Properties

Label 162.8.c.m.55.2
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{329})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 83x^{2} + 82x + 6724 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.2
Root \(4.78459 + 8.28715i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.m.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(256.868 + 444.908i) q^{5} +(-464.868 + 805.175i) q^{7} +512.000 q^{8} -4109.89 q^{10} +(-3766.44 + 6523.67i) q^{11} +(-7037.36 - 12189.1i) q^{13} +(-3718.94 - 6441.40i) q^{14} +(-2048.00 + 3547.24i) q^{16} +3057.29 q^{17} -15757.5 q^{19} +(16439.5 - 28474.1i) q^{20} +(-30131.5 - 52189.4i) q^{22} +(19804.4 + 34302.2i) q^{23} +(-92899.7 + 160907. i) q^{25} +112598. q^{26} +59503.1 q^{28} +(12500.4 - 21651.3i) q^{29} +(8391.33 + 14534.2i) q^{31} +(-16384.0 - 28377.9i) q^{32} +(-12229.1 + 21181.5i) q^{34} -477638. q^{35} +389561. q^{37} +(63030.0 - 109171. i) q^{38} +(131516. + 227793. i) q^{40} +(-127058. - 220071. i) q^{41} +(-128452. + 222485. i) q^{43} +482105. q^{44} -316870. q^{46} +(26238.0 - 45445.6i) q^{47} +(-20432.7 - 35390.4i) q^{49} +(-743197. - 1.28726e6i) q^{50} +(-450391. + 780100. i) q^{52} -571071. q^{53} -3.86991e6 q^{55} +(-238012. + 412249. i) q^{56} +(100003. + 173211. i) q^{58} +(-148444. - 257113. i) q^{59} +(696724. - 1.20676e6i) q^{61} -134261. q^{62} +262144. q^{64} +(3.61534e6 - 6.26195e6i) q^{65} +(19493.5 + 33763.7i) q^{67} +(-97833.2 - 169452. i) q^{68} +(1.91055e6 - 3.30918e6i) q^{70} +1.17263e6 q^{71} +2.81003e6 q^{73} +(-1.55824e6 + 2.69895e6i) q^{74} +(504240. + 873369. i) q^{76} +(-3.50180e6 - 6.06529e6i) q^{77} +(-720481. + 1.24791e6i) q^{79} -2.10426e6 q^{80} +2.03293e6 q^{82} +(3.13138e6 - 5.42372e6i) q^{83} +(785319. + 1.36021e6i) q^{85} +(-1.02762e6 - 1.77988e6i) q^{86} +(-1.92842e6 + 3.34012e6i) q^{88} -5.01788e6 q^{89} +1.30858e7 q^{91} +(1.26748e6 - 2.19534e6i) q^{92} +(209904. + 363565. i) q^{94} +(-4.04759e6 - 7.01064e6i) q^{95} +(3.27822e6 - 5.67804e6i) q^{97} +326923. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} - 128 q^{4} + 48 q^{5} - 880 q^{7} + 2048 q^{8} - 768 q^{10} - 7230 q^{11} - 8560 q^{13} - 7040 q^{14} - 8192 q^{16} + 51408 q^{17} + 74096 q^{19} + 3072 q^{20} - 57840 q^{22} + 59628 q^{23}+ \cdots - 12483264 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) 256.868 + 444.908i 0.918998 + 1.59175i 0.800940 + 0.598745i \(0.204334\pi\)
0.118059 + 0.993007i \(0.462333\pi\)
\(6\) 0 0
\(7\) −464.868 + 805.175i −0.512255 + 0.887252i 0.487644 + 0.873043i \(0.337856\pi\)
−0.999899 + 0.0142093i \(0.995477\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −4109.89 −1.29966
\(11\) −3766.44 + 6523.67i −0.853212 + 1.47781i 0.0250819 + 0.999685i \(0.492015\pi\)
−0.878294 + 0.478121i \(0.841318\pi\)
\(12\) 0 0
\(13\) −7037.36 12189.1i −0.888398 1.53875i −0.841768 0.539839i \(-0.818485\pi\)
−0.0466303 0.998912i \(-0.514848\pi\)
\(14\) −3718.94 6441.40i −0.362219 0.627382i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) 3057.29 0.150926 0.0754632 0.997149i \(-0.475956\pi\)
0.0754632 + 0.997149i \(0.475956\pi\)
\(18\) 0 0
\(19\) −15757.5 −0.527047 −0.263524 0.964653i \(-0.584885\pi\)
−0.263524 + 0.964653i \(0.584885\pi\)
\(20\) 16439.5 28474.1i 0.459499 0.795876i
\(21\) 0 0
\(22\) −30131.5 52189.4i −0.603312 1.04497i
\(23\) 19804.4 + 34302.2i 0.339401 + 0.587860i 0.984320 0.176391i \(-0.0564423\pi\)
−0.644919 + 0.764251i \(0.723109\pi\)
\(24\) 0 0
\(25\) −92899.7 + 160907.i −1.18912 + 2.05961i
\(26\) 112598. 1.25639
\(27\) 0 0
\(28\) 59503.1 0.512255
\(29\) 12500.4 21651.3i 0.0951768 0.164851i −0.814506 0.580156i \(-0.802992\pi\)
0.909682 + 0.415305i \(0.136325\pi\)
\(30\) 0 0
\(31\) 8391.33 + 14534.2i 0.0505900 + 0.0876245i 0.890211 0.455548i \(-0.150556\pi\)
−0.839621 + 0.543172i \(0.817223\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −12229.1 + 21181.5i −0.0533605 + 0.0924231i
\(35\) −477638. −1.88305
\(36\) 0 0
\(37\) 389561. 1.26435 0.632177 0.774824i \(-0.282161\pi\)
0.632177 + 0.774824i \(0.282161\pi\)
\(38\) 63030.0 109171.i 0.186339 0.322749i
\(39\) 0 0
\(40\) 131516. + 227793.i 0.324915 + 0.562769i
\(41\) −127058. 220071.i −0.287912 0.498677i 0.685400 0.728167i \(-0.259628\pi\)
−0.973311 + 0.229490i \(0.926294\pi\)
\(42\) 0 0
\(43\) −128452. + 222485.i −0.246378 + 0.426739i −0.962518 0.271218i \(-0.912574\pi\)
0.716140 + 0.697956i \(0.245907\pi\)
\(44\) 482105. 0.853212
\(45\) 0 0
\(46\) −316870. −0.479986
\(47\) 26238.0 45445.6i 0.0368628 0.0638483i −0.847005 0.531584i \(-0.821597\pi\)
0.883868 + 0.467736i \(0.154930\pi\)
\(48\) 0 0
\(49\) −20432.7 35390.4i −0.0248107 0.0429734i
\(50\) −743197. 1.28726e6i −0.840832 1.45636i
\(51\) 0 0
\(52\) −450391. + 780100.i −0.444199 + 0.769376i
\(53\) −571071. −0.526895 −0.263448 0.964674i \(-0.584860\pi\)
−0.263448 + 0.964674i \(0.584860\pi\)
\(54\) 0 0
\(55\) −3.86991e6 −3.13640
\(56\) −238012. + 412249.i −0.181110 + 0.313691i
\(57\) 0 0
\(58\) 100003. + 173211.i 0.0673001 + 0.116567i
\(59\) −148444. 257113.i −0.0940982 0.162983i 0.815134 0.579273i \(-0.196663\pi\)
−0.909232 + 0.416290i \(0.863330\pi\)
\(60\) 0 0
\(61\) 696724. 1.20676e6i 0.393012 0.680717i −0.599833 0.800125i \(-0.704766\pi\)
0.992845 + 0.119408i \(0.0380996\pi\)
\(62\) −134261. −0.0715451
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 3.61534e6 6.26195e6i 1.63287 2.82822i
\(66\) 0 0
\(67\) 19493.5 + 33763.7i 0.00791822 + 0.0137148i 0.869957 0.493127i \(-0.164146\pi\)
−0.862039 + 0.506842i \(0.830813\pi\)
\(68\) −97833.2 169452.i −0.0377316 0.0653530i
\(69\) 0 0
\(70\) 1.91055e6 3.30918e6i 0.665757 1.15313i
\(71\) 1.17263e6 0.388828 0.194414 0.980920i \(-0.437720\pi\)
0.194414 + 0.980920i \(0.437720\pi\)
\(72\) 0 0
\(73\) 2.81003e6 0.845436 0.422718 0.906261i \(-0.361076\pi\)
0.422718 + 0.906261i \(0.361076\pi\)
\(74\) −1.55824e6 + 2.69895e6i −0.447017 + 0.774256i
\(75\) 0 0
\(76\) 504240. + 873369.i 0.131762 + 0.228218i
\(77\) −3.50180e6 6.06529e6i −0.874124 1.51403i
\(78\) 0 0
