Properties

Label 162.8.c.p.55.1
Level $162$
Weight $8$
Character 162.55
Analytic conductor $50.606$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{329})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 83x^{2} + 82x + 6724 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(4.78459 - 8.28715i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.8.c.p.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.00000 - 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-256.868 - 444.908i) q^{5} +(-464.868 + 805.175i) q^{7} -512.000 q^{8} -4109.89 q^{10} +(3766.44 - 6523.67i) q^{11} +(-7037.36 - 12189.1i) q^{13} +(3718.94 + 6441.40i) q^{14} +(-2048.00 + 3547.24i) q^{16} -3057.29 q^{17} -15757.5 q^{19} +(-16439.5 + 28474.1i) q^{20} +(-30131.5 - 52189.4i) q^{22} +(-19804.4 - 34302.2i) q^{23} +(-92899.7 + 160907. i) q^{25} -112598. q^{26} +59503.1 q^{28} +(-12500.4 + 21651.3i) q^{29} +(8391.33 + 14534.2i) q^{31} +(16384.0 + 28377.9i) q^{32} +(-12229.1 + 21181.5i) q^{34} +477638. q^{35} +389561. q^{37} +(-63030.0 + 109171. i) q^{38} +(131516. + 227793. i) q^{40} +(127058. + 220071. i) q^{41} +(-128452. + 222485. i) q^{43} -482105. q^{44} -316870. q^{46} +(-26238.0 + 45445.6i) q^{47} +(-20432.7 - 35390.4i) q^{49} +(743197. + 1.28726e6i) q^{50} +(-450391. + 780100. i) q^{52} +571071. q^{53} -3.86991e6 q^{55} +(238012. - 412249. i) q^{56} +(100003. + 173211. i) q^{58} +(148444. + 257113. i) q^{59} +(696724. - 1.20676e6i) q^{61} +134261. q^{62} +262144. q^{64} +(-3.61534e6 + 6.26195e6i) q^{65} +(19493.5 + 33763.7i) q^{67} +(97833.2 + 169452. i) q^{68} +(1.91055e6 - 3.30918e6i) q^{70} -1.17263e6 q^{71} +2.81003e6 q^{73} +(1.55824e6 - 2.69895e6i) q^{74} +(504240. + 873369. i) q^{76} +(3.50180e6 + 6.06529e6i) q^{77} +(-720481. + 1.24791e6i) q^{79} +2.10426e6 q^{80} +2.03293e6 q^{82} +(-3.13138e6 + 5.42372e6i) q^{83} +(785319. + 1.36021e6i) q^{85} +(1.02762e6 + 1.77988e6i) q^{86} +(-1.92842e6 + 3.34012e6i) q^{88} +5.01788e6 q^{89} +1.30858e7 q^{91} +(-1.26748e6 + 2.19534e6i) q^{92} +(209904. + 363565. i) q^{94} +(4.04759e6 + 7.01064e6i) q^{95} +(3.27822e6 - 5.67804e6i) q^{97} -326923. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} - 128 q^{4} - 48 q^{5} - 880 q^{7} - 2048 q^{8} - 768 q^{10} + 7230 q^{11} - 8560 q^{13} + 7040 q^{14} - 8192 q^{16} - 51408 q^{17} + 74096 q^{19} - 3072 q^{20} - 57840 q^{22} - 59628 q^{23}+ \cdots + 12483264 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 6.92820i 0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −256.868 444.908i −0.918998 1.59175i −0.800940 0.598745i \(-0.795666\pi\)
−0.118059 0.993007i \(-0.537667\pi\)
\(6\) 0 0
\(7\) −464.868 + 805.175i −0.512255 + 0.887252i 0.487644 + 0.873043i \(0.337856\pi\)
−0.999899 + 0.0142093i \(0.995477\pi\)
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) −4109.89 −1.29966
\(11\) 3766.44 6523.67i 0.853212 1.47781i −0.0250819 0.999685i \(-0.507985\pi\)
0.878294 0.478121i \(-0.158682\pi\)
\(12\) 0 0
\(13\) −7037.36 12189.1i −0.888398 1.53875i −0.841768 0.539839i \(-0.818485\pi\)
−0.0466303 0.998912i \(-0.514848\pi\)
\(14\) 3718.94 + 6441.40i 0.362219 + 0.627382i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) −3057.29 −0.150926 −0.0754632 0.997149i \(-0.524044\pi\)
−0.0754632 + 0.997149i \(0.524044\pi\)
\(18\) 0 0
\(19\) −15757.5 −0.527047 −0.263524 0.964653i \(-0.584885\pi\)
−0.263524 + 0.964653i \(0.584885\pi\)
\(20\) −16439.5 + 28474.1i −0.459499 + 0.795876i
\(21\) 0 0
\(22\) −30131.5 52189.4i −0.603312 1.04497i
\(23\) −19804.4 34302.2i −0.339401 0.587860i 0.644919 0.764251i \(-0.276891\pi\)
−0.984320 + 0.176391i \(0.943558\pi\)
\(24\) 0 0
\(25\) −92899.7 + 160907.i −1.18912 + 2.05961i
\(26\) −112598. −1.25639
\(27\) 0 0
\(28\) 59503.1 0.512255
\(29\) −12500.4 + 21651.3i −0.0951768 + 0.164851i −0.909682 0.415305i \(-0.863675\pi\)
0.814506 + 0.580156i \(0.197008\pi\)
\(30\) 0 0
\(31\) 8391.33 + 14534.2i 0.0505900 + 0.0876245i 0.890211 0.455548i \(-0.150556\pi\)
−0.839621 + 0.543172i \(0.817223\pi\)
\(32\) 16384.0 + 28377.9i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −12229.1 + 21181.5i −0.0533605 + 0.0924231i
\(35\) 477638. 1.88305
\(36\) 0 0
\(37\) 389561. 1.26435 0.632177 0.774824i \(-0.282161\pi\)
0.632177 + 0.774824i \(0.282161\pi\)
\(38\) −63030.0 + 109171.i −0.186339 + 0.322749i
\(39\) 0 0
\(40\) 131516. + 227793.i 0.324915 + 0.562769i
\(41\) 127058. + 220071.i 0.287912 + 0.498677i 0.973311 0.229490i \(-0.0737058\pi\)
−0.685400 + 0.728167i \(0.740372\pi\)
\(42\) 0 0
\(43\) −128452. + 222485.i −0.246378 + 0.426739i −0.962518 0.271218i \(-0.912574\pi\)
0.716140 + 0.697956i \(0.245907\pi\)
\(44\) −482105. −0.853212
\(45\) 0 0
\(46\) −316870. −0.479986
\(47\) −26238.0 + 45445.6i −0.0368628 + 0.0638483i −0.883868 0.467736i \(-0.845070\pi\)
0.847005 + 0.531584i \(0.178403\pi\)
\(48\) 0 0
\(49\) −20432.7 35390.4i −0.0248107 0.0429734i
\(50\) 743197. + 1.28726e6i 0.840832 + 1.45636i
\(51\) 0 0
\(52\) −450391. + 780100.i −0.444199 + 0.769376i
\(53\) 571071. 0.526895 0.263448 0.964674i \(-0.415140\pi\)
0.263448 + 0.964674i \(0.415140\pi\)
\(54\) 0 0
\(55\) −3.86991e6 −3.13640
\(56\) 238012. 412249.i 0.181110 0.313691i
\(57\) 0 0
\(58\) 100003. + 173211.i 0.0673001 + 0.116567i
\(59\) 148444. + 257113.i 0.0940982 + 0.162983i 0.909232 0.416290i \(-0.136670\pi\)
−0.815134 + 0.579273i \(0.803337\pi\)
\(60\) 0 0
\(61\) 696724. 1.20676e6i 0.393012 0.680717i −0.599833 0.800125i \(-0.704766\pi\)
0.992845 + 0.119408i \(0.0380996\pi\)
\(62\) 134261. 0.0715451
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −3.61534e6 + 6.26195e6i −1.63287 + 2.82822i
\(66\) 0 0
\(67\) 19493.5 + 33763.7i 0.00791822 + 0.0137148i 0.869957 0.493127i \(-0.164146\pi\)
−0.862039 + 0.506842i \(0.830813\pi\)
\(68\) 97833.2 + 169452.i 0.0377316 + 0.0653530i
\(69\) 0 0
\(70\) 1.91055e6 3.30918e6i 0.665757 1.15313i
\(71\) −1.17263e6 −0.388828 −0.194414 0.980920i \(-0.562280\pi\)
−0.194414 + 0.980920i \(0.562280\pi\)
\(72\) 0 0
\(73\) 2.81003e6 0.845436 0.422718 0.906261i \(-0.361076\pi\)
