.131210i
\(933\) 0 0
\(934\) 5052.31 + 28653.1i 0.00579157 + 0.0328456i
\(935\) −264097. 152476.i −0.302092 0.174413i
\(936\) 0 0
\(937\) 350885. + 607751.i 0.399655 + 0.692223i 0.993683 0.112221i \(-0.0357965\pi\)
−0.594028 + 0.804444i \(0.702463\pi\)
\(938\) 156332. + 186309.i 0.177681 + 0.211752i
\(939\) 0 0
\(940\) 185444. 1.05170e6i 0.209873 1.19025i
\(941\) −612619. + 730091.i −0.691849 + 0.824514i −0.991578 0.129511i \(-0.958659\pi\)
0.299729 + 0.954024i \(0.403104\pi\)
\(942\) 0 0
\(943\) −193710. 70504.5i −0.217835 0.0792855i
\(944\) 311784.i 0.349873i
\(945\) 0 0
\(946\) 100993. 0.112852
\(947\) −124361. + 341678.i −0.138670 + 0.380993i −0.989516 0.144422i \(-0.953868\pi\)
0.850846 + 0.525415i \(0.176090\pi\)
\(948\) 0 0
\(949\) 481883. + 404348.i 0.535068 + 0.448976i
\(950\) 1.33646e6 + 235655.i 1.48085 + 0.261113i
\(951\) 0 0
\(952\) −168789. + 141631.i −0.186239 + 0.156273i
\(953\) 838648. 484194.i 0.923409 0.533130i 0.0386879 0.999251i \(-0.487682\pi\)
0.884721 + 0.466121i \(0.154349\pi\)
\(954\) 0 0
\(955\) −130483. + 226003.i −0.143070 + 0.247804i
\(956\) 157019. 27686.8i 0.171806 0.0302940i
\(957\) 0 0
\(958\) 194950. 70956.2i 0.212419 0.0773142i
\(959\) −153438. 421567.i −0.166838 0.458384i
\(960\) 0 0
\(961\) 91810.9 + 520685.i 0.0994140 + 0.563805i
\(962\) 395024. + 228067.i 0.426848 + 0.246441i
\(963\) 0 0
\(964\) −260530. 451252.i −0.280352 0.485584i
\(965\) 868083. + 1.03454e6i 0.932194 + 1.11095i
\(966\) 0 0
\(967\) 173986. 986724.i 0.186064 1.05522i −0.738517 0.674234i \(-0.764474\pi\)
0.924581 0.380985i \(-0.124415\pi\)
\(968\) 208042. 247935.i 0.222025 0.264599i
\(969\) 0 0
\(970\) −227001. 82621.6i −0.241259 0.0878113i
\(971\) 1.09369e6i 1.15999i 0.814620 + 0.579995i \(0.196946\pi\)
−0.814620 + 0.579995i \(0.803054\pi\)
\(972\) 0 0
\(973\) 395026. 0.417254
\(974\) 368413. 1.01221e6i 0.388344 1.06697i
\(975\) 0 0
\(976\) 108247. + 90829.8i 0.113636 + 0.0953518i
\(977\) −1.20016e6 211620.i −1.25733 0.221701i −0.495002 0.868892i \(-0.664833\pi\)
−0.762328 + 0.647191i \(0.775944\pi\)
\(978\) 0 0
\(979\) −98803.5 + 82906.0i −0.103088 + 0.0865008i
\(980\) −523566. + 302281.i −0.545154 + 0.314745i
\(981\) 0 0
\(982\) 71312.1 123516.i 0.0739503 0.128086i
\(983\) −1.56087e6 + 275223.i −1.61532 + 0.284824i −0.907020 0.421087i \(-0.861649\pi\)
−0.708300 + 0.705912i \(0.750537\pi\)
\(984\) 0 0
\(985\) −887229. + 322925.i −0.914457 + 0.332835i
\(986\) 538314. + 1.47901e6i 0.553709 + 1.52130i
\(987\) 0 0
\(988\) 60843.7 + 345062.i 0.0623307 + 0.353495i
\(989\) −572766. 330687.i −0.585578 0.338084i
\(990\) 0 0
\(991\) −175298. 303625.i −0.178496 0.309165i 0.762869 0.646553i \(-0.223790\pi\)
−0.941366 + 0.337388i \(0.890457\pi\)
\(992\) −140220. 167108.i −0.142491 0.169814i
\(993\) 0 0
\(994\) −80923.7 + 458941.i −0.0819036 + 0.464498i
\(995\) 415596. 495287.i 0.419783 0.500278i
\(996\) 0 0
\(997\) −293282. 106746.i −0.295050 0.107389i 0.190254 0.981735i \(-0.439069\pi\)
−0.485304 + 0.874346i \(0.661291\pi\)
\(998\) 1.01454e6i 1.01861i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.5.f.a.17.7 72
3.2 odd 2 54.5.f.a.23.4 72
27.7 even 9 54.5.f.a.47.4 yes 72
27.20 odd 18 inner 162.5.f.a.143.7 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.5.f.a.23.4 72 3.2 odd 2
54.5.f.a.47.4 yes 72 27.7 even 9
162.5.f.a.17.7 72 1.1 even 1 trivial
162.5.f.a.143.7 72 27.20 odd 18 inner