\(79\) −720481. + 1.24791e6i −0.164410 + 0.284766i −0.936446 0.350813i \(-0.885905\pi\)
0.772036 + 0.635579i \(0.219239\pi\)
\(80\) −2.10426e6 −0.459499
\(81\) 0 0
\(82\) 2.03293e6 0.407168
\(83\) 3.13138e6 5.42372e6i 0.601123 1.04117i −0.391529 0.920166i \(-0.628054\pi\)
0.992651 0.121009i \(-0.0386130\pi\)
\(84\) 0 0
\(85\) 785319. + 1.36021e6i 0.138701 + 0.240237i
\(86\) −1.02762e6 1.77988e6i −0.174215 0.301750i
\(87\) 0 0
\(88\) −1.92842e6 + 3.34012e6i −0.301656 + 0.522484i
\(89\) −5.01788e6 −0.754493 −0.377246 0.926113i \(-0.623129\pi\)
−0.377246 + 0.926113i \(0.623129\pi\)
\(90\) 0 0
\(91\) 1.30858e7 1.82035
\(92\) 1.26748e6 2.19534e6i 0.169701 0.293930i
\(93\) 0 0
\(94\) 209904. + 363565.i 0.0260660 + 0.0451476i
\(95\) −4.04759e6 7.01064e6i −0.484356 0.838928i
\(96\) 0 0
\(97\) 3.27822e6 5.67804e6i 0.364701 0.631681i −0.624027 0.781403i \(-0.714505\pi\)
0.988728 + 0.149722i \(0.0478379\pi\)
\(98\) 326923. 0.0350876
\(99\) 0 0
\(100\) 1.18912e7 1.18912
\(101\) −2.63601e6 + 4.56571e6i −0.254579 + 0.440944i −0.964781 0.263054i \(-0.915270\pi\)
0.710202 + 0.703998i \(0.248604\pi\)
\(102\) 0 0
\(103\) −7.17000e6 1.24188e7i −0.646531 1.11982i −0.983946 0.178468i \(-0.942886\pi\)
0.337415 0.941356i \(-0.390447\pi\)
\(104\) −3.60313e6 6.24080e6i −0.314096 0.544031i
\(105\) 0 0
\(106\) 2.28428e6 3.95649e6i 0.186286 0.322656i
\(107\) 1.44748e7 1.14227 0.571135 0.820856i \(-0.306503\pi\)
0.571135 + 0.820856i \(0.306503\pi\)
\(108\) 0 0
\(109\) −2.18620e7 −1.61695 −0.808474 0.588531i \(-0.799706\pi\)
−0.808474 + 0.588531i \(0.799706\pi\)
\(110\) 1.54796e7 2.68115e7i 1.10889 1.92065i
\(111\) 0 0
\(112\) −1.90410e6 3.29800e6i −0.128064 0.221813i
\(113\) −1.14181e7 1.97768e7i −0.744425 1.28938i −0.950463 0.310838i \(-0.899391\pi\)
0.206038 0.978544i \(-0.433943\pi\)
\(114\) 0 0
\(115\) −1.01742e7 + 1.76222e7i −0.623818 + 1.08048i
\(116\) −1.60005e6 −0.0951768
\(117\) 0 0
\(118\) 2.37511e6 0.133075
\(119\) −1.42123e6 + 2.46165e6i −0.0773128 + 0.133910i
\(120\) 0 0
\(121\) −1.86286e7 3.22657e7i −0.955941 1.65574i
\(122\) 5.57379e6 + 9.65409e6i 0.277902 + 0.481340i
\(123\) 0 0
\(124\) 537045. 930189.i 0.0252950 0.0438122i
\(125\) −5.53161e7 −2.53318
\(126\) 0 0
\(127\) −4.32493e7 −1.87355 −0.936777 0.349926i \(-0.886207\pi\)
−0.936777 + 0.349926i \(0.886207\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 2.89227e7 + 5.00956e7i 1.15462 + 1.99985i
\(131\) 1.01142e7 + 1.75183e7i 0.393082 + 0.680838i 0.992854 0.119333i \(-0.0380756\pi\)
−0.599773 + 0.800171i \(0.704742\pi\)
\(132\) 0 0
\(133\) 7.32515e6 1.26875e7i 0.269983 0.467624i
\(134\) −311896. −0.0111981
\(135\) 0 0
\(136\) 1.56533e6 0.0533605
\(137\) −1.38583e7 + 2.40033e7i −0.460456 + 0.797533i −0.998984 0.0450750i \(-0.985647\pi\)
0.538528 + 0.842608i \(0.318981\pi\)
\(138\) 0 0
\(139\) 2.76358e7 + 4.78666e7i 0.872810 + 1.51175i 0.859077 + 0.511846i \(0.171038\pi\)
0.0137331 + 0.999906i \(0.495628\pi\)
\(140\) 1.52844e7 + 2.64734e7i 0.470762 + 0.815383i
\(141\) 0 0
\(142\) −4.69052e6 + 8.12422e6i −0.137471 + 0.238107i
\(143\) 1.06023e8 3.03197
\(144\) 0 0
\(145\) 1.28438e7 0.349869
\(146\) −1.12401e7 + 1.94685e7i −0.298907 + 0.517722i
\(147\) 0 0
\(148\) −1.24659e7 2.15916e7i −0.316089 0.547482i
\(149\) 2.77455e6 + 4.80566e6i 0.0687133 + 0.119015i 0.898335 0.439311i \(-0.144777\pi\)
−0.829622 + 0.558326i \(0.811444\pi\)
\(150\) 0 0
\(151\) 1.45783e7 2.52503e7i 0.344578 0.596826i −0.640699 0.767792i \(-0.721355\pi\)
0.985277 + 0.170966i \(0.0546887\pi\)
\(152\) −8.06784e6 −0.186339
\(153\) 0 0
\(154\) 5.60287e7 1.23620
\(155\) −4.31092e6 + 7.46674e6i −0.0929843 + 0.161053i
\(156\) 0 0
\(157\) 1.69551e7 + 2.93672e7i 0.349665 + 0.605638i 0.986190 0.165618i \(-0.0529620\pi\)
−0.636525 + 0.771256i \(0.719629\pi\)
\(158\) −5.76385e6 9.98328e6i −0.116255 0.201360i
\(159\) 0 0
\(160\) 8.41704e6 1.45787e7i 0.162457 0.281385i
\(161\) −3.68256e7 −0.695440
\(162\) 0 0
\(163\) −8.50849e7 −1.53885 −0.769425 0.638738i \(-0.779457\pi\)
−0.769425 + 0.638738i \(0.779457\pi\)
\(164\) −8.13172e6 + 1.40846e7i −0.143956 + 0.249339i
\(165\) 0 0
\(166\) 2.50511e7 + 4.33897e7i 0.425058 + 0.736222i
\(167\) 2.43589e7 + 4.21908e7i 0.404715 + 0.700987i 0.994288 0.106728i \(-0.0340374\pi\)
−0.589573 + 0.807715i \(0.700704\pi\)
\(168\) 0 0
\(169\) −6.76745e7 + 1.17216e8i −1.07850 + 1.86802i
\(170\) −1.25651e7 −0.196153
\(171\) 0 0
\(172\) 1.64419e7 0.246378
\(173\) 2.46741e7 4.27368e7i 0.362310 0.627539i −0.626031 0.779798i \(-0.715322\pi\)
0.988341 + 0.152259i \(0.0486549\pi\)
\(174\) 0 0
\(175\) −8.63721e7 1.49601e8i −1.21826 2.11009i
\(176\) −1.54273e7 2.67210e7i −0.213303 0.369452i
\(177\) 0 0
\(178\) 2.00715e7 3.47649e7i 0.266753 0.462031i
\(179\) 4.83660e7 0.630310 0.315155 0.949040i \(-0.397943\pi\)
0.315155 + 0.949040i \(0.397943\pi\)
\(180\) 0 0
\(181\) −7.66634e7 −0.960978 −0.480489 0.877001i \(-0.659541\pi\)
−0.480489 + 0.877001i \(0.659541\pi\)
\(182\) −5.23430e7 + 9.06608e7i −0.643590 + 1.11473i
\(183\) 0 0
\(184\) 1.01398e7 + 1.75627e7i 0.119996 + 0.207840i
\(185\) 1.00066e8 + 1.73319e8i 1.16194 + 2.01254i
\(186\) 0 0
\(187\) −1.15151e7 + 1.99447e7i −0.128772 + 0.223040i
\(188\) −3.35847e6 −0.0368628
\(189\) 0 0
\(190\) 6.47615e7 0.684982
\(191\) −7.71024e7 + 1.33545e8i −0.800665 + 1.38679i 0.118514 + 0.992952i \(0.462187\pi\)
−0.919179 + 0.393840i \(0.871146\pi\)
\(192\) 0 0
\(193\) −6.72489e7 1.16478e8i −0.673340 1.16626i −0.976951 0.213463i \(-0.931526\pi\)
0.303611 0.952796i \(-0.401808\pi\)
\(194\) 2.62258e7 + 4.54243e7i 0.257883 + 0.446666i
\(195\) 0 0
\(196\) −1.30769e6 + 2.26499e6i −0.0124054 + 0.0214867i
\(197\) −1.23329e8 −1.14930 −0.574651 0.818398i \(-0.694862\pi\)
−0.574651 + 0.818398i \(0.694862\pi\)
\(198\) 0 0
\(199\) 1.26860e8 1.14114 0.570571 0.821248i \(-0.306722\pi\)
0.570571 + 0.821248i \(0.306722\pi\)
\(200\) −4.75646e7 + 8.23843e7i −0.420416 + 0.728182i
\(201\) 0 0
\(202\) −2.10881e7 3.65257e7i −0.180015 0.311795i
\(203\) 1.16221e7 + 2.01300e7i 0.0975096 + 0.168892i
\(204\) 0 0
\(205\) 6.52743e7 1.13058e8i 0.529180 0.916567i
\(206\) 1.14720e8 0.914332