0.422718 + 0.906261i \(0.361076\pi\)
\(74\) 1.55824e6 2.69895e6i 0.447017 0.774256i
\(75\) 0 0
\(76\) 504240. + 873369.i 0.131762 + 0.228218i
\(77\) 3.50180e6 + 6.06529e6i 0.874124 + 1.51403i
\(78\) 0 0
\(79\) −720481. + 1.24791e6i −0.164410 + 0.284766i −0.936446 0.350813i \(-0.885905\pi\)
0.772036 + 0.635579i \(0.219239\pi\)
\(80\) 2.10426e6 0.459499
\(81\) 0 0
\(82\) 2.03293e6 0.407168
\(83\) −3.13138e6 + 5.42372e6i −0.601123 + 1.04117i 0.391529 + 0.920166i \(0.371946\pi\)
−0.992651 + 0.121009i \(0.961387\pi\)
\(84\) 0 0
\(85\) 785319. + 1.36021e6i 0.138701 + 0.240237i
\(86\) 1.02762e6 + 1.77988e6i 0.174215 + 0.301750i
\(87\) 0 0
\(88\) −1.92842e6 + 3.34012e6i −0.301656 + 0.522484i
\(89\) 5.01788e6 0.754493 0.377246 0.926113i \(-0.376871\pi\)
0.377246 + 0.926113i \(0.376871\pi\)
\(90\) 0 0
\(91\) 1.30858e7 1.82035
\(92\) −1.26748e6 + 2.19534e6i −0.169701 + 0.293930i
\(93\) 0 0
\(94\) 209904. + 363565.i 0.0260660 + 0.0451476i
\(95\) 4.04759e6 + 7.01064e6i 0.484356 + 0.838928i
\(96\) 0 0
\(97\) 3.27822e6 5.67804e6i 0.364701 0.631681i −0.624027 0.781403i \(-0.714505\pi\)
0.988728 + 0.149722i \(0.0478379\pi\)
\(98\) −326923. −0.0350876
\(99\) 0 0
\(100\) 1.18912e7 1.18912
\(101\) 2.63601e6 4.56571e6i 0.254579 0.440944i −0.710202 0.703998i \(-0.751396\pi\)
0.964781 + 0.263054i \(0.0847297\pi\)
\(102\) 0 0
\(103\) −7.17000e6 1.24188e7i −0.646531 1.11982i −0.983946 0.178468i \(-0.942886\pi\)
0.337415 0.941356i \(-0.390447\pi\)
\(104\) 3.60313e6 + 6.24080e6i 0.314096 + 0.544031i
\(105\) 0 0
\(106\) 2.28428e6 3.95649e6i 0.186286 0.322656i
\(107\) −1.44748e7 −1.14227 −0.571135 0.820856i \(-0.693497\pi\)
−0.571135 + 0.820856i \(0.693497\pi\)
\(108\) 0 0
\(109\) −2.18620e7 −1.61695 −0.808474 0.588531i \(-0.799706\pi\)
−0.808474 + 0.588531i \(0.799706\pi\)
\(110\) −1.54796e7 + 2.68115e7i −1.10889 + 1.92065i
\(111\) 0 0
\(112\) −1.90410e6 3.29800e6i −0.128064 0.221813i
\(113\) 1.14181e7 + 1.97768e7i 0.744425 + 1.28938i 0.950463 + 0.310838i \(0.100609\pi\)
−0.206038 + 0.978544i \(0.566057\pi\)
\(114\) 0 0
\(115\) −1.01742e7 + 1.76222e7i −0.623818 + 1.08048i
\(116\) 1.60005e6 0.0951768
\(117\) 0 0
\(118\) 2.37511e6 0.133075
\(119\) 1.42123e6 2.46165e6i 0.0773128 0.133910i
\(120\) 0 0
\(121\) −1.86286e7 3.22657e7i −0.955941 1.65574i
\(122\) −5.57379e6 9.65409e6i −0.277902 0.481340i
\(123\) 0 0
\(124\) 537045. 930189.i 0.0252950 0.0438122i
\(125\) 5.53161e7 2.53318
\(126\) 0 0
\(127\) −4.32493e7 −1.87355 −0.936777 0.349926i \(-0.886207\pi\)
−0.936777 + 0.349926i \(0.886207\pi\)
\(128\) 1.04858e6 1.81619e6i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 2.89227e7 + 5.00956e7i 1.15462 + 1.99985i
\(131\) −1.01142e7 1.75183e7i −0.393082 0.680838i 0.599773 0.800171i \(-0.295258\pi\)
−0.992854 + 0.119333i \(0.961924\pi\)
\(132\) 0 0
\(133\) 7.32515e6 1.26875e7i 0.269983 0.467624i
\(134\) 311896. 0.0111981
\(135\) 0 0
\(136\) 1.56533e6 0.0533605
\(137\) 1.38583e7 2.40033e7i 0.460456 0.797533i −0.538528 0.842608i \(-0.681019\pi\)
0.998984 + 0.0450750i \(0.0143527\pi\)
\(138\) 0 0
\(139\) 2.76358e7 + 4.78666e7i 0.872810 + 1.51175i 0.859077 + 0.511846i \(0.171038\pi\)
0.0137331 + 0.999906i \(0.495628\pi\)
\(140\) −1.52844e7 2.64734e7i −0.470762 0.815383i
\(141\) 0 0
\(142\) −4.69052e6 + 8.12422e6i −0.137471 + 0.238107i
\(143\) −1.06023e8 −3.03197
\(144\) 0 0
\(145\) 1.28438e7 0.349869
\(146\) 1.12401e7 1.94685e7i 0.298907 0.517722i
\(147\) 0 0
\(148\) −1.24659e7 2.15916e7i −0.316089 0.547482i
\(149\) −2.77455e6 4.80566e6i −0.0687133 0.119015i 0.829622 0.558326i \(-0.188556\pi\)
−0.898335 + 0.439311i \(0.855223\pi\)
\(150\) 0 0
\(151\) 1.45783e7 2.52503e7i 0.344578 0.596826i −0.640699 0.767792i \(-0.721355\pi\)
0.985277 + 0.170966i \(0.0546887\pi\)
\(152\) 8.06784e6 0.186339
\(153\) 0 0
\(154\) 5.60287e7 1.23620
\(155\) 4.31092e6 7.46674e6i 0.0929843 0.161053i
\(156\) 0 0
\(157\) 1.69551e7 + 2.93672e7i 0.349665 + 0.605638i 0.986190 0.165618i \(-0.0529620\pi\)
−0.636525 + 0.771256i \(0.719629\pi\)
\(158\) 5.76385e6 + 9.98328e6i 0.116255 + 0.201360i
\(159\) 0 0
\(160\) 8.41704e6 1.45787e7i 0.162457 0.281385i
\(161\) 3.68256e7 0.695440
\(162\) 0 0
\(163\) −8.50849e7 −1.53885 −0.769425 0.638738i \(-0.779457\pi\)
−0.769425 + 0.638738i \(0.779457\pi\)
\(164\) 8.13172e6 1.40846e7i 0.143956 0.249339i
\(165\) 0 0
\(166\) 2.50511e7 + 4.33897e7i 0.425058 + 0.736222i
\(167\) −2.43589e7 4.21908e7i −0.404715 0.700987i 0.589573 0.807715i \(-0.299296\pi\)
−0.994288 + 0.106728i \(0.965963\pi\)
\(168\) 0 0
\(169\) −6.76745e7 + 1.17216e8i −1.07850 + 1.86802i
\(170\) 1.25651e7 0.196153
\(171\) 0 0
\(172\) 1.64419e7 0.246378
\(173\) −2.46741e7 + 4.27368e7i −0.362310 + 0.627539i −0.988341 0.152259i \(-0.951345\pi\)
0.626031 + 0.779798i \(0.284678\pi\)
\(174\) 0 0
\(175\) −8.63721e7 1.49601e8i −1.21826 2.11009i
\(176\) 1.54273e7 + 2.67210e7i 0.213303 + 0.369452i
\(177\) 0 0
\(178\) 2.00715e7 3.47649e7i 0.266753 0.462031i
\(179\) −4.83660e7 −0.630310 −0.315155 0.949040i \(-0.602057\pi\)
−0.315155 + 0.949040i \(0.602057\pi\)
\(180\) 0 0
\(181\) −7.66634e7 −0.960978 −0.480489 0.877001i \(-0.659541\pi\)
−0.480489 + 0.877001i \(0.659541\pi\)
\(182\) 5.23430e7 9.06608e7i 0.643590 1.11473i
\(183\) 0 0
\(184\) 1.01398e7 + 1.75627e7i 0.119996 + 0.207840i
\(185\) −1.00066e8 1.73319e8i −1.16194 2.01254i
\(186\) 0 0
\(187\) −1.15151e7 + 1.99447e7i −0.128772 + 0.223040i
\(188\) 3.35847e6 0.0368628
\(189\) 0 0
\(190\) 6.47615e7 0.684982
\(191\) 7.71024e7 1.33545e8i 0.800665 1.38679i −0.118514 0.992952i \(-0.537813\pi\)
0.919179 0.393840i \(-0.128854\pi\)
\(192\) 0 0
\(193\) −6.72489e7 1.16478e8i −0.673340 1.16626i −0.976951 0.213463i \(-0.931526\pi\)
0.303611 0.952796i \(-0.401808\pi\)
\(194\) −2.62258e7 4.54243e7i −0.257883 0.446666i
\(195\) 0 0
\(196\) −1.30769e6 + 2.26499e6i −0.0124054 + 0.0214867i
\(197\) 1.23329e8 1.14930 0.574651 0.818398i \(-0.305138\pi\)
0.574651 + 0.818398i \(0.305138\pi\)
\(198\) 0 0
\(199\) 1.26860e8 1.14114 0.570571 0.821248i \(-0.306722\pi\)
0.570571 + 0.821248i \(0.306722\pi\)
\(200\) 4.75646e7 8.23843e7i 0.420416 0.728182i