\(207\) 0 0
\(208\) 5.76500e7 0.444199
\(209\) 5.93497e7 1.02797e8i 0.449683 0.778874i
\(210\) 0 0
\(211\) −2.04917e7 3.54927e7i −0.150172 0.260106i 0.781118 0.624383i \(-0.214649\pi\)
−0.931291 + 0.364277i \(0.881316\pi\)
\(212\) 1.82743e7 + 3.16520e7i 0.131724 + 0.228152i
\(213\) 0 0
\(214\) −5.78991e7 + 1.00284e8i −0.403853 + 0.699494i
\(215\) −1.31981e8 −0.905683
\(216\) 0 0
\(217\) −1.56034e7 −0.103660
\(218\) 8.74478e7 1.51464e8i 0.571678 0.990175i
\(219\) 0 0
\(220\) 1.23837e8 + 2.14492e8i 0.784100 + 1.35810i
\(221\) −2.15152e7 3.72655e7i −0.134083 0.232238i
\(222\) 0 0
\(223\) 7.06819e7 1.22425e8i 0.426816 0.739268i −0.569772 0.821803i \(-0.692968\pi\)
0.996588 + 0.0825352i \(0.0263017\pi\)
\(224\) 3.04656e7 0.181110
\(225\) 0 0
\(226\) 1.82690e8 1.05278
\(227\) −1.04100e8 + 1.80307e8i −0.590693 + 1.02311i 0.403446 + 0.915004i \(0.367812\pi\)
−0.994139 + 0.108108i \(0.965521\pi\)
\(228\) 0 0
\(229\) 8.31954e7 + 1.44099e8i 0.457799 + 0.792931i 0.998844 0.0480623i \(-0.0153046\pi\)
−0.541045 + 0.840993i \(0.681971\pi\)
\(230\) −8.13936e7 1.40978e8i −0.441106 0.764018i
\(231\) 0 0
\(232\) 6.40021e6 1.10855e7i 0.0336501 0.0582836i
\(233\) 2.64825e8 1.37156 0.685778 0.727810i \(-0.259462\pi\)
0.685778 + 0.727810i \(0.259462\pi\)
\(234\) 0 0
\(235\) 2.69588e7 0.135508
\(236\) −9.50043e6 + 1.64552e7i −0.0470491 + 0.0814915i
\(237\) 0 0
\(238\) −1.13699e7 1.96932e7i −0.0546684 0.0946884i
\(239\) −2.57636e7 4.46239e7i −0.122071 0.211434i 0.798513 0.601978i \(-0.205620\pi\)
−0.920584 + 0.390544i \(0.872287\pi\)
\(240\) 0 0
\(241\) 6.70898e7 1.16203e8i 0.308743 0.534758i −0.669345 0.742952i \(-0.733425\pi\)
0.978088 + 0.208194i \(0.0667585\pi\)
\(242\) 2.98058e8 1.35191
\(243\) 0 0
\(244\) −8.91806e7 −0.393012
\(245\) 1.04970e7 1.81813e7i 0.0456020 0.0789850i
\(246\) 0 0
\(247\) 1.10891e8 + 1.92069e8i 0.468228 + 0.810995i
\(248\) 4.29636e6 + 7.44151e6i 0.0178863 + 0.0309799i
\(249\) 0 0
\(250\) 2.21265e8 3.83241e8i 0.895616 1.55125i
\(251\) 3.18238e6 0.0127027 0.00635133 0.999980i \(-0.497978\pi\)
0.00635133 + 0.999980i \(0.497978\pi\)
\(252\) 0 0
\(253\) −2.98368e8 −1.15832
\(254\) 1.72997e8 2.99640e8i 0.662402 1.14731i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 2.10138e8 + 3.63970e8i 0.772216 + 1.33752i 0.936346 + 0.351079i \(0.114185\pi\)
−0.164129 + 0.986439i \(0.552481\pi\)
\(258\) 0 0
\(259\) −1.81094e8 + 3.13664e8i −0.647672 + 1.12180i
\(260\) −4.62764e8 −1.63287
\(261\) 0 0
\(262\) −1.61828e8 −0.555902
\(263\) −3.66087e7 + 6.34081e7i −0.124091 + 0.214931i −0.921377 0.388670i \(-0.872935\pi\)
0.797287 + 0.603601i \(0.206268\pi\)
\(264\) 0 0
\(265\) −1.46690e8 2.54074e8i −0.484216 0.838687i
\(266\) 5.86012e7 + 1.01500e8i 0.190907 + 0.330660i
\(267\) 0 0
\(268\) 1.24758e6 2.16088e6i 0.00395911 0.00685738i
\(269\) −4.03323e8 −1.26334 −0.631670 0.775237i \(-0.717630\pi\)
−0.631670 + 0.775237i \(0.717630\pi\)
\(270\) 0 0
\(271\) −7.59082e7 −0.231684 −0.115842 0.993268i \(-0.536957\pi\)
−0.115842 + 0.993268i \(0.536957\pi\)
\(272\) −6.26132e6 + 1.08449e7i −0.0188658 + 0.0326765i
\(273\) 0 0
\(274\) −1.10866e8 1.92026e8i −0.325591 0.563941i
\(275\) −6.99802e8 1.21209e9i −2.02914 3.51457i
\(276\) 0 0
\(277\) −8.90979e7 + 1.54322e8i −0.251877 + 0.436263i −0.964043 0.265748i \(-0.914381\pi\)
0.712166 + 0.702011i \(0.247714\pi\)
\(278\) −4.42172e8 −1.23434
\(279\) 0 0
\(280\) −2.44551e8 −0.665757
\(281\) 2.93797e8 5.08872e8i 0.789907 1.36816i −0.136117 0.990693i \(-0.543462\pi\)
0.926024 0.377466i \(-0.123204\pi\)
\(282\) 0 0
\(283\) 1.42459e8 + 2.46746e8i 0.373626 + 0.647138i 0.990120 0.140221i \(-0.0447812\pi\)
−0.616495 + 0.787359i \(0.711448\pi\)
\(284\) −3.75242e7 6.49938e7i −0.0972069 0.168367i
\(285\) 0 0
\(286\) −4.24093e8 + 7.34550e8i −1.07196 + 1.85669i
\(287\) 2.36261e8 0.589937
\(288\) 0 0
\(289\) −4.00992e8 −0.977221
\(290\) −5.13752e7 + 8.89845e7i −0.123697 + 0.214250i
\(291\) 0 0
\(292\) −8.99210e7 1.55748e8i −0.211359 0.366085i
\(293\) −1.75728e8 3.04371e8i −0.408136 0.706913i 0.586545 0.809917i \(-0.300488\pi\)
−0.994681 + 0.103004i \(0.967155\pi\)
\(294\) 0 0
\(295\) 7.62611e7 1.32088e8i 0.172952 0.299562i
\(296\) 1.99455e8 0.447017
\(297\) 0 0
\(298\) −4.43928e7 −0.0971753
\(299\) 2.78741e8 4.82793e8i 0.603047 1.04451i
\(300\) 0 0
\(301\) −1.19426e8 2.06853e8i −0.252416 0.437198i
\(302\) 1.16626e8 + 2.02003e8i 0.243653 + 0.422020i
\(303\) 0 0
\(304\) 3.22713e7 5.58956e7i 0.0658809 0.114109i
\(305\) 7.15864e8 1.44471
\(306\) 0 0
\(307\) 3.58206e8 0.706560 0.353280 0.935518i \(-0.385066\pi\)
0.353280 + 0.935518i \(0.385066\pi\)
\(308\) −2.24115e8 + 3.88178e8i −0.437062 + 0.757014i
\(309\) 0 0
\(310\) −3.44874e7 5.97339e7i −0.0657498 0.113882i
\(311\) −1.48496e8 2.57203e8i −0.279932 0.484857i 0.691435 0.722438i \(-0.256979\pi\)
−0.971368 + 0.237581i \(0.923645\pi\)
\(312\) 0 0
\(313\) −2.66043e8 + 4.60799e8i −0.490395 + 0.849389i −0.999939 0.0110555i \(-0.996481\pi\)
0.509544 + 0.860445i \(0.329814\pi\)
\(314\) −2.71282e8 −0.494501
\(315\) 0 0
\(316\) 9.22216e7 0.164410
\(317\) 1.39087e8 2.40906e8i 0.245233 0.424757i −0.716964 0.697110i \(-0.754469\pi\)
0.962197 + 0.272354i \(0.0878021\pi\)
\(318\) 0 0
\(319\) 9.41641e7 + 1.63097e8i 0.162412 + 0.281306i
\(320\) 6.73364e7 + 1.16630e8i 0.114875 + 0.198969i
\(321\) 0 0
\(322\) 1.47303e8 2.55135e8i 0.245875 0.425868i
\(323\) −4.81752e7 −0.0795453
\(324\) 0 0
\(325\) 2.61507e9 4.22563
\(326\) 3.40340e8 5.89486e8i 0.544065 0.942349i
\(327\) 0 0
\(328\) −6.50538e7 1.12676e8i −0.101792 0.176309i
\(329\) 2.43944e7 + 4.22524e7i 0.0377664 + 0.0654132i
\(330\) 0 0
\(331\) −1.79071e7 + 3.10160e7i −0.0271411 + 0.0470097i −0.879277 0.476311i \(-0.841974\pi\)
0.852136 + 0.523321i \(0.175307\pi\)
\(332\) −4.00817e8 −0.601123
\(333\) 0 0
\(334\) −3.89742e8 −0.572353
\(335\) −1.00145e7 + 1.73456e7i −0.0145537 + 0.0252077i
\(336\) 0 0
\(337\) 7.44599e7 + 1.28968e8i 0.105979 + 0.183560i 0.914138 0.405404i \(-0.132869\pi\)
−0.808159 + 0.588964i \(0.799536\pi\)
\(338\) −5.41396e8 9.37726e8i −0.762617 1.32089i