\(201\) 0 0
\(202\) −2.10881e7 3.65257e7i −0.180015 0.311795i
\(203\) −1.16221e7 2.01300e7i −0.0975096 0.168892i
\(204\) 0 0
\(205\) 6.52743e7 1.13058e8i 0.529180 0.916567i
\(206\) −1.14720e8 −0.914332
\(207\) 0 0
\(208\) 5.76500e7 0.444199
\(209\) −5.93497e7 + 1.02797e8i −0.449683 + 0.778874i
\(210\) 0 0
\(211\) −2.04917e7 3.54927e7i −0.150172 0.260106i 0.781118 0.624383i \(-0.214649\pi\)
−0.931291 + 0.364277i \(0.881316\pi\)
\(212\) −1.82743e7 3.16520e7i −0.131724 0.228152i
\(213\) 0 0
\(214\) −5.78991e7 + 1.00284e8i −0.403853 + 0.699494i
\(215\) 1.31981e8 0.905683
\(216\) 0 0
\(217\) −1.56034e7 −0.103660
\(218\) −8.74478e7 + 1.51464e8i −0.571678 + 0.990175i
\(219\) 0 0
\(220\) 1.23837e8 + 2.14492e8i 0.784100 + 1.35810i
\(221\) 2.15152e7 + 3.72655e7i 0.134083 + 0.232238i
\(222\) 0 0
\(223\) 7.06819e7 1.22425e8i 0.426816 0.739268i −0.569772 0.821803i \(-0.692968\pi\)
0.996588 + 0.0825352i \(0.0263017\pi\)
\(224\) −3.04656e7 −0.181110
\(225\) 0 0
\(226\) 1.82690e8 1.05278
\(227\) 1.04100e8 1.80307e8i 0.590693 1.02311i −0.403446 0.915004i \(-0.632188\pi\)
0.994139 0.108108i \(-0.0344791\pi\)
\(228\) 0 0
\(229\) 8.31954e7 + 1.44099e8i 0.457799 + 0.792931i 0.998844 0.0480623i \(-0.0153046\pi\)
−0.541045 + 0.840993i \(0.681971\pi\)
\(230\) 8.13936e7 + 1.40978e8i 0.441106 + 0.764018i
\(231\) 0 0
\(232\) 6.40021e6 1.10855e7i 0.0336501 0.0582836i
\(233\) −2.64825e8 −1.37156 −0.685778 0.727810i \(-0.740538\pi\)
−0.685778 + 0.727810i \(0.740538\pi\)
\(234\) 0 0
\(235\) 2.69588e7 0.135508
\(236\) 9.50043e6 1.64552e7i 0.0470491 0.0814915i
\(237\) 0 0
\(238\) −1.13699e7 1.96932e7i −0.0546684 0.0946884i
\(239\) 2.57636e7 + 4.46239e7i 0.122071 + 0.211434i 0.920584 0.390544i \(-0.127713\pi\)
−0.798513 + 0.601978i \(0.794380\pi\)
\(240\) 0 0
\(241\) 6.70898e7 1.16203e8i 0.308743 0.534758i −0.669345 0.742952i \(-0.733425\pi\)
0.978088 + 0.208194i \(0.0667585\pi\)
\(242\) −2.98058e8 −1.35191
\(243\) 0 0
\(244\) −8.91806e7 −0.393012
\(245\) −1.04970e7 + 1.81813e7i −0.0456020 + 0.0789850i
\(246\) 0 0
\(247\) 1.10891e8 + 1.92069e8i 0.468228 + 0.810995i
\(248\) −4.29636e6 7.44151e6i −0.0178863 0.0309799i
\(249\) 0 0
\(250\) 2.21265e8 3.83241e8i 0.895616 1.55125i
\(251\) −3.18238e6 −0.0127027 −0.00635133 0.999980i \(-0.502022\pi\)
−0.00635133 + 0.999980i \(0.502022\pi\)
\(252\) 0 0
\(253\) −2.98368e8 −1.15832
\(254\) −1.72997e8 + 2.99640e8i −0.662402 + 1.14731i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) −2.10138e8 3.63970e8i −0.772216 1.33752i −0.936346 0.351079i \(-0.885815\pi\)
0.164129 0.986439i \(-0.447519\pi\)
\(258\) 0 0
\(259\) −1.81094e8 + 3.13664e8i −0.647672 + 1.12180i
\(260\) 4.62764e8 1.63287
\(261\) 0 0
\(262\) −1.61828e8 −0.555902
\(263\) 3.66087e7 6.34081e7i 0.124091 0.214931i −0.797287 0.603601i \(-0.793732\pi\)
0.921377 + 0.388670i \(0.127065\pi\)
\(264\) 0 0
\(265\) −1.46690e8 2.54074e8i −0.484216 0.838687i
\(266\) −5.86012e7 1.01500e8i −0.190907 0.330660i
\(267\) 0 0
\(268\) 1.24758e6 2.16088e6i 0.00395911 0.00685738i
\(269\) 4.03323e8 1.26334 0.631670 0.775237i \(-0.282370\pi\)
0.631670 + 0.775237i \(0.282370\pi\)
\(270\) 0 0
\(271\) −7.59082e7 −0.231684 −0.115842 0.993268i \(-0.536957\pi\)
−0.115842 + 0.993268i \(0.536957\pi\)
\(272\) 6.26132e6 1.08449e7i 0.0188658 0.0326765i
\(273\) 0 0
\(274\) −1.10866e8 1.92026e8i −0.325591 0.563941i
\(275\) 6.99802e8 + 1.21209e9i 2.02914 + 3.51457i
\(276\) 0 0
\(277\) −8.90979e7 + 1.54322e8i −0.251877 + 0.436263i −0.964043 0.265748i \(-0.914381\pi\)
0.712166 + 0.702011i \(0.247714\pi\)
\(278\) 4.42172e8 1.23434
\(279\) 0 0
\(280\) −2.44551e8 −0.665757
\(281\) −2.93797e8 + 5.08872e8i −0.789907 + 1.36816i 0.136117 + 0.990693i \(0.456538\pi\)
−0.926024 + 0.377466i \(0.876796\pi\)
\(282\) 0 0
\(283\) 1.42459e8 + 2.46746e8i 0.373626 + 0.647138i 0.990120 0.140221i \(-0.0447812\pi\)
−0.616495 + 0.787359i \(0.711448\pi\)
\(284\) 3.75242e7 + 6.49938e7i 0.0972069 + 0.168367i
\(285\) 0 0
\(286\) −4.24093e8 + 7.34550e8i −1.07196 + 1.85669i
\(287\) −2.36261e8 −0.589937
\(288\) 0 0
\(289\) −4.00992e8 −0.977221
\(290\) 5.13752e7 8.89845e7i 0.123697 0.214250i
\(291\) 0 0
\(292\) −8.99210e7 1.55748e8i −0.211359 0.366085i
\(293\) 1.75728e8 + 3.04371e8i 0.408136 + 0.706913i 0.994681 0.103004i \(-0.0328454\pi\)
−0.586545 + 0.809917i \(0.699512\pi\)
\(294\) 0 0
\(295\) 7.62611e7 1.32088e8i 0.172952 0.299562i
\(296\) −1.99455e8 −0.447017
\(297\) 0 0
\(298\) −4.43928e7 −0.0971753
\(299\) −2.78741e8 + 4.82793e8i −0.603047 + 1.04451i
\(300\) 0 0
\(301\) −1.19426e8 2.06853e8i −0.252416 0.437198i
\(302\) −1.16626e8 2.02003e8i −0.243653 0.422020i
\(303\) 0 0
\(304\) 3.22713e7 5.58956e7i 0.0658809 0.114109i
\(305\) −7.15864e8 −1.44471
\(306\) 0 0
\(307\) 3.58206e8 0.706560 0.353280 0.935518i \(-0.385066\pi\)
0.353280 + 0.935518i \(0.385066\pi\)
\(308\) 2.24115e8 3.88178e8i 0.437062 0.757014i
\(309\) 0 0
\(310\) −3.44874e7 5.97339e7i −0.0657498 0.113882i
\(311\) 1.48496e8 + 2.57203e8i 0.279932 + 0.484857i 0.971368 0.237581i \(-0.0763546\pi\)
−0.691435 + 0.722438i \(0.743021\pi\)
\(312\) 0 0
\(313\) −2.66043e8 + 4.60799e8i −0.490395 + 0.849389i −0.999939 0.0110555i \(-0.996481\pi\)
0.509544 + 0.860445i \(0.329814\pi\)
\(314\) 2.71282e8 0.494501
\(315\) 0 0
\(316\) 9.22216e7 0.164410
\(317\) −1.39087e8 + 2.40906e8i −0.245233 + 0.424757i −0.962197 0.272354i \(-0.912198\pi\)
0.716964 + 0.697110i \(0.245531\pi\)
\(318\) 0 0
\(319\) 9.41641e7 + 1.63097e8i 0.162412 + 0.281306i
\(320\) −6.73364e7 1.16630e8i −0.114875 0.198969i
\(321\) 0 0
\(322\) 1.47303e8 2.55135e8i 0.245875 0.425868i
\(323\) 4.81752e7 0.0795453
\(324\) 0 0
\(325\) 2.61507e9 4.22563
\(326\) −3.40340e8 + 5.89486e8i −0.544065 + 0.942349i
\(327\) 0 0
\(328\) −6.50538e7 1.12676e8i −0.101792 0.176309i
\(329\) −2.43944e7 4.22524e7i −0.0377664 0.0654132i
\(330\) 0 0
\(331\) −1.79071e7 + 3.10160e7i −0.0271411 + 0.0470097i −0.879277 0.476311i \(-0.841974\pi\)
0.852136 + 0.523321i \(0.175307\pi\)
\(332\) 4.00817e8 0.601123
\(333\) 0 0
\(334\) −3.89742e8 −0.572353