\(339\) 0 0
\(340\) 5.02604e7 8.70536e7i 0.0693505 0.120119i
\(341\) −1.26422e8 −0.172656
\(342\) 0 0
\(343\) −7.27683e8 −0.973673
\(344\) −6.57674e7 + 1.13913e8i −0.0871077 + 0.150875i
\(345\) 0 0
\(346\) 1.97393e8 + 3.41894e8i 0.256192 + 0.443737i
\(347\) 5.99635e7 + 1.03860e8i 0.0770431 + 0.133443i 0.901973 0.431793i \(-0.142119\pi\)
−0.824930 + 0.565235i \(0.808785\pi\)
\(348\) 0 0
\(349\) 7.04809e8 1.22076e9i 0.887528 1.53724i 0.0447402 0.998999i \(-0.485754\pi\)
0.842788 0.538245i \(-0.180913\pi\)
\(350\) 1.38195e9 1.72288
\(351\) 0 0
\(352\) 2.46838e8 0.301656
\(353\) −6.73687e8 + 1.16686e9i −0.815167 + 1.41191i 0.0940405 + 0.995568i \(0.470022\pi\)
−0.909208 + 0.416343i \(0.863312\pi\)
\(354\) 0 0
\(355\) 3.01211e8 + 5.21713e8i 0.357332 + 0.618917i
\(356\) 1.60572e8 + 2.78119e8i 0.188623 + 0.326705i
\(357\) 0 0
\(358\) −1.93464e8 + 3.35089e8i −0.222848 + 0.385984i
\(359\) −1.20973e9 −1.37993 −0.689967 0.723841i \(-0.742375\pi\)
−0.689967 + 0.723841i \(0.742375\pi\)
\(360\) 0 0
\(361\) −6.45573e8 −0.722221
\(362\) 3.06654e8 5.31140e8i 0.339757 0.588476i
\(363\) 0 0
\(364\) −4.18744e8 7.25287e8i −0.455087 0.788233i
\(365\) 7.21806e8 + 1.25021e9i 0.776955 + 1.34572i
\(366\) 0 0
\(367\) −6.77249e8 + 1.17303e9i −0.715183 + 1.23873i 0.247706 + 0.968835i \(0.420323\pi\)
−0.962889 + 0.269898i \(0.913010\pi\)
\(368\) −1.62237e8 −0.169701
\(369\) 0 0
\(370\) −1.60105e9 −1.64323
\(371\) 2.65472e8 4.59812e8i 0.269905 0.467489i
\(372\) 0 0
\(373\) 3.04972e8 + 5.28227e8i 0.304284 + 0.527035i 0.977102 0.212773i \(-0.0682495\pi\)
−0.672818 + 0.739808i \(0.734916\pi\)
\(374\) −9.21208e7 1.59558e8i −0.0910557 0.157713i
\(375\) 0 0
\(376\) 1.34339e7 2.32681e7i 0.0130330 0.0225738i
\(377\) −3.51879e8 −0.338220
\(378\) 0 0
\(379\) −2.77216e7 −0.0261565 −0.0130783 0.999914i \(-0.504163\pi\)
−0.0130783 + 0.999914i \(0.504163\pi\)
\(380\) −2.59046e8 + 4.48681e8i −0.242178 + 0.419464i
\(381\) 0 0
\(382\) −6.16819e8 1.06836e9i −0.566156 0.980611i
\(383\) 9.52673e8 + 1.65008e9i 0.866459 + 1.50075i 0.865591 + 0.500752i \(0.166943\pi\)
0.000868235 1.00000i \(0.499724\pi\)
\(384\) 0 0
\(385\) 1.79900e9 3.11595e9i 1.60664 2.78278i
\(386\) 1.07598e9 0.952246
\(387\) 0 0
\(388\) −4.19612e8 −0.364701
\(389\) 3.65276e8 6.32676e8i 0.314628 0.544952i −0.664730 0.747083i \(-0.731454\pi\)
0.979358 + 0.202132i \(0.0647869\pi\)
\(390\) 0 0
\(391\) 6.05476e7 + 1.04872e8i 0.0512246 + 0.0887236i
\(392\) −1.04615e7 1.81199e7i −0.00877191 0.0151934i
\(393\) 0 0
\(394\) 4.93317e8 8.54450e8i 0.406340 0.703801i
\(395\) −7.40274e8 −0.604369
\(396\) 0 0
\(397\) −7.11145e7 −0.0570415 −0.0285208 0.999593i \(-0.509080\pi\)
−0.0285208 + 0.999593i \(0.509080\pi\)
\(398\) −5.07441e8 + 8.78914e8i −0.403455 + 0.698804i
\(399\) 0 0
\(400\) −3.80517e8 6.59075e8i −0.297279 0.514902i
\(401\) −6.71791e8 1.16358e9i −0.520270 0.901134i −0.999722 0.0235661i \(-0.992498\pi\)
0.479452 0.877568i \(-0.340835\pi\)
\(402\) 0 0
\(403\) 1.18106e8 2.04565e8i 0.0898882 0.155691i
\(404\) 3.37410e8 0.254579
\(405\) 0 0
\(406\) −1.85953e8 −0.137899
\(407\) −1.46726e9 + 2.54136e9i −1.07876 + 1.86847i
\(408\) 0 0
\(409\) 3.56823e8 + 6.18035e8i 0.257882 + 0.446665i 0.965674 0.259756i \(-0.0836421\pi\)
−0.707792 + 0.706421i \(0.750309\pi\)
\(410\) 5.22194e8 + 9.04467e8i 0.374187 + 0.648111i
\(411\) 0 0
\(412\) −4.58880e8 + 7.94804e8i −0.323265 + 0.559912i
\(413\) 2.76028e8 0.192809
\(414\) 0 0
\(415\) 3.21741e9 2.20972
\(416\) −2.30600e8 + 3.99411e8i −0.157048 + 0.272015i
\(417\) 0 0
\(418\) 4.74798e8 + 8.22374e8i 0.317974 + 0.550747i
\(419\) 4.62128e8 + 8.00430e8i 0.306912 + 0.531587i 0.977685 0.210076i \(-0.0673710\pi\)
−0.670773 + 0.741662i \(0.734038\pi\)
\(420\) 0 0
\(421\) −1.27849e9 + 2.21441e9i −0.835045 + 1.44634i 0.0589493 + 0.998261i \(0.481225\pi\)
−0.893994 + 0.448079i \(0.852108\pi\)
\(422\) 3.27867e8 0.212376
\(423\) 0 0
\(424\) −2.92388e8 −0.186286
\(425\) −2.84021e8 + 4.91939e8i −0.179469 + 0.310849i
\(426\) 0 0
\(427\) 6.47769e8 + 1.12197e9i 0.402645 + 0.697402i
\(428\) −4.63193e8 8.02274e8i −0.285567 0.494617i
\(429\) 0 0
\(430\) 5.27923e8 9.14390e8i 0.320207 0.554615i
\(431\) 2.72540e9 1.63968 0.819840 0.572593i \(-0.194062\pi\)
0.819840 + 0.572593i \(0.194062\pi\)
\(432\) 0 0
\(433\) −1.62728e9 −0.963284 −0.481642 0.876368i \(-0.659959\pi\)
−0.481642 + 0.876368i \(0.659959\pi\)
\(434\) 6.24137e7 1.08104e8i 0.0366493 0.0634785i
\(435\) 0 0
\(436\) 6.99583e8 + 1.21171e9i 0.404237 + 0.700159i
\(437\) −3.12067e8 5.40516e8i −0.178880 0.309830i
\(438\) 0 0
\(439\) −8.12016e8 + 1.40645e9i −0.458077 + 0.793413i −0.998859 0.0477496i \(-0.984795\pi\)
0.540782 + 0.841163i \(0.318128\pi\)
\(440\) −1.98139e9 −1.10889
\(441\) 0 0
\(442\) 3.44244e8 0.189622
\(443\) 1.15001e9 1.99187e9i 0.628475 1.08855i −0.359383 0.933190i \(-0.617013\pi\)
0.987858 0.155360i \(-0.0496539\pi\)
\(444\) 0 0
\(445\) −1.28893e9 2.23249e9i −0.693377 1.20097i
\(446\) 5.65455e8 + 9.79397e8i 0.301805 + 0.522741i
\(447\) 0 0
\(448\) −1.21862e8 + 2.11072e8i −0.0640319 + 0.110906i
\(449\) −2.21255e8 −0.115353 −0.0576767 0.998335i \(-0.518369\pi\)
−0.0576767 + 0.998335i \(0.518369\pi\)
\(450\) 0 0
\(451\) 1.91423e9 0.982598
\(452\) −7.30761e8 + 1.26572e9i −0.372212 + 0.644691i
\(453\) 0 0
\(454\) −8.32804e8 1.44246e9i −0.417683 0.723449i
\(455\) 3.36131e9 + 5.82196e9i 1.67290 + 2.89754i
\(456\) 0 0
\(457\) −1.07774e9 + 1.86670e9i −0.528211 + 0.914889i 0.471248 + 0.882001i \(0.343804\pi\)
−0.999459 + 0.0328880i \(0.989530\pi\)
\(458\) −1.33113e9 −0.647426
\(459\) 0 0
\(460\) 1.30230e9 0.623818
\(461\) −1.12474e9 + 1.94811e9i −0.534686 + 0.926104i 0.464492 + 0.885577i \(0.346237\pi\)
−0.999178 + 0.0405266i \(0.987096\pi\)
\(462\) 0 0
\(463\) 1.88439e9 + 3.26386e9i 0.882344 + 1.52826i 0.848728 + 0.528829i \(0.177369\pi\)
0.0336156 + 0.999435i \(0.489298\pi\)
\(464\) 5.12016e7 + 8.86838e7i 0.0237942 + 0.0412127i
\(465\) 0 0
\(466\) −1.05930e9 + 1.83476e9i −0.484919 + 0.839904i
\(467\) −1.00692e9 −0.457497 −0.228748 0.973486i \(-0.573463\pi\)
−0.228748 + 0.973486i \(0.573463\pi\)
\(468\) 0 0
\(469\) −3.62476e7 −0.0162246
\(470\) −1.07835e8 + 1.86776e8i −0.0479091 + 0.0829811i
\(471\) 0 0
\(472\) −7.60035e7 1.31642e8i −0.0332687 0.0576232i
\(473\) −9.67614e8 1.67596e9i −0.420425 0.728197i
\(474\) 0 0
\(475\) 1.46387e9 2.53549e9i 0.626720 1.08551i
\(476\) 1.81918e8 0.0773128
\(477\) 0 0
\(478\) 4.12218e8 0.172635
\(479\) −5.42944e8 + 9.40407e8i −0.225726 + 0.390968i −0.956537 0.291611i \(-0.905809\pi\)
0.730811 + 0.682580i \(0.239142\pi\)
\(480\) 0 0
\(481\) −2.74148e9 4.74838e9i −1.12325 1.94553i
\(482\) 5.36718e8 + 9.29623e8i 0.218314 + 0.378131i
\(483\) 0 0
\(484\) −1.19223e9 + 2.06500e9i −0.477971 + 0.827870i
\(485\) 3.36828e9 1.34064
\(486\) 0 0
\(487\) −2.90861e9 −1.14113 −0.570564 0.821253i \(-0.693275\pi\)
−0.570564 + 0.821253i \(0.693275\pi\)
\(488\) 3.56723e8 6.17862e8i 0.138951 0.240670i
\(489\) 0 0
\(490\) 8.39760e7 + 1.45451e8i 0.0322455 + 0.0558508i
\(491\) −2.09312e9 3.62538e9i −0.798010 1.38219i −0.920910 0.389774i \(-0.872553\pi\)
0.122901 0.992419i \(-0.460780\pi\)
\(492\) 0 0
\(493\) 3.82173e7 6.61943e7i 0.0143647 0.0248804i
\(494\) −1.77426e9 −0.662174
\(495\) 0 0
\(496\) −6.87418e7 −0.0252950
\(497\) −5.45118e8 + 9.44173e8i −0.199179 + 0.344988i
\(498\) 0 0
\(499\) −1.87965e9 3.25565e9i −0.677213 1.17297i −0.975817 0.218591i \(-0.929854\pi\)
0.298603 0.954377i \(-0.403479\pi\)
\(500\) 1.77012e9 + 3.06593e9i 0.633296 + 1.09690i
\(501\) 0 0
\(502\) −1.27295e7 + 2.20482e7i −0.00449107 + 0.00777875i
\(503\) 2.94320e9 1.03117 0.515587 0.856837i \(-0.327574\pi\)
0.515587 + 0.856837i \(0.327574\pi\)
\(504\) 0 0
\(505\) −2.70843e9 −0.935831
\(506\) 1.19347e9 2.06715e9i 0.409530 0.709326i
\(507\) 0 0
\(508\) 1.38398e9 + 2.39712e9i 0.468389 + 0.811273i
\(509\) −5.95726e8 1.03183e9i −0.200233 0.346813i 0.748371 0.663281i \(-0.230836\pi\)
−0.948603 + 0.316468i \(0.897503\pi\)
\(510\) 0 0
\(511\) −1.30629e9 + 2.26256e9i −0.433079 + 0.750115i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) −3.36221e9 −1.09208
\(515\) 3.68349e9 6.37999e9i 1.18832 2.05823i
\(516\) 0 0
\(517\) 1.97648e8 + 3.42336e8i 0.0629036 + 0.108952i
\(518\) −1.44875e9 2.50931e9i −0.457973 0.793233i
\(519\) 0 0
\(520\) 1.85105e9 3.20612e9i 0.577308 0.999927i
\(521\) −3.63894e9 −1.12731 −0.563655 0.826010i \(-0.690605\pi\)
−0.563655 + 0.826010i \(0.690605\pi\)
\(522\) 0 0
\(523\) −4.37296e9 −1.33666 −0.668328 0.743867i \(-0.732990\pi\)
−0.668328 + 0.743867i \(0.732990\pi\)
\(524\) 6.47310e8 1.12117e9i 0.196541 0.340419i
\(525\) 0 0
\(526\) −2.92869e8 5.07265e8i −0.0877453 0.151979i
\(527\) 2.56547e7 + 4.44352e7i 0.00763537 + 0.0132248i
\(528\) 0 0
\(529\) 9.17988e8 1.59000e9i 0.269614 0.466985i
\(530\) 2.34704e9 0.684785
\(531\) 0 0
\(532\) −9.37620e8 −0.269983
\(533\) −1.78831e9 + 3.09744e9i −0.511560 + 0.886048i
\(534\) 0 0
\(535\) 3.71810e9 + 6.43995e9i 1.04974 + 1.81821i
\(536\) 9.98066e6 + 1.72870e7i 0.00279951 + 0.00484890i
\(537\) 0 0
\(538\) 1.61329e9 2.79431e9i 0.446658 0.773635i
\(539\) 3.07834e8 0.0846752
\(540\) 0 0
\(541\) −3.72635e7 −0.0101180 −0.00505898 0.999987i \(-0.501610\pi\)
−0.00505898 + 0.999987i \(0.501610\pi\)
\(542\) 3.03633e8 5.25907e8i 0.0819127 0.141877i
\(543\) 0 0
\(544\) −5.00906e7 8.67595e7i −0.0133401 0.0231058i
\(545\) −5.61563e9 9.72656e9i −1.48597 2.57378i
\(546\) 0 0
\(547\) −2.66081e9 + 4.60866e9i −0.695118 + 1.20398i 0.275022 + 0.961438i \(0.411315\pi\)
−0.970141 + 0.242543i \(0.922019\pi\)
\(548\) 1.77386e9 0.460456
\(549\) 0 0
\(550\) 1.11968e10 2.86963
\(551\) −1.96975e8 + 3.41171e8i −0.0501627 + 0.0868843i
\(552\) 0 0
\(553\) −6.69857e8 1.16023e9i −0.168440 0.291746i
\(554\) −7.12783e8 1.23458e9i −0.178104 0.308485i
\(555\) 0 0
\(556\) 1.76869e9 3.06346e9i 0.436405 0.755876i
\(557\) −6.10360e9 −1.49655 −0.748277 0.663386i \(-0.769119\pi\)
−0.748277 + 0.663386i \(0.769119\pi\)
\(558\) 0 0
\(559\) 3.61585e9 0.875526
\(560\) 9.78203e8 1.69430e9i 0.235381 0.407692i
\(561\) 0 0
\(562\) 2.35038e9 + 4.07098e9i 0.558548 + 0.967434i
\(563\) 4.53011e8 + 7.84638e8i 0.106987 + 0.185306i 0.914548 0.404477i \(-0.132546\pi\)
−0.807562 + 0.589783i \(0.799213\pi\)
\(564\) 0 0
\(565\) 5.86591e9 1.01600e10i 1.36825 2.36988i
\(566\) −2.27934e9 −0.528386
\(567\) 0 0
\(568\) 6.00387e8 0.137471
\(569\) −3.01597e9 + 5.22381e9i −0.686331 + 1.18876i 0.286685 + 0.958025i \(0.407447\pi\)
−0.973016 + 0.230736i \(0.925887\pi\)
\(570\) 0 0
\(571\) 5.83004e8 + 1.00979e9i 0.131052 + 0.226989i 0.924083 0.382193i \(-0.124831\pi\)
−0.793030 + 0.609182i \(0.791498\pi\)
\(572\) −3.39274e9 5.87640e9i −0.757992 1.31288i
\(573\) 0 0
\(574\) −9.45044e8 + 1.63686e9i −0.208574 + 0.361261i
\(575\) −7.35927e9 −1.61435
\(576\) 0 0
\(577\) 2.91738e9 0.632233 0.316117 0.948720i \(-0.397621\pi\)
0.316117 + 0.948720i \(0.397621\pi\)
\(578\) 1.60397e9 2.77815e9i 0.345500 0.598423i
\(579\) 0 0
\(580\) −4.11002e8 7.11876e8i −0.0874673 0.151498i
\(581\) 2.91136e9 + 5.04262e9i 0.615856 + 1.06669i
\(582\) 0 0
\(583\) 2.15091e9 3.72548e9i 0.449553 0.778649i
\(584\) 1.43874e9 0.298907
\(585\) 0 0
\(586\) 2.81165e9 0.577192
\(587\) 1.25480e9 2.17338e9i 0.256060 0.443509i −0.709123 0.705085i \(-0.750909\pi\)
0.965183 + 0.261576i \(0.0842422\pi\)
\(588\) 0 0
\(589\) −1.32226e8 2.29023e8i −0.0266633 0.0461822i
\(590\) 6.10089e8 + 1.05671e9i 0.122296 + 0.211822i
\(591\) 0 0
\(592\) −7.97820e8 + 1.38186e9i −0.158044 + 0.273741i
\(593\) 6.93736e9 1.36616 0.683082 0.730341i \(-0.260639\pi\)
0.683082 + 0.730341i \(0.260639\pi\)
\(594\) 0 0
\(595\) −1.46028e9 −0.284201
\(596\) 1.77571e8 3.07562e8i 0.0343566 0.0595075i
\(597\) 0 0
\(598\) 2.22993e9 + 3.86234e9i 0.426419 + 0.738579i
\(599\) 1.27967e9 + 2.21646e9i 0.243280 + 0.421373i 0.961647 0.274292i \(-0.0884434\pi\)
−0.718367 + 0.695664i \(0.755110\pi\)
\(600\) 0 0
\(601\) −5.69651e8 + 9.86665e8i −0.107041 + 0.185400i −0.914570 0.404427i \(-0.867471\pi\)
0.807530 + 0.589827i \(0.200804\pi\)
\(602\) 1.91082e9 0.356971
\(603\) 0 0
\(604\) −1.86602e9 −0.344578
\(605\) 9.57017e9 1.65760e10i 1.75702 3.04324i