\(335\) 1.00145e7 1.73456e7i 0.0145537 0.0252077i
\(336\) 0 0
\(337\) 7.44599e7 + 1.28968e8i 0.105979 + 0.183560i 0.914138 0.405404i \(-0.132869\pi\)
−0.808159 + 0.588964i \(0.799536\pi\)
\(338\) 5.41396e8 + 9.37726e8i 0.762617 + 1.32089i
\(339\) 0 0
\(340\) 5.02604e7 8.70536e7i 0.0693505 0.120119i
\(341\) 1.26422e8 0.172656
\(342\) 0 0
\(343\) −7.27683e8 −0.973673
\(344\) 6.57674e7 1.13913e8i 0.0871077 0.150875i
\(345\) 0 0
\(346\) 1.97393e8 + 3.41894e8i 0.256192 + 0.443737i
\(347\) −5.99635e7 1.03860e8i −0.0770431 0.133443i 0.824930 0.565235i \(-0.191215\pi\)
−0.901973 + 0.431793i \(0.857881\pi\)
\(348\) 0 0
\(349\) 7.04809e8 1.22076e9i 0.887528 1.53724i 0.0447402 0.998999i \(-0.485754\pi\)
0.842788 0.538245i \(-0.180913\pi\)
\(350\) −1.38195e9 −1.72288
\(351\) 0 0
\(352\) 2.46838e8 0.301656
\(353\) 6.73687e8 1.16686e9i 0.815167 1.41191i −0.0940405 0.995568i \(-0.529978\pi\)
0.909208 0.416343i \(-0.136688\pi\)
\(354\) 0 0
\(355\) 3.01211e8 + 5.21713e8i 0.357332 + 0.618917i
\(356\) −1.60572e8 2.78119e8i −0.188623 0.326705i
\(357\) 0 0
\(358\) −1.93464e8 + 3.35089e8i −0.222848 + 0.385984i
\(359\) 1.20973e9 1.37993 0.689967 0.723841i \(-0.257625\pi\)
0.689967 + 0.723841i \(0.257625\pi\)
\(360\) 0 0
\(361\) −6.45573e8 −0.722221
\(362\) −3.06654e8 + 5.31140e8i −0.339757 + 0.588476i
\(363\) 0 0
\(364\) −4.18744e8 7.25287e8i −0.455087 0.788233i
\(365\) −7.21806e8 1.25021e9i −0.776955 1.34572i
\(366\) 0 0
\(367\) −6.77249e8 + 1.17303e9i −0.715183 + 1.23873i 0.247706 + 0.968835i \(0.420323\pi\)
−0.962889 + 0.269898i \(0.913010\pi\)
\(368\) 1.62237e8 0.169701
\(369\) 0 0
\(370\) −1.60105e9 −1.64323
\(371\) −2.65472e8 + 4.59812e8i −0.269905 + 0.467489i
\(372\) 0 0
\(373\) 3.04972e8 + 5.28227e8i 0.304284 + 0.527035i 0.977102 0.212773i \(-0.0682495\pi\)
−0.672818 + 0.739808i \(0.734916\pi\)
\(374\) 9.21208e7 + 1.59558e8i 0.0910557 + 0.157713i
\(375\) 0 0
\(376\) 1.34339e7 2.32681e7i 0.0130330 0.0225738i
\(377\) 3.51879e8 0.338220
\(378\) 0 0
\(379\) −2.77216e7 −0.0261565 −0.0130783 0.999914i \(-0.504163\pi\)
−0.0130783 + 0.999914i \(0.504163\pi\)
\(380\) 2.59046e8 4.48681e8i 0.242178 0.419464i
\(381\) 0 0
\(382\) −6.16819e8 1.06836e9i −0.566156 0.980611i
\(383\) −9.52673e8 1.65008e9i −0.866459 1.50075i −0.865591 0.500752i \(-0.833057\pi\)
−0.000868235 1.00000i \(-0.500276\pi\)
\(384\) 0 0
\(385\) 1.79900e9 3.11595e9i 1.60664 2.78278i
\(386\) −1.07598e9 −0.952246
\(387\) 0 0
\(388\) −4.19612e8 −0.364701
\(389\) −3.65276e8 + 6.32676e8i −0.314628 + 0.544952i −0.979358 0.202132i \(-0.935213\pi\)
0.664730 + 0.747083i \(0.268546\pi\)
\(390\) 0 0
\(391\) 6.05476e7 + 1.04872e8i 0.0512246 + 0.0887236i
\(392\) 1.04615e7 + 1.81199e7i 0.00877191 + 0.0151934i
\(393\) 0 0
\(394\) 4.93317e8 8.54450e8i 0.406340 0.703801i
\(395\) 7.40274e8 0.604369
\(396\) 0 0
\(397\) −7.11145e7 −0.0570415 −0.0285208 0.999593i \(-0.509080\pi\)
−0.0285208 + 0.999593i \(0.509080\pi\)
\(398\) 5.07441e8 8.78914e8i 0.403455 0.698804i
\(399\) 0 0
\(400\) −3.80517e8 6.59075e8i −0.297279 0.514902i
\(401\) 6.71791e8 + 1.16358e9i 0.520270 + 0.901134i 0.999722 + 0.0235661i \(0.00750200\pi\)
−0.479452 + 0.877568i \(0.659165\pi\)
\(402\) 0 0
\(403\) 1.18106e8 2.04565e8i 0.0898882 0.155691i
\(404\) −3.37410e8 −0.254579
\(405\) 0 0
\(406\) −1.85953e8 −0.137899
\(407\) 1.46726e9 2.54136e9i 1.07876 1.86847i
\(408\) 0 0
\(409\) 3.56823e8 + 6.18035e8i 0.257882 + 0.446665i 0.965674 0.259756i \(-0.0836421\pi\)
−0.707792 + 0.706421i \(0.750309\pi\)
\(410\) −5.22194e8 9.04467e8i −0.374187 0.648111i
\(411\) 0 0
\(412\) −4.58880e8 + 7.94804e8i −0.323265 + 0.559912i
\(413\) −2.76028e8 −0.192809
\(414\) 0 0
\(415\) 3.21741e9 2.20972
\(416\) 2.30600e8 3.99411e8i 0.157048 0.272015i
\(417\) 0 0
\(418\) 4.74798e8 + 8.22374e8i 0.317974 + 0.550747i
\(419\) −4.62128e8 8.00430e8i −0.306912 0.531587i 0.670773 0.741662i \(-0.265962\pi\)
−0.977685 + 0.210076i \(0.932629\pi\)
\(420\) 0 0
\(421\) −1.27849e9 + 2.21441e9i −0.835045 + 1.44634i 0.0589493 + 0.998261i \(0.481225\pi\)
−0.893994 + 0.448079i \(0.852108\pi\)
\(422\) −3.27867e8 −0.212376
\(423\) 0 0
\(424\) −2.92388e8 −0.186286
\(425\) 2.84021e8 4.91939e8i 0.179469 0.310849i
\(426\) 0 0
\(427\) 6.47769e8 + 1.12197e9i 0.402645 + 0.697402i
\(428\) 4.63193e8 + 8.02274e8i 0.285567 + 0.494617i
\(429\) 0 0
\(430\) 5.27923e8 9.14390e8i 0.320207 0.554615i
\(431\) −2.72540e9 −1.63968 −0.819840 0.572593i \(-0.805938\pi\)
−0.819840 + 0.572593i \(0.805938\pi\)
\(432\) 0 0
\(433\) −1.62728e9 −0.963284 −0.481642 0.876368i \(-0.659959\pi\)
−0.481642 + 0.876368i \(0.659959\pi\)
\(434\) −6.24137e7 + 1.08104e8i −0.0366493 + 0.0634785i
\(435\) 0 0
\(436\) 6.99583e8 + 1.21171e9i 0.404237 + 0.700159i
\(437\) 3.12067e8 + 5.40516e8i 0.178880 + 0.309830i
\(438\) 0 0
\(439\) −8.12016e8 + 1.40645e9i −0.458077 + 0.793413i −0.998859 0.0477496i \(-0.984795\pi\)
0.540782 + 0.841163i \(0.318128\pi\)
\(440\) 1.98139e9 1.10889
\(441\) 0 0
\(442\) 3.44244e8 0.189622
\(443\) −1.15001e9 + 1.99187e9i −0.628475 + 1.08855i 0.359383 + 0.933190i \(0.382987\pi\)
−0.987858 + 0.155360i \(0.950346\pi\)
\(444\) 0 0
\(445\) −1.28893e9 2.23249e9i −0.693377 1.20097i
\(446\) −5.65455e8 9.79397e8i −0.301805 0.522741i
\(447\) 0 0
\(448\) −1.21862e8 + 2.11072e8i −0.0640319 + 0.110906i
\(449\) 2.21255e8 0.115353 0.0576767 0.998335i \(-0.481631\pi\)
0.0576767 + 0.998335i \(0.481631\pi\)
\(450\) 0 0
\(451\) 1.91423e9 0.982598
\(452\) 7.30761e8 1.26572e9i 0.372212 0.644691i
\(453\) 0 0
\(454\) −8.32804e8 1.44246e9i −0.417683 0.723449i
\(455\) −3.36131e9 5.82196e9i −1.67290 2.89754i
\(456\) 0 0
\(457\) −1.07774e9 + 1.86670e9i −0.528211 + 0.914889i 0.471248 + 0.882001i \(0.343804\pi\)
−0.999459 + 0.0328880i \(0.989530\pi\)
\(458\) 1.33113e9 0.647426
\(459\) 0 0
\(460\) 1.30230e9 0.623818
\(461\) 1.12474e9 1.94811e9i 0.534686 0.926104i −0.464492 0.885577i \(-0.653763\pi\)
0.999178 0.0405266i \(-0.0129036\pi\)
\(462\) 0 0
\(463\) 1.88439e9 + 3.26386e9i 0.882344 + 1.52826i 0.848728 + 0.528829i \(0.177369\pi\)
0.0336156 + 0.999435i \(0.489298\pi\)