\(606\) 0 0
\(607\) −3.64120e9 6.30675e9i −0.660822 1.14458i −0.980400 0.197018i \(-0.936874\pi\)
0.319578 0.947560i \(-0.396459\pi\)
\(608\) 2.58171e8 + 4.47165e8i 0.0465848 + 0.0806873i
\(609\) 0 0
\(610\) −2.86345e9 + 4.95965e9i −0.510782 + 0.884701i
\(611\) −7.38585e8 −0.130996
\(612\) 0 0
\(613\) −6.91313e9 −1.21217 −0.606084 0.795400i \(-0.707261\pi\)
−0.606084 + 0.795400i \(0.707261\pi\)
\(614\) −1.43283e9 + 2.48173e9i −0.249807 + 0.432678i
\(615\) 0 0
\(616\) −1.79292e9 3.10543e9i −0.309050 0.535290i
\(617\) 7.01580e8 + 1.21517e9i 0.120248 + 0.208276i 0.919866 0.392234i \(-0.128298\pi\)
−0.799617 + 0.600510i \(0.794964\pi\)
\(618\) 0 0
\(619\) −5.09778e9 + 8.82962e9i −0.863901 + 1.49632i 0.00423255 + 0.999991i \(0.498653\pi\)
−0.868134 + 0.496330i \(0.834681\pi\)
\(620\) 5.51798e8 0.0929843
\(621\) 0 0
\(622\) 2.37594e9 0.395884
\(623\) 2.33265e9 4.04027e9i 0.386493 0.669425i
\(624\) 0 0
\(625\) −6.95115e9 1.20397e10i −1.13888 1.97259i
\(626\) −2.12834e9 3.68640e9i −0.346762 0.600609i
\(627\) 0 0
\(628\) 1.08513e9 1.87950e9i 0.174833 0.302819i
\(629\) 1.19100e9 0.190824
\(630\) 0 0
\(631\) −1.63463e9 −0.259010 −0.129505 0.991579i \(-0.541339\pi\)
−0.129505 + 0.991579i \(0.541339\pi\)
\(632\) −3.68886e8 + 6.38930e8i −0.0581277 + 0.100680i
\(633\) 0 0
\(634\) 1.11270e9 + 1.92725e9i 0.173406 + 0.300348i
\(635\) −1.11094e10 1.92420e10i −1.72179 2.98223i
\(636\) 0 0
\(637\) −2.87584e8 + 4.98110e8i −0.0440836 + 0.0763550i
\(638\) −1.50663e9 −0.229685
\(639\) 0 0
\(640\) −1.07738e9 −0.162457
\(641\) −8.20607e7 + 1.42133e8i −0.0123064 + 0.0213154i −0.872113 0.489304i \(-0.837251\pi\)
0.859807 + 0.510620i \(0.170584\pi\)
\(642\) 0 0
\(643\) −1.24387e9 2.15444e9i −0.184516 0.319592i 0.758897 0.651211i \(-0.225739\pi\)
−0.943413 + 0.331619i \(0.892405\pi\)
\(644\) 1.17842e9 + 2.04108e9i 0.173860 + 0.301134i
\(645\) 0 0
\(646\) 1.92701e8 3.33767e8i 0.0281235 0.0487114i
\(647\) 2.24150e9 0.325368 0.162684 0.986678i \(-0.447985\pi\)
0.162684 + 0.986678i \(0.447985\pi\)
\(648\) 0 0
\(649\) 2.23643e9 0.321143
\(650\) −1.04603e10 + 1.81177e10i −1.49399 + 2.58766i
\(651\) 0 0
\(652\) 2.72272e9 + 4.71589e9i 0.384712 + 0.666341i
\(653\) 5.04729e9 + 8.74216e9i 0.709353 + 1.22863i 0.965098 + 0.261890i \(0.0843459\pi\)
−0.255745 + 0.966744i \(0.582321\pi\)
\(654\) 0 0
\(655\) −5.19604e9 + 8.99980e9i −0.722483 + 1.25138i
\(656\) 1.04086e9 0.143956
\(657\) 0 0
\(658\) −3.90311e8 −0.0534097
\(659\) −7.15278e8 + 1.23890e9i −0.0973590 + 0.168631i −0.910591 0.413309i \(-0.864373\pi\)
0.813232 + 0.581940i \(0.197706\pi\)
\(660\) 0 0
\(661\) −2.72158e9 4.71392e9i −0.366536 0.634859i 0.622485 0.782631i \(-0.286123\pi\)
−0.989021 + 0.147772i \(0.952790\pi\)
\(662\) −1.43257e8 2.48128e8i −0.0191916 0.0332409i
\(663\) 0 0
\(664\) 1.60327e9 2.77694e9i 0.212529 0.368111i
\(665\) 7.52638e9 0.992454
\(666\) 0 0
\(667\) 9.90250e8 0.129212
\(668\) 1.55897e9 2.70021e9i 0.202357 0.350493i
\(669\) 0 0
\(670\) −8.01159e7 1.38765e8i −0.0102910 0.0178245i
\(671\) 5.24834e9 + 9.09039e9i 0.670646 + 1.16159i
\(672\) 0 0
\(673\) 3.84720e9 6.66354e9i 0.486510 0.842660i −0.513370 0.858168i \(-0.671603\pi\)
0.999880 + 0.0155073i \(0.00493633\pi\)
\(674\) −1.19136e9 −0.149876
\(675\) 0 0
\(676\) 8.66234e9 1.07850
\(677\) 3.31338e9 5.73895e9i 0.410404 0.710840i −0.584530 0.811372i \(-0.698721\pi\)
0.994934 + 0.100532i \(0.0320544\pi\)
\(678\) 0 0
\(679\) 3.04788e9 + 5.27908e9i 0.373640 + 0.647163i
\(680\) 4.02083e8 + 6.96428e8i 0.0490382 + 0.0849367i
\(681\) 0 0
\(682\) 5.05687e8 8.75876e8i 0.0610431 0.105730i
\(683\) −1.25637e10 −1.50885 −0.754426 0.656386i \(-0.772084\pi\)
−0.754426 + 0.656386i \(0.772084\pi\)
\(684\) 0 0
\(685\) −1.42390e10 −1.69263
\(686\) 2.91073e9 5.04154e9i 0.344245 0.596250i
\(687\) 0 0
\(688\) −5.26140e8 9.11300e8i −0.0615944 0.106685i
\(689\) 4.01883e9 + 6.96082e9i 0.468093 + 0.810761i
\(690\) 0 0
\(691\) −6.86500e9 + 1.18905e10i −0.791530 + 1.37097i 0.133489 + 0.991050i \(0.457382\pi\)
−0.925019 + 0.379921i \(0.875951\pi\)
\(692\) −3.15829e9 −0.362310
\(693\) 0 0
\(694\) −9.59416e8 −0.108955
\(695\) −1.41975e10 + 2.45908e10i −1.60422 + 2.77859i
\(696\) 0 0
\(697\) −3.88453e8 6.72821e8i −0.0434534 0.0752635i
\(698\) 5.63847e9 + 9.76611e9i 0.627577 + 1.08700i
\(699\) 0 0
\(700\) −5.52782e9 + 9.57446e9i −0.609131 + 1.05505i
\(701\) 1.06175e10 1.16415 0.582076 0.813134i \(-0.302241\pi\)
0.582076 + 0.813134i \(0.302241\pi\)
\(702\) 0 0
\(703\) −6.13850e9 −0.666375
\(704\) −9.87350e8 + 1.71014e9i −0.106651 + 0.184726i
\(705\) 0 0
\(706\) −5.38950e9 9.33488e9i −0.576410 0.998372i
\(707\) −2.45080e9 4.24490e9i −0.260819 0.451752i
\(708\) 0 0
\(709\) 6.45277e9 1.11765e10i 0.679962 1.17773i −0.295030 0.955488i \(-0.595330\pi\)
0.974992 0.222240i \(-0.0713369\pi\)
\(710\) −4.81938e9 −0.505344
\(711\) 0 0
\(712\) −2.56915e9 −0.266753
\(713\) −3.32370e8 + 5.75681e8i −0.0343406 + 0.0594797i
\(714\) 0 0
\(715\) 2.72339e10 + 4.71706e10i 2.78637 + 4.82614i
\(716\) −1.54771e9 2.68071e9i −0.157577 0.272932i
\(717\) 0 0
\(718\) 4.83893e9 8.38126e9i 0.487880 0.845034i
\(719\) −9.38527e9 −0.941664 −0.470832 0.882223i \(-0.656046\pi\)
−0.470832 + 0.882223i \(0.656046\pi\)
\(720\) 0 0
\(721\) 1.33324e10 1.32475
\(722\) 2.58229e9 4.47266e9i 0.255344 0.442268i
\(723\) 0 0
\(724\) 2.45323e9 + 4.24912e9i 0.240244 + 0.416116i
\(725\) 2.32257e9 + 4.02280e9i 0.226352 + 0.392054i
\(726\) 0 0
\(727\) 1.27432e9 2.20719e9i 0.123001 0.213044i −0.797949 0.602725i \(-0.794081\pi\)
0.920950 + 0.389681i \(0.127415\pi\)
\(728\) 6.69991e9 0.643590
\(729\) 0 0
\(730\) −1.15489e10 −1.09878
\(731\) −3.92715e8 + 6.80202e8i −0.0371849 + 0.0644061i
\(732\) 0 0
\(733\) −6.37526e9 1.10423e10i −0.597908 1.03561i −0.993129 0.117021i \(-0.962666\pi\)
0.395222 0.918586i \(-0.370668\pi\)
\(734\) −5.41799e9 9.38424e9i −0.505711 0.875916i
\(735\) 0 0
\(736\) 6.48949e8 1.12401e9i 0.0599982 0.103920i
\(737\) −2.93684e8 −0.0270237
\(738\) 0 0
\(739\) 5.86108e9 0.534222 0.267111 0.963666i \(-0.413931\pi\)
0.267111 + 0.963666i \(0.413931\pi\)
\(740\) 6.40420e9 1.10924e10i 0.580970 1.00627i
\(741\) 0 0
\(742\) 2.12378e9 + 3.67849e9i 0.190852 + 0.330565i
\(743\) 4.54298e9 + 7.86867e9i 0.406331 + 0.703785i 0.994475 0.104970i \(-0.0334748\pi\)
−0.588145 + 0.808756i \(0.700141\pi\)
\(744\) 0 0
\(745\) −1.42539e9 + 2.46884e9i −0.126295 + 0.218749i
\(746\) −4.87955e9 −0.430323
\(747\) 0 0
\(748\) 1.47393e9 0.128772
\(749\) −6.72886e9 + 1.16547e10i −0.585134 + 1.01348i
\(750\) 0 0
\(751\) −9.81435e9 1.69989e10i −0.845516 1.46448i −0.885173 0.465263i \(-0.845960\pi\)
0.0396571 0.999213i \(-0.487373\pi\)
\(752\) 1.07471e8 + 1.86145e8i 0.00921571 + 0.0159621i
\(753\) 0 0
\(754\) 1.40752e9 2.43789e9i 0.119579 0.207116i
\(755\) 1.49788e10 1.26667
\(756\) 0 0
\(757\) 9.09151e9 0.761729 0.380864 0.924631i \(-0.375627\pi\)
0.380864 + 0.924631i \(0.375627\pi\)
\(758\) 1.10886e8 1.92061e8i 0.00924773 0.0160175i
\(759\) 0 0
\(760\) −2.07237e9 3.58945e9i −0.171246 0.296606i
\(761\) 2.33119e9 + 4.03775e9i 0.191749 + 0.332118i 0.945830 0.324663i \(-0.105251\pi\)
−0.754081 + 0.656781i \(0.771918\pi\)
\(762\) 0 0
\(763\) 1.01629e10 1.76027e10i 0.828290 1.43464i
\(764\) 9.86910e9 0.800665
\(765\) 0 0
\(766\) −1.52428e10 −1.22536
\(767\) −2.08931e9 + 3.61879e9i −0.167193 + 0.289588i
\(768\) 0 0
\(769\) 1.57011e8 + 2.71950e8i 0.0124505 + 0.0215649i 0.872184 0.489179i \(-0.162703\pi\)
−0.859733 + 0.510744i \(0.829370\pi\)
\(770\) 1.43920e10 + 2.49276e10i 1.13606 + 1.96772i
\(771\) 0 0
\(772\) −4.30393e9 + 7.45462e9i −0.336670 + 0.583129i
\(773\) −2.16691e10 −1.68738 −0.843688 0.536834i \(-0.819620\pi\)
−0.843688 + 0.536834i \(0.819620\pi\)
\(774\) 0 0
\(775\) −3.11821e9 −0.240630
\(776\) 1.67845e9 2.90716e9i 0.128941 0.223333i
\(777\) 0 0
\(778\) 2.92221e9 + 5.06141e9i 0.222476 + 0.385339i
\(779\) 2.00212e9 + 3.46777e9i 0.151743 + 0.262827i
\(780\) 0 0
\(781\) −4.41665e9 + 7.64986e9i −0.331752 + 0.574612i
\(782\) −9.68762e8 −0.0724425
\(783\) 0 0
\(784\) 1.67385e8 0.0124054
\(785\) −8.71046e9 + 1.50870e10i −0.642684 + 1.11316i
\(786\) 0 0
\(787\) −6.63078e8 1.14848e9i −0.0484901 0.0839873i 0.840762 0.541405i \(-0.182108\pi\)
−0.889252 + 0.457418i \(0.848774\pi\)
\(788\) 3.94654e9 + 6.83560e9i 0.287326 + 0.497663i
\(789\) 0 0
\(790\) 2.96109e9 5.12877e9i 0.213677 0.370099i
\(791\) 2.12317e10 1.52534
\(792\) 0 0
\(793\) −1.96124e10 −1.39661
\(794\) 2.84458e8 4.92695e8i 0.0201672 0.0349307i
\(795\) 0 0
\(796\) −4.05953e9 7.03131e9i −0.285286 0.494129i
\(797\) 1.01981e10 + 1.76636e10i 0.713534 + 1.23588i 0.963522 + 0.267628i \(0.0862400\pi\)
−0.249988 + 0.968249i \(0.580427\pi\)
\(798\) 0 0
\(799\) 8.02172e7 1.38940e8i 0.00556357 0.00963639i
\(800\) 6.08827e9 0.420416
\(801\) 0 0
\(802\) 1.07487e10 0.735773
\(803\) −1.05838e10 + 1.83317e10i −0.721336 + 1.24939i
\(804\) 0 0
\(805\) −9.45932e9 1.63840e10i −0.639108 1.10697i
\(806\) 9.44844e8 + 1.63652e9i 0.0635605 + 0.110090i
\(807\) 0 0
\(808\) −1.34964e9 + 2.33764e9i −0.0900073 + 0.155897i
\(809\) 1.90447e10 1.26461 0.632303 0.774721i \(-0.282110\pi\)
0.632303 + 0.774721i \(0.282110\pi\)
\(810\) 0 0
\(811\) 1.63087e10 1.07361 0.536806 0.843706i \(-0.319631\pi\)
0.536806 + 0.843706i \(0.319631\pi\)
\(812\) 7.43812e8 1.28832e9i 0.0487548 0.0844458i
\(813\) 0 0
\(814\) −1.17381e10 2.03309e10i −0.762800 1.32121i
\(815\) −2.18556e10 3.78550e10i −1.41420 2.44947i
\(816\) 0 0
\(817\) 2.02408e9 3.50581e9i 0.129853 0.224911i
\(818\) −5.70916e9 −0.364700
\(819\) 0 0
\(820\) −8.35511e9 −0.529180
\(821\) 7.84871e9 1.35944e10i 0.494991 0.857350i −0.504992 0.863124i \(-0.668505\pi\)
0.999983 + 0.00577401i \(0.00183793\pi\)
\(822\) 0 0
\(823\) 9.11320e9 + 1.57845e10i 0.569864 + 0.987034i 0.996579 + 0.0826475i \(0.0263375\pi\)
−0.426715 + 0.904386i \(0.640329\pi\)
\(824\) −3.67104e9 6.35843e9i −0.228583 0.395918i
\(825\) 0 0
\(826\) −1.10411e9 + 1.91238e9i −0.0681684 + 0.118071i
\(827\) 1.29185e10 0.794222 0.397111 0.917771i \(-0.370013\pi\)
0.397111 + 0.917771i \(0.370013\pi\)
\(828\) 0 0
\(829\) 1.25055e10 0.762357 0.381179 0.924501i \(-0.375518\pi\)
0.381179 + 0.924501i \(0.375518\pi\)
\(830\) −1.28696e10 + 2.22909e10i −0.781255 + 1.35317i
\(831\) 0 0
\(832\) −1.84480e9 3.19529e9i −0.111050 0.192344i
\(833\) −6.24686e7 1.08199e8i −0.00374459 0.00648582i
\(834\) 0 0
\(835\) −1.25140e10 + 2.16749e10i −0.743865 + 1.28841i
\(836\) −7.59676e9 −0.449683
\(837\) 0 0
\(838\) −7.39405e9 −0.434039
\(839\) 3.49281e9 6.04972e9i 0.204177 0.353646i −0.745693 0.666290i \(-0.767881\pi\)
0.949870 + 0.312644i \(0.101215\pi\)
\(840\) 0 0
\(841\) 8.31242e9 + 1.43975e10i 0.481883 + 0.834645i
\(842\) −1.02279e10 1.77153e10i −0.590466 1.02272i
\(843\) 0 0
\(844\) −1.31147e9 + 2.27153e9i −0.0750861 + 0.130053i
\(845\) −6.95336e10 −3.96457
\(846\) 0 0
\(847\) 3.46393e10 1.95874
\(848\) 1.16955e9 2.02573e9i 0.0658619 0.114076i
\(849\) 0 0
\(850\) −2.27217e9 3.93551e9i −0.126904 0.219804i
\(851\) 7.71500e9 + 1.33628e10i 0.429123 + 0.743264i
\(852\) 0 0
\(853\) 1.44807e10 2.50814e10i 0.798858 1.38366i −0.121503 0.992591i \(-0.538771\pi\)
0.920361 0.391071i \(-0.127895\pi\)
\(854\) −1.03643e10 −0.569426
\(855\) 0 0
\(856\) 7.41109e9 0.403853
\(857\) 9.43344e9 1.63392e10i 0.511962 0.886743i −0.487942 0.872876i \(-0.662252\pi\)
0.999904 0.0138675i \(-0.00441430\pi\)
\(858\) 0 0
\(859\) −1.28385e10 2.22369e10i −0.691095 1.19701i −0.971480 0.237123i \(-0.923795\pi\)
0.280385 0.959888i \(-0.409538\pi\)
\(860\) 4.22338e9 + 7.31512e9i 0.226421 + 0.392172i
\(861\) 0 0
\(862\) −1.09016e10 + 1.88821e10i −0.579714 + 1.00409i
\(863\) 2.32394e10 1.23080 0.615400 0.788215i \(-0.288995\pi\)
0.615400 + 0.788215i \(0.288995\pi\)
\(864\) 0 0
\(865\) 2.53519e10 1.33185
\(866\) 6.50911e9 1.12741e10i 0.340572 0.589888i
\(867\) 0 0
\(868\) 4.99310e8 + 8.64830e8i 0.0259150 + 0.0448861i
\(869\) −5.42730e9 9.40036e9i −0.280553 0.485932i
\(870\) 0 0
\(871\) 2.74365e8 4.75214e8i 0.0140691 0.0243683i
\(872\) −1.11933e10 −0.571678
\(873\) 0 0
\(874\) 4.99307e9 0.252975
\(875\) 2.57147e10 4.45391e10i 1.29764 2.24757i
\(876\) 0 0