\(464\) −5.12016e7 8.86838e7i −0.0237942 0.0412127i
\(465\) 0 0
\(466\) −1.05930e9 + 1.83476e9i −0.484919 + 0.839904i
\(467\) 1.00692e9 0.457497 0.228748 0.973486i \(-0.426537\pi\)
0.228748 + 0.973486i \(0.426537\pi\)
\(468\) 0 0
\(469\) −3.62476e7 −0.0162246
\(470\) 1.07835e8 1.86776e8i 0.0479091 0.0829811i
\(471\) 0 0
\(472\) −7.60035e7 1.31642e8i −0.0332687 0.0576232i
\(473\) 9.67614e8 + 1.67596e9i 0.420425 + 0.728197i
\(474\) 0 0
\(475\) 1.46387e9 2.53549e9i 0.626720 1.08551i
\(476\) −1.81918e8 −0.0773128
\(477\) 0 0
\(478\) 4.12218e8 0.172635
\(479\) 5.42944e8 9.40407e8i 0.225726 0.390968i −0.730811 0.682580i \(-0.760858\pi\)
0.956537 + 0.291611i \(0.0941914\pi\)
\(480\) 0 0
\(481\) −2.74148e9 4.74838e9i −1.12325 1.94553i
\(482\) −5.36718e8 9.29623e8i −0.218314 0.378131i
\(483\) 0 0
\(484\) −1.19223e9 + 2.06500e9i −0.477971 + 0.827870i
\(485\) −3.36828e9 −1.34064
\(486\) 0 0
\(487\) −2.90861e9 −1.14113 −0.570564 0.821253i \(-0.693275\pi\)
−0.570564 + 0.821253i \(0.693275\pi\)
\(488\) −3.56723e8 + 6.17862e8i −0.138951 + 0.240670i
\(489\) 0 0
\(490\) 8.39760e7 + 1.45451e8i 0.0322455 + 0.0558508i
\(491\) 2.09312e9 + 3.62538e9i 0.798010 + 1.38219i 0.920910 + 0.389774i \(0.127447\pi\)
−0.122901 + 0.992419i \(0.539220\pi\)
\(492\) 0 0
\(493\) 3.82173e7 6.61943e7i 0.0143647 0.0248804i
\(494\) 1.77426e9 0.662174
\(495\) 0 0
\(496\) −6.87418e7 −0.0252950
\(497\) 5.45118e8 9.44173e8i 0.199179 0.344988i
\(498\) 0 0
\(499\) −1.87965e9 3.25565e9i −0.677213 1.17297i −0.975817 0.218591i \(-0.929854\pi\)
0.298603 0.954377i \(-0.403479\pi\)
\(500\) −1.77012e9 3.06593e9i −0.633296 1.09690i
\(501\) 0 0
\(502\) −1.27295e7 + 2.20482e7i −0.00449107 + 0.00777875i
\(503\) −2.94320e9 −1.03117 −0.515587 0.856837i \(-0.672426\pi\)
−0.515587 + 0.856837i \(0.672426\pi\)
\(504\) 0 0
\(505\) −2.70843e9 −0.935831
\(506\) −1.19347e9 + 2.06715e9i −0.409530 + 0.709326i
\(507\) 0 0
\(508\) 1.38398e9 + 2.39712e9i 0.468389 + 0.811273i
\(509\) 5.95726e8 + 1.03183e9i 0.200233 + 0.346813i 0.948603 0.316468i \(-0.102497\pi\)
−0.748371 + 0.663281i \(0.769164\pi\)
\(510\) 0 0
\(511\) −1.30629e9 + 2.26256e9i −0.433079 + 0.750115i
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) −3.36221e9 −1.09208
\(515\) −3.68349e9 + 6.37999e9i −1.18832 + 2.05823i
\(516\) 0 0
\(517\) 1.97648e8 + 3.42336e8i 0.0629036 + 0.108952i
\(518\) 1.44875e9 + 2.50931e9i 0.457973 + 0.793233i
\(519\) 0 0
\(520\) 1.85105e9 3.20612e9i 0.577308 0.999927i
\(521\) 3.63894e9 1.12731 0.563655 0.826010i \(-0.309395\pi\)
0.563655 + 0.826010i \(0.309395\pi\)
\(522\) 0 0
\(523\) −4.37296e9 −1.33666 −0.668328 0.743867i \(-0.732990\pi\)
−0.668328 + 0.743867i \(0.732990\pi\)
\(524\) −6.47310e8 + 1.12117e9i −0.196541 + 0.340419i
\(525\) 0 0
\(526\) −2.92869e8 5.07265e8i −0.0877453 0.151979i
\(527\) −2.56547e7 4.44352e7i −0.00763537 0.0132248i
\(528\) 0 0
\(529\) 9.17988e8 1.59000e9i 0.269614 0.466985i
\(530\) −2.34704e9 −0.684785
\(531\) 0 0
\(532\) −9.37620e8 −0.269983
\(533\) 1.78831e9 3.09744e9i 0.511560 0.886048i
\(534\) 0 0
\(535\) 3.71810e9 + 6.43995e9i 1.04974 + 1.81821i
\(536\) −9.98066e6 1.72870e7i −0.00279951 0.00484890i
\(537\) 0 0
\(538\) 1.61329e9 2.79431e9i 0.446658 0.773635i
\(539\) −3.07834e8 −0.0846752
\(540\) 0 0
\(541\) −3.72635e7 −0.0101180 −0.00505898 0.999987i \(-0.501610\pi\)
−0.00505898 + 0.999987i \(0.501610\pi\)
\(542\) −3.03633e8 + 5.25907e8i −0.0819127 + 0.141877i
\(543\) 0 0
\(544\) −5.00906e7 8.67595e7i −0.0133401 0.0231058i
\(545\) 5.61563e9 + 9.72656e9i 1.48597 + 2.57378i
\(546\) 0 0
\(547\) −2.66081e9 + 4.60866e9i −0.695118 + 1.20398i 0.275022 + 0.961438i \(0.411315\pi\)
−0.970141 + 0.242543i \(0.922019\pi\)
\(548\) −1.77386e9 −0.460456
\(549\) 0 0
\(550\) 1.11968e10 2.86963
\(551\) 1.96975e8 3.41171e8i 0.0501627 0.0868843i
\(552\) 0 0
\(553\) −6.69857e8 1.16023e9i −0.168440 0.291746i
\(554\) 7.12783e8 + 1.23458e9i 0.178104 + 0.308485i
\(555\) 0 0
\(556\) 1.76869e9 3.06346e9i 0.436405 0.755876i
\(557\) 6.10360e9 1.49655 0.748277 0.663386i \(-0.230881\pi\)
0.748277 + 0.663386i \(0.230881\pi\)
\(558\) 0 0
\(559\) 3.61585e9 0.875526
\(560\) −9.78203e8 + 1.69430e9i −0.235381 + 0.407692i
\(561\) 0 0
\(562\) 2.35038e9 + 4.07098e9i 0.558548 + 0.967434i
\(563\) −4.53011e8 7.84638e8i −0.106987 0.185306i 0.807562 0.589783i \(-0.200787\pi\)
−0.914548 + 0.404477i \(0.867454\pi\)
\(564\) 0 0
\(565\) 5.86591e9 1.01600e10i 1.36825 2.36988i
\(566\) 2.27934e9 0.528386
\(567\) 0 0
\(568\) 6.00387e8 0.137471
\(569\) 3.01597e9 5.22381e9i 0.686331 1.18876i −0.286685 0.958025i \(-0.592553\pi\)
0.973016 0.230736i \(-0.0741133\pi\)
\(570\) 0 0
\(571\) 5.83004e8 + 1.00979e9i 0.131052 + 0.226989i 0.924083 0.382193i \(-0.124831\pi\)
−0.793030 + 0.609182i \(0.791498\pi\)
\(572\) 3.39274e9 + 5.87640e9i 0.757992 + 1.31288i
\(573\) 0 0
\(574\) −9.45044e8 + 1.63686e9i −0.208574 + 0.361261i
\(575\) 7.35927e9 1.61435
\(576\) 0 0
\(577\) 2.91738e9 0.632233 0.316117 0.948720i \(-0.397621\pi\)
0.316117 + 0.948720i \(0.397621\pi\)
\(578\) −1.60397e9 + 2.77815e9i −0.345500 + 0.598423i
\(579\) 0 0
\(580\) −4.11002e8 7.11876e8i −0.0874673 0.151498i
\(581\) −2.91136e9 5.04262e9i −0.615856 1.06669i
\(582\) 0 0
\(583\) 2.15091e9 3.72548e9i 0.449553 0.778649i
\(584\) −1.43874e9 −0.298907
\(585\) 0 0
\(586\) 2.81165e9 0.577192
\(587\) −1.25480e9 + 2.17338e9i −0.256060 + 0.443509i −0.965183 0.261576i \(-0.915758\pi\)
0.709123 + 0.705085i \(0.249091\pi\)
\(588\) 0 0
\(589\) −1.32226e8 2.29023e8i −0.0266633 0.0461822i
\(590\) −6.10089e8 1.05671e9i −0.122296 0.211822i
\(591\) 0 0
\(592\) −7.97820e8 + 1.38186e9i −0.158044 + 0.273741i
\(593\) −6.93736e9 −1.36616 −0.683082 0.730341i \(-0.739361\pi\)
−0.683082 + 0.730341i \(0.739361\pi\)
\(594\) 0 0
\(595\) −1.46028e9 −0.284201
\(596\) −1.77571e8 + 3.07562e8i −0.0343566 + 0.0595075i
\(597\) 0 0
\(598\) 2.22993e9 + 3.86234e9i 0.426419 + 0.738579i
\(599\) −1.27967e9 2.21646e9i −0.243280 0.421373i 0.718367 0.695664i \(-0.244890\pi\)
−0.961647 + 0.274292i \(0.911557\pi\)
\(600\) 0 0
\(601\) −5.69651e8 + 9.86665e8i −0.107041 + 0.185400i −0.914570 0.404427i \(-0.867471\pi\)
0.807530 + 0.589827i \(0.200804\pi\)
\(602\) −1.91082e9 −0.356971
\(603\) 0 0
\(604\) −1.86602e9 −0.344578
\(605\) −9.57017e9 + 1.65760e10i −1.75702 + 3.04324i
\(606\) 0 0
\(607\) −3.64120e9 6.30675e9i −0.660822 1.14458i −0.980400 0.197018i \(-0.936874\pi\)
0.319578 0.947560i \(-0.396459\pi\)
\(608\) −2.58171e8 4.47165e8i −0.0465848 0.0806873i
\(609\) 0 0
\(610\) −2.86345e9 + 4.95965e9i −0.510782 + 0.884701i
\(611\) 7.38585e8 0.130996
\(612\) 0 0
\(613\) −6.91313e9 −1.21217 −0.606084 0.795400i \(-0.707261\pi\)
−0.606084 + 0.795400i \(0.707261\pi\)
\(614\) 1.43283e9 2.48173e9i 0.249807 0.432678i
\(615\) 0 0
\(616\) −1.79292e9 3.10543e9i −0.309050 0.535290i
\(617\) −7.01580e8 1.21517e9i −0.120248 0.208276i 0.799617 0.600510i \(-0.205036\pi\)
−0.919866 + 0.392234i \(0.871702\pi\)
\(618\) 0 0
\(619\) −5.09778e9 + 8.82962e9i −0.863901 + 1.49632i 0.00423255 + 0.999991i \(0.498653\pi\)
−0.868134 + 0.496330i \(0.834681\pi\)
\(620\) −5.51798e8 −0.0929843
\(621\) 0 0
\(622\) 2.37594e9 0.395884
\(623\) −2.33265e9 + 4.04027e9i −0.386493 + 0.669425i
\(624\) 0 0
\(625\) −6.95115e9 1.20397e10i −1.13888 1.97259i
\(626\) 2.12834e9 + 3.68640e9i 0.346762 + 0.600609i
\(627\) 0 0
\(628\) 1.08513e9 1.87950e9i 0.174833 0.302819i
\(629\) −1.19100e9 −0.190824
\(630\) 0 0
\(631\) −1.63463e9 −0.259010 −0.129505 0.991579i \(-0.541339\pi\)
−0.129505 + 0.991579i \(0.541339\pi\)
\(632\) 3.68886e8 6.38930e8i 0.0581277 0.100680i
\(633\) 0 0
\(634\) 1.11270e9 + 1.92725e9i 0.173406 + 0.300348i
\(635\) 1.11094e10 + 1.92420e10i 1.72179 + 2.98223i
\(636\) 0 0
\(637\) −2.87584e8 + 4.98110e8i −0.0440836 + 0.0763550i
\(638\) 1.50663e9 0.229685
\(639\) 0 0
\(640\) −1.07738e9 −0.162457
\(641\) 8.20607e7 1.42133e8i 0.0123064 0.0213154i −0.859807 0.510620i \(-0.829416\pi\)
0.872113 + 0.489304i \(0.162749\pi\)
\(642\) 0 0
\(643\) −1.24387e9 2.15444e9i −0.184516 0.319592i 0.758897 0.651211i \(-0.225739\pi\)
−0.943413 + 0.331619i \(0.892405\pi\)
\(644\) −1.17842e9 2.04108e9i −0.173860 0.301134i
\(645\) 0 0
\(646\) 1.92701e8 3.33767e8i 0.0281235 0.0487114i
\(647\) −2.24150e9 −0.325368 −0.162684 0.986678i \(-0.552015\pi\)
−0.162684 + 0.986678i \(0.552015\pi\)
\(648\) 0 0
\(649\) 2.23643e9 0.321143
\(650\) 1.04603e10 1.81177e10i 1.49399 2.58766i
\(651\) 0 0
\(652\) 2.72272e9 + 4.71589e9i 0.384712 + 0.666341i
\(653\) −5.04729e9 8.74216e9i −0.709353 1.22863i −0.965098 0.261890i \(-0.915654\pi\)
0.255745 0.966744i \(-0.417679\pi\)
\(654\) 0 0
\(655\) −5.19604e9 + 8.99980e9i −0.722483 + 1.25138i
\(656\) −1.04086e9 −0.143956
\(657\) 0 0
\(658\) −3.90311e8 −0.0534097
\(659\) 7.15278e8 1.23890e9i 0.0973590 0.168631i −0.813232 0.581940i \(-0.802294\pi\)
0.910591 + 0.413309i \(0.135627\pi\)
\(660\) 0 0
\(661\) −2.72158e9 4.71392e9i −0.366536 0.634859i 0.622485 0.782631i \(-0.286123\pi\)
−0.989021 + 0.147772i \(0.952790\pi\)
\(662\) 1.43257e8 + 2.48128e8i 0.0191916 + 0.0332409i
\(663\) 0 0
\(664\) 1.60327e9 2.77694e9i 0.212529 0.368111i
\(665\) −7.52638e9 −0.992454
\(666\) 0 0
\(667\) 9.90250e8 0.129212
\(668\) −1.55897e9 + 2.70021e9i −0.202357 + 0.350493i
\(669\) 0 0
\(670\) −8.01159e7 1.38765e8i −0.0102910 0.0178245i
\(671\) −5.24834e9 9.09039e9i −0.670646 1.16159i
\(672\) 0 0
\(673\) 3.84720e9 6.66354e9i 0.486510 0.842660i −0.513370 0.858168i \(-0.671603\pi\)
0.999880 + 0.0155073i \(0.00493633\pi\)
\(674\) 1.19136e9 0.149876
\(675\) 0 0
\(676\) 8.66234e9 1.07850
\(677\) −3.31338e9 + 5.73895e9i −0.410404 + 0.710840i −0.994934 0.100532i \(-0.967946\pi\)
0.584530 + 0.811372i \(0.301279\pi\)
\(678\) 0 0
\(679\) 3.04788e9 + 5.27908e9i 0.373640 + 0.647163i
\(680\) −4.02083e8 6.96428e8i −0.0490382 0.0849367i
\(681\) 0 0
\(682\) 5.05687e8 8.75876e8i 0.0610431 0.105730i
\(683\) 1.25637e10 1.50885 0.754426 0.656386i \(-0.227916\pi\)
0.754426 + 0.656386i \(0.227916\pi\)
\(684\) 0 0
\(685\) −1.42390e10 −1.69263
\(686\) −2.91073e9 + 5.04154e9i −0.344245 + 0.596250i
\(687\) 0 0
\(688\) −5.26140e8 9.11300e8i −0.0615944 0.106685i
\(689\) −4.01883e9 6.96082e9i −0.468093 0.810761i
\(690\) 0 0
\(691\) −6.86500e9 + 1.18905e10i −0.791530 + 1.37097i 0.133489 + 0.991050i \(0.457382\pi\)
−0.925019 + 0.379921i \(0.875951\pi\)
\(692\) 3.15829e9 0.362310
\(693\) 0 0
\(694\) −9.59416e8 −0.108955
\(695\) 1.41975e10 2.45908e10i 1.60422 2.77859i
\(696\) 0 0
\(697\) −3.88453e8 6.72821e8i −0.0434534 0.0752635i
\(698\) −5.63847e9 9.76611e9i −0.627577 1.08700i
\(699\) 0 0
\(700\) −5.52782e9 + 9.57446e9i −0.609131 + 1.05505i
\(701\) −1.06175e10 −1.16415 −0.582076 0.813134i \(-0.697759\pi\)
−0.582076 + 0.813134i \(0.697759\pi\)
\(702\) 0 0
\(703\) −6.13850e9 −0.666375
\(704\) 9.87350e8 1.71014e9i 0.106651 0.184726i
\(705\) 0 0
\(706\) −5.38950e9 9.33488e9i −0.576410 0.998372i
\(707\) 2.45080e9 + 4.24490e9i 0.260819 + 0.451752i
\(708\) 0 0
\(709\) 6.45277e9 1.11765e10i 0.679962 1.17773i −0.295030 0.955488i \(-0.595330\pi\)
0.974992 0.222240i \(-0.0713369\pi\)
\(710\) 4.81938e9 0.505344
\(711\) 0 0
\(712\) −2.56915e9 −0.266753
\(713\) 3.32370e8 5.75681e8i 0.0343406 0.0594797i
\(714\) 0 0
\(715\) 2.72339e10 + 4.71706e10i 2.78637 + 4.82614i
\(716\) 1.54771e9 + 2.68071e9i 0.157577 + 0.272932i
\(717\) 0 0
\(718\) 4.83893e9 8.38126e9i 0.487880 0.845034i
\(719\) 9.38527e9 0.941664 0.470832 0.882223i \(-0.343954\pi\)
0.470832 + 0.882223i \(0.343954\pi\)
\(720\) 0 0
\(721\) 1.33324e10 1.32475
\(722\) −2.58229e9 + 4.47266e9i −0.255344 + 0.442268i
\(723\) 0 0
\(724\) 2.45323e9 + 4.24912e9i 0.240244 + 0.416116i
\(725\) −2.32257e9 4.02280e9i −0.226352 0.392054i
\(726\) 0 0
\(727\) 1.27432e9 2.20719e9i 0.123001 0.213044i −0.797949 0.602725i \(-0.794081\pi\)
0.920950 + 0.389681i \(0.127415\pi\)
\(728\) −6.69991e9 −0.643590
\(729\) 0 0
\(730\) −1.15489e10 −1.09878
\(731\) 3.92715e8 6.80202e8i 0.0371849 0.0644061i
\(732\) 0 0
\(733\) −6.37526e9 1.10423e10i −0.597908 1.03561i −0.993129 0.117021i \(-0.962666\pi\)
0.395222 0.918586i \(-0.370668\pi\)
\(734\) 5.41799e9 + 9.38424e9i 0.505711 + 0.875916i
\(735\) 0 0
\(736\) 6.48949e8 1.12401e9i 0.0599982 0.103920i