\(877\) 4.88371e9 + 8.45883e9i 0.244484 + 0.423459i 0.961986 0.273097i \(-0.0880480\pi\)
−0.717502 + 0.696556i \(0.754715\pi\)
\(878\) −6.49613e9 1.12516e10i −0.323910 0.561028i
\(879\) 0 0
\(880\) 7.92558e9 1.37275e10i 0.392050 0.679051i
\(881\) 2.48003e10 1.22192 0.610959 0.791662i \(-0.290784\pi\)
0.610959 + 0.791662i \(0.290784\pi\)
\(882\) 0 0
\(883\) 2.25403e10 1.10178 0.550892 0.834576i \(-0.314288\pi\)
0.550892 + 0.834576i \(0.314288\pi\)
\(884\) −1.37697e9 + 2.38499e9i −0.0670414 + 0.116119i
\(885\) 0 0
\(886\) 9.20007e9 + 1.59350e10i 0.444399 + 0.769722i
\(887\) 1.72287e10 + 2.98409e10i 0.828932 + 1.43575i 0.898877 + 0.438202i \(0.144384\pi\)
−0.0699446 + 0.997551i \(0.522282\pi\)
\(888\) 0 0
\(889\) 2.01052e10 3.48233e10i 0.959738 1.66231i
\(890\) 2.06229e10 0.980584
\(891\) 0 0
\(892\) −9.04728e9 −0.426816
\(893\) −4.13446e8 + 7.16109e8i −0.0194285 + 0.0336511i
\(894\) 0 0
\(895\) 1.24237e10 + 2.15184e10i 0.579254 + 1.00330i
\(896\) −9.74898e8 1.68857e9i −0.0452774 0.0784227i
\(897\) 0 0
\(898\) 8.85019e8 1.53290e9i 0.0407836 0.0706392i
\(899\) 4.19580e8 0.0192600
\(900\) 0 0
\(901\) −1.74593e9 −0.0795224
\(902\) −7.65692e9 + 1.32622e10i −0.347401 + 0.601716i
\(903\) 0 0
\(904\) −5.84609e9 1.01257e10i −0.263194 0.455865i
\(905\) −1.96924e10 3.41082e10i −0.883137 1.52964i
\(906\) 0 0
\(907\) −1.46001e10 + 2.52881e10i −0.649726 + 1.12536i 0.333463 + 0.942763i \(0.391783\pi\)
−0.983188 + 0.182594i \(0.941550\pi\)
\(908\) 1.33249e10 0.590693
\(909\) 0 0
\(910\) −5.37810e10 −2.36583
\(911\) 6.84514e9 1.18561e10i 0.299963 0.519551i −0.676164 0.736751i \(-0.736359\pi\)
0.976127 + 0.217200i \(0.0696923\pi\)
\(912\) 0 0
\(913\) 2.35884e10 + 4.08562e10i 1.02577 + 1.77669i
\(914\) −8.62193e9 1.49336e10i −0.373502 0.646924i
\(915\) 0 0
\(916\) 5.32450e9 9.22231e9i 0.228900 0.396466i
\(917\) −1.88071e10 −0.805433
\(918\) 0 0
\(919\) −2.26823e10 −0.964014 −0.482007 0.876167i \(-0.660092\pi\)
−0.482007 + 0.876167i \(0.660092\pi\)
\(920\) −5.20919e9 + 9.02259e9i −0.220553 + 0.382009i
\(921\) 0 0
\(922\) −8.99792e9 1.55849e10i −0.378080 0.654854i
\(923\) −8.25222e9 1.42933e10i −0.345434 0.598309i
\(924\) 0 0
\(925\) −3.61900e10 + 6.26830e10i −1.50346 + 2.60408i
\(926\) −3.01503e10 −1.24782
\(927\) 0 0
\(928\) −8.19226e8 −0.0336501
\(929\) 5.42790e9 9.40139e9i 0.222114 0.384713i −0.733335 0.679867i \(-0.762038\pi\)
0.955450 + 0.295154i \(0.0953708\pi\)
\(930\) 0 0
\(931\) 3.21968e8 + 5.57665e8i 0.0130764 + 0.0226490i
\(932\) −8.47441e9 1.46781e10i −0.342889 0.593902i
\(933\) 0 0
\(934\) 4.02770e9 6.97618e9i 0.161750 0.280158i
\(935\) −1.18314e10 −0.473366
\(936\) 0 0
\(937\) −2.04665e10 −0.812744 −0.406372 0.913708i \(-0.633206\pi\)
−0.406372 + 0.913708i \(0.633206\pi\)
\(938\) 1.44990e8 2.51130e8i 0.00573626 0.00993549i
\(939\) 0 0
\(940\) −8.62682e8 1.49421e9i −0.0338769 0.0586765i
\(941\) −1.49376e10 2.58727e10i −0.584409 1.01223i −0.994949 0.100383i \(-0.967993\pi\)
0.410540 0.911843i \(-0.365340\pi\)
\(942\) 0 0
\(943\) 5.03261e9 8.71674e9i 0.195435 0.338503i
\(944\) 1.21606e9 0.0470491
\(945\) 0 0
\(946\) 1.54818e10 0.594570
\(947\) −1.51587e10 + 2.62557e10i −0.580013 + 1.00461i 0.415464 + 0.909610i \(0.363619\pi\)
−0.995477 + 0.0950029i \(0.969714\pi\)
\(948\) 0 0
\(949\) −1.97752e10 3.42516e10i −0.751084 1.30092i
\(950\) 1.17109e10 + 2.02839e10i 0.443158 + 0.767572i
\(951\) 0 0
\(952\) −7.27672e8 + 1.26036e9i −0.0273342 + 0.0473442i
\(953\) −1.84836e10 −0.691770 −0.345885 0.938277i \(-0.612421\pi\)
−0.345885 + 0.938277i \(0.612421\pi\)
\(954\) 0 0
\(955\) −7.92205e10 −2.94324
\(956\) −1.64887e9 + 2.85593e9i −0.0610357 + 0.105717i
\(957\) 0 0
\(958\) −4.34355e9 7.52326e9i −0.159612 0.276456i
\(959\) −1.28846e10 2.23167e10i −0.471742 0.817081i
\(960\) 0 0
\(961\) 1.36155e10 2.35827e10i 0.494881 0.857160i
\(962\) 4.38636e10 1.58852
\(963\) 0 0
\(964\) −8.58749e9 −0.308743
\(965\) 3.45481e10 5.98391e10i 1.23760 2.14358i
\(966\) 0 0
\(967\) 2.68223e10 + 4.64576e10i 0.953901 + 1.65221i 0.736863 + 0.676042i \(0.236306\pi\)
0.217038 + 0.976163i \(0.430360\pi\)
\(968\) −9.53784e9 1.65200e10i −0.337976 0.585392i
\(969\) 0 0
\(970\) −1.34731e10 + 2.33361e10i −0.473987 + 0.820970i
\(971\) −1.49741e10 −0.524895 −0.262447 0.964946i \(-0.584530\pi\)
−0.262447 + 0.964946i \(0.584530\pi\)
\(972\) 0 0
\(973\) −5.13879e10 −1.78841
\(974\) 1.16344e10 2.01514e10i 0.403449 0.698795i
\(975\) 0 0
\(976\) 2.85378e9 + 4.94289e9i 0.0982531 + 0.170179i
\(977\) −1.22943e10 2.12944e10i −0.421769 0.730525i 0.574344 0.818614i \(-0.305257\pi\)
−0.996113 + 0.0880893i \(0.971924\pi\)
\(978\) 0 0
\(979\) 1.88995e10 3.27350e10i 0.643742 1.11499i
\(980\) −1.34362e9 −0.0456020
\(981\) 0 0
\(982\) 3.34899e10 1.12856
\(983\) 1.52926e10 2.64875e10i 0.513503 0.889413i −0.486375 0.873750i \(-0.661681\pi\)
0.999877 0.0156623i \(-0.00498568\pi\)
\(984\) 0 0
\(985\) −3.16793e10 5.48702e10i −1.05621 1.82940i
\(986\) 3.05739e8 + 5.29555e8i 0.0101574 + 0.0175931i
\(987\) 0 0
\(988\) 7.09703e9 1.22924e10i 0.234114 0.405497i
\(989\) −1.01756e10 −0.334483
\(990\) 0 0
\(991\) 5.03888e10 1.64466 0.822330 0.569010i \(-0.192674\pi\)
0.822330 + 0.569010i \(0.192674\pi\)
\(992\) 2.74967e8 4.76257e8i 0.00894314 0.0154900i
\(993\) 0 0
\(994\) −4.36095e9 7.55338e9i −0.140841 0.243943i
\(995\) 3.25863e10 + 5.64412e10i 1.04871 + 1.81642i
\(996\) 0 0
\(997\) 1.54996e8 2.68461e8i 0.00495322 0.00857923i −0.863538 0.504283i \(-0.831757\pi\)
0.868491 + 0.495704i \(0.165090\pi\)
\(998\) 3.00744e10 0.957724
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.m.55.2 4
3.2 odd 2 162.8.c.p.55.1 4
9.2 odd 6 54.8.a.g.1.2 2
9.4 even 3 inner 162.8.c.m.109.2 4
9.5 odd 6 162.8.c.p.109.1 4
9.7 even 3 54.8.a.h.1.1 yes 2
36.7 odd 6 432.8.a.k.1.1 2
36.11 even 6 432.8.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.8.a.g.1.2 2 9.2 odd 6
54.8.a.h.1.1 yes 2 9.7 even 3
162.8.c.m.55.2 4 1.1 even 1 trivial
162.8.c.m.109.2 4 9.4 even 3 inner
162.8.c.p.55.1 4 3.2 odd 2
162.8.c.p.109.1 4 9.5 odd 6
432.8.a.k.1.1 2 36.7 odd 6
432.8.a.p.1.2 2 36.11 even 6