\(737\) 2.93684e8 0.0270237
\(738\) 0 0
\(739\) 5.86108e9 0.534222 0.267111 0.963666i \(-0.413931\pi\)
0.267111 + 0.963666i \(0.413931\pi\)
\(740\) −6.40420e9 + 1.10924e10i −0.580970 + 1.00627i
\(741\) 0 0
\(742\) 2.12378e9 + 3.67849e9i 0.190852 + 0.330565i
\(743\) −4.54298e9 7.86867e9i −0.406331 0.703785i 0.588145 0.808756i \(-0.299859\pi\)
−0.994475 + 0.104970i \(0.966525\pi\)
\(744\) 0 0
\(745\) −1.42539e9 + 2.46884e9i −0.126295 + 0.218749i
\(746\) 4.87955e9 0.430323
\(747\) 0 0
\(748\) 1.47393e9 0.128772
\(749\) 6.72886e9 1.16547e10i 0.585134 1.01348i
\(750\) 0 0
\(751\) −9.81435e9 1.69989e10i −0.845516 1.46448i −0.885173 0.465263i \(-0.845960\pi\)
0.0396571 0.999213i \(-0.487373\pi\)
\(752\) −1.07471e8 1.86145e8i −0.00921571 0.0159621i
\(753\) 0 0
\(754\) 1.40752e9 2.43789e9i 0.119579 0.207116i
\(755\) −1.49788e10 −1.26667
\(756\) 0 0
\(757\) 9.09151e9 0.761729 0.380864 0.924631i \(-0.375627\pi\)
0.380864 + 0.924631i \(0.375627\pi\)
\(758\) −1.10886e8 + 1.92061e8i −0.00924773 + 0.0160175i
\(759\) 0 0
\(760\) −2.07237e9 3.58945e9i −0.171246 0.296606i
\(761\) −2.33119e9 4.03775e9i −0.191749 0.332118i 0.754081 0.656781i \(-0.228082\pi\)
−0.945830 + 0.324663i \(0.894749\pi\)
\(762\) 0 0
\(763\) 1.01629e10 1.76027e10i 0.828290 1.43464i
\(764\) −9.86910e9 −0.800665
\(765\) 0 0
\(766\) −1.52428e10 −1.22536
\(767\) 2.08931e9 3.61879e9i 0.167193 0.289588i
\(768\) 0 0
\(769\) 1.57011e8 + 2.71950e8i 0.0124505 + 0.0215649i 0.872184 0.489179i \(-0.162703\pi\)
−0.859733 + 0.510744i \(0.829370\pi\)
\(770\) −1.43920e10 2.49276e10i −1.13606 1.96772i
\(771\) 0 0
\(772\) −4.30393e9 + 7.45462e9i −0.336670 + 0.583129i
\(773\) 2.16691e10 1.68738 0.843688 0.536834i \(-0.180380\pi\)
0.843688 + 0.536834i \(0.180380\pi\)
\(774\) 0 0
\(775\) −3.11821e9 −0.240630
\(776\) −1.67845e9 + 2.90716e9i −0.128941 + 0.223333i
\(777\) 0 0
\(778\) 2.92221e9 + 5.06141e9i 0.222476 + 0.385339i
\(779\) −2.00212e9 3.46777e9i −0.151743 0.262827i
\(780\) 0 0
\(781\) −4.41665e9 + 7.64986e9i −0.331752 + 0.574612i
\(782\) 9.68762e8 0.0724425
\(783\) 0 0
\(784\) 1.67385e8 0.0124054
\(785\) 8.71046e9 1.50870e10i 0.642684 1.11316i
\(786\) 0 0
\(787\) −6.63078e8 1.14848e9i −0.0484901 0.0839873i 0.840762 0.541405i \(-0.182108\pi\)
−0.889252 + 0.457418i \(0.848774\pi\)
\(788\) −3.94654e9 6.83560e9i −0.287326 0.497663i
\(789\) 0 0
\(790\) 2.96109e9 5.12877e9i 0.213677 0.370099i
\(791\) −2.12317e10 −1.52534
\(792\) 0 0
\(793\) −1.96124e10 −1.39661
\(794\) −2.84458e8 + 4.92695e8i −0.0201672 + 0.0349307i
\(795\) 0 0
\(796\) −4.05953e9 7.03131e9i −0.285286 0.494129i
\(797\) −1.01981e10 1.76636e10i −0.713534 1.23588i −0.963522 0.267628i \(-0.913760\pi\)
0.249988 0.968249i \(-0.419573\pi\)
\(798\) 0 0
\(799\) 8.02172e7 1.38940e8i 0.00556357 0.00963639i
\(800\) −6.08827e9 −0.420416
\(801\) 0 0
\(802\) 1.07487e10 0.735773
\(803\) 1.05838e10 1.83317e10i 0.721336 1.24939i
\(804\) 0 0
\(805\) −9.45932e9 1.63840e10i −0.639108 1.10697i
\(806\) −9.44844e8 1.63652e9i −0.0635605 0.110090i
\(807\) 0 0
\(808\) −1.34964e9 + 2.33764e9i −0.0900073 + 0.155897i
\(809\) −1.90447e10 −1.26461 −0.632303 0.774721i \(-0.717890\pi\)
−0.632303 + 0.774721i \(0.717890\pi\)
\(810\) 0 0
\(811\) 1.63087e10 1.07361 0.536806 0.843706i \(-0.319631\pi\)
0.536806 + 0.843706i \(0.319631\pi\)
\(812\) −7.43812e8 + 1.28832e9i −0.0487548 + 0.0844458i
\(813\) 0 0
\(814\) −1.17381e10 2.03309e10i −0.762800 1.32121i
\(815\) 2.18556e10 + 3.78550e10i 1.41420 + 2.44947i
\(816\) 0 0
\(817\) 2.02408e9 3.50581e9i 0.129853 0.224911i
\(818\) 5.70916e9 0.364700
\(819\) 0 0
\(820\) −8.35511e9 −0.529180
\(821\) −7.84871e9 + 1.35944e10i −0.494991 + 0.857350i −0.999983 0.00577401i \(-0.998162\pi\)
0.504992 + 0.863124i \(0.331495\pi\)
\(822\) 0 0
\(823\) 9.11320e9 + 1.57845e10i 0.569864 + 0.987034i 0.996579 + 0.0826475i \(0.0263375\pi\)
−0.426715 + 0.904386i \(0.640329\pi\)
\(824\) 3.67104e9 + 6.35843e9i 0.228583 + 0.395918i
\(825\) 0 0
\(826\) −1.10411e9 + 1.91238e9i −0.0681684 + 0.118071i
\(827\) −1.29185e10 −0.794222 −0.397111 0.917771i \(-0.629987\pi\)
−0.397111 + 0.917771i \(0.629987\pi\)
\(828\) 0 0
\(829\) 1.25055e10 0.762357 0.381179 0.924501i \(-0.375518\pi\)
0.381179 + 0.924501i \(0.375518\pi\)
\(830\) 1.28696e10 2.22909e10i 0.781255 1.35317i
\(831\) 0 0
\(832\) −1.84480e9 3.19529e9i −0.111050 0.192344i
\(833\) 6.24686e7 + 1.08199e8i 0.00374459 + 0.00648582i
\(834\) 0 0
\(835\) −1.25140e10 + 2.16749e10i −0.743865 + 1.28841i
\(836\) 7.59676e9 0.449683
\(837\) 0 0
\(838\) −7.39405e9 −0.434039
\(839\) −3.49281e9 + 6.04972e9i −0.204177 + 0.353646i −0.949870 0.312644i \(-0.898785\pi\)
0.745693 + 0.666290i \(0.232119\pi\)
\(840\) 0 0
\(841\) 8.31242e9 + 1.43975e10i 0.481883 + 0.834645i
\(842\) 1.02279e10 + 1.77153e10i 0.590466 + 1.02272i
\(843\) 0 0
\(844\) −1.31147e9 + 2.27153e9i −0.0750861 + 0.130053i
\(845\) 6.95336e10 3.96457
\(846\) 0 0
\(847\) 3.46393e10 1.95874
\(848\) −1.16955e9 + 2.02573e9i −0.0658619 + 0.114076i
\(849\) 0 0
\(850\) −2.27217e9 3.93551e9i −0.126904 0.219804i
\(851\) −7.71500e9 1.33628e10i −0.429123 0.743264i
\(852\) 0 0
\(853\) 1.44807e10 2.50814e10i 0.798858 1.38366i −0.121503 0.992591i \(-0.538771\pi\)
0.920361 0.391071i \(-0.127895\pi\)
\(854\) 1.03643e10 0.569426
\(855\) 0 0
\(856\) 7.41109e9 0.403853
\(857\) −9.43344e9 + 1.63392e10i −0.511962 + 0.886743i 0.487942 + 0.872876i \(0.337748\pi\)
−0.999904 + 0.0138675i \(0.995586\pi\)
\(858\) 0 0
\(859\) −1.28385e10 2.22369e10i −0.691095 1.19701i −0.971480 0.237123i \(-0.923795\pi\)
0.280385 0.959888i \(-0.409538\pi\)
\(860\) −4.22338e9 7.31512e9i −0.226421 0.392172i
\(861\) 0 0
\(862\) −1.09016e10 + 1.88821e10i −0.579714 + 1.00409i
\(863\) −2.32394e10 −1.23080 −0.615400 0.788215i \(-0.711005\pi\)
−0.615400 + 0.788215i \(0.711005\pi\)
\(864\) 0 0
\(865\) 2.53519e10 1.33185
\(866\) −6.50911e9 + 1.12741e10i −0.340572 + 0.589888i
\(867\) 0 0
\(868\) 4.99310e8 + 8.64830e8i 0.0259150 + 0.0448861i
\(869\) 5.42730e9 + 9.40036e9i 0.280553 + 0.485932i
\(870\) 0 0
\(871\) 2.74365e8 4.75214e8i 0.0140691 0.0243683i
\(872\) 1.11933e10 0.571678
\(873\) 0 0
\(874\) 4.99307e9 0.252975
\(875\) −2.57147e10 + 4.45391e10i −1.29764 + 2.24757i
\(876\) 0 0
\(877\) 4.88371e9 + 8.45883e9i 0.244484 + 0.423459i 0.961986 0.273097i \(-0.0880480\pi\)
−0.717502 + 0.696556i \(0.754715\pi\)
\(878\) 6.49613e9 + 1.12516e10i 0.323910 + 0.561028i
\(879\) 0 0
\(880\) 7.92558e9 1.37275e10i 0.392050 0.679051i
\(881\) −2.48003e10 −1.22192 −0.610959 0.791662i \(-0.709216\pi\)
−0.610959 + 0.791662i \(0.709216\pi\)
\(882\) 0 0
\(883\) 2.25403e10 1.10178 0.550892 0.834576i \(-0.314288\pi\)
0.550892 + 0.834576i \(0.314288\pi\)
\(884\) 1.37697e9 2.38499e9i 0.0670414 0.116119i
\(885\) 0 0
\(886\) 9.20007e9 + 1.59350e10i 0.444399 + 0.769722i
\(887\) −1.72287e10 2.98409e10i −0.828932 1.43575i −0.898877 0.438202i \(-0.855616\pi\)
0.0699446 0.997551i \(-0.477718\pi\)
\(888\) 0 0
\(889\) 2.01052e10 3.48233e10i 0.959738 1.66231i
\(890\) −2.06229e10 −0.980584
\(891\) 0 0
\(892\) −9.04728e9 −0.426816
\(893\) 4.13446e8 7.16109e8i 0.0194285 0.0336511i
\(894\) 0 0
\(895\) 1.24237e10 + 2.15184e10i 0.579254 + 1.00330i
\(896\) 9.74898e8 + 1.68857e9i 0.0452774 + 0.0784227i
\(897\) 0 0
\(898\) 8.85019e8 1.53290e9i 0.0407836 0.0706392i
\(899\) −4.19580e8 −0.0192600
\(900\) 0 0
\(901\) −1.74593e9 −0.0795224
\(902\) 7.65692e9 1.32622e10i 0.347401 0.601716i
\(903\) 0 0
\(904\) −5.84609e9 1.01257e10i −0.263194 0.455865i
\(905\) 1.96924e10 + 3.41082e10i 0.883137 + 1.52964i
\(906\) 0 0
\(907\) −1.46001e10 + 2.52881e10i −0.649726 + 1.12536i 0.333463 + 0.942763i \(0.391783\pi\)
−0.983188 + 0.182594i \(0.941550\pi\)
\(908\) −1.33249e10 −0.590693
\(909\) 0 0
\(910\) −5.37810e10 −2.36583
\(911\) −6.84514e9 + 1.18561e10i −0.299963 + 0.519551i −0.976127 0.217200i \(-0.930308\pi\)
0.676164 + 0.736751i \(0.263641\pi\)
\(912\) 0 0
\(913\) 2.35884e10 + 4.08562e10i 1.02577 + 1.77669i
\(914\) 8.62193e9 + 1.49336e10i 0.373502 + 0.646924i
\(915\) 0 0
\(916\) 5.32450e9 9.22231e9i 0.228900 0.396466i
\(917\) 1.88071e10 0.805433
\(918\) 0 0
\(919\) −2.26823e10 −0.964014 −0.482007 0.876167i \(-0.660092\pi\)
−0.482007 + 0.876167i \(0.660092\pi\)
\(920\) 5.20919e9 9.02259e9i 0.220553 0.382009i
\(921\) 0 0
\(922\) −8.99792e9 1.55849e10i −0.378080 0.654854i
\(923\) 8.25222e9 + 1.42933e10i 0.345434 + 0.598309i
\(924\) 0 0
\(925\) −3.61900e10 + 6.26830e10i −1.50346 + 2.60408i
\(926\) 3.01503e10 1.24782
\(927\) 0 0
\(928\) −8.19226e8 −0.0336501
\(929\) −5.42790e9 + 9.40139e9i −0.222114 + 0.384713i −0.955450 0.295154i \(-0.904629\pi\)
0.733335 + 0.679867i \(0.237962\pi\)
\(930\) 0 0
\(931\) 3.21968e8 + 5.57665e8i 0.0130764 + 0.0226490i
\(932\) 8.47441e9 + 1.46781e10i 0.342889 + 0.593902i
\(933\) 0 0
\(934\) 4.02770e9 6.97618e9i 0.161750 0.280158i
\(935\) 1.18314e10 0.473366
\(936\) 0 0
\(937\) −2.04665e10 −0.812744 −0.406372 0.913708i \(-0.633206\pi\)
−0.406372 + 0.913708i \(0.633206\pi\)
\(938\) −1.44990e8 + 2.51130e8i −0.00573626 + 0.00993549i
\(939\) 0 0
\(940\) −8.62682e8 1.49421e9i −0.0338769 0.0586765i
\(941\) 1.49376e10 + 2.58727e10i 0.584409 + 1.01223i 0.994949 + 0.100383i \(0.0320069\pi\)
−0.410540 + 0.911843i \(0.634660\pi\)
\(942\) 0 0
\(943\) 5.03261e9 8.71674e9i 0.195435 0.338503i
\(944\) −1.21606e9 −0.0470491
\(945\) 0 0
\(946\) 1.54818e10 0.594570
\(947\) 1.51587e10 2.62557e10i 0.580013 1.00461i −0.415464 0.909610i \(-0.636381\pi\)
0.995477 0.0950029i \(-0.0302860\pi\)
\(948\) 0 0
\(949\) −1.97752e10 3.42516e10i −0.751084 1.30092i
\(950\) −1.17109e10 2.02839e10i −0.443158 0.767572i
\(951\) 0 0
\(952\) −7.27672e8 + 1.26036e9i −0.0273342 + 0.0473442i
\(953\) 1.84836e10 0.691770 0.345885 0.938277i \(-0.387579\pi\)
0.345885 + 0.938277i \(0.387579\pi\)
\(954\) 0 0
\(955\) −7.92205e10 −2.94324
\(956\) 1.64887e9 2.85593e9i 0.0610357 0.105717i
\(957\) 0 0
\(958\) −4.34355e9 7.52326e9i −0.159612 0.276456i
\(959\) 1.28846e10 + 2.23167e10i 0.471742 + 0.817081i
\(960\) 0 0
\(961\) 1.36155e10 2.35827e10i 0.494881 0.857160i
\(962\) −4.38636e10 −1.58852
\(963\) 0 0
\(964\) −8.58749e9 −0.308743
\(965\) −3.45481e10 + 5.98391e10i −1.23760 + 2.14358i
\(966\) 0 0
\(967\) 2.68223e10 + 4.64576e10i 0.953901 + 1.65221i 0.736863 + 0.676042i \(0.236306\pi\)
0.217038 + 0.976163i \(0.430360\pi\)
\(968\) 9.53784e9 + 1.65200e10i 0.337976 + 0.585392i
\(969\) 0 0
\(970\) −1.34731e10 + 2.33361e10i −0.473987 + 0.820970i
\(971\) 1.49741e10 0.524895 0.262447 0.964946i \(-0.415470\pi\)
0.262447 + 0.964946i \(0.415470\pi\)
\(972\) 0 0
\(973\) −5.13879e10 −1.78841
\(974\) −1.16344e10 + 2.01514e10i −0.403449 + 0.698795i
\(975\) 0 0
\(976\) 2.85378e9 + 4.94289e9i 0.0982531 + 0.170179i
\(977\) 1.22943e10 + 2.12944e10i 0.421769 + 0.730525i 0.996113 0.0880893i \(-0.0280761\pi\)
−0.574344 + 0.818614i \(0.694743\pi\)
\(978\) 0 0
\(979\) 1.88995e10 3.27350e10i 0.643742 1.11499i
\(980\) 1.34362e9 0.0456020
\(981\) 0 0
\(982\) 3.34899e10 1.12856
\(983\) −1.52926e10 + 2.64875e10i −0.513503 + 0.889413i 0.486375 + 0.873750i \(0.338319\pi\)
−0.999877 + 0.0156623i \(0.995014\pi\)
\(984\) 0 0
\(985\) −3.16793e10 5.48702e10i −1.05621 1.82940i
\(986\) −3.05739e8 5.29555e8i −0.0101574 0.0175931i
\(987\) 0 0
\(988\) 7.09703e9 1.22924e10i 0.234114 0.405497i
\(989\) 1.01756e10 0.334483
\(990\) 0 0
\(991\) 5.03888e10 1.64466 0.822330 0.569010i \(-0.192674\pi\)
0.822330 + 0.569010i \(0.192674\pi\)
\(992\) −2.74967e8 + 4.76257e8i −0.00894314 + 0.0154900i
\(993\) 0 0
\(994\) −4.36095e9 7.55338e9i −0.140841 0.243943i
\(995\) −3.25863e10 5.64412e10i −1.04871 1.81642i
\(996\) 0 0
\(997\) 1.54996e8 2.68461e8i 0.00495322 0.00857923i −0.863538 0.504283i \(-0.831757\pi\)
0.868491 + 0.495704i \(0.165090\pi\)
\(998\) −3.00744e10 −0.957724
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.p.55.1 4
3.2 odd 2 162.8.c.m.55.2 4
9.2 odd 6 54.8.a.h.1.1 yes 2
9.4 even 3 inner 162.8.c.p.109.1 4
9.5 odd 6 162.8.c.m.109.2 4
9.7 even 3 54.8.a.g.1.2 2
36.7 odd 6 432.8.a.p.1.2 2
36.11 even 6 432.8.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.8.a.g.1.2 2 9.7 even 3
54.8.a.h.1.1 yes 2 9.2 odd 6
162.8.c.m.55.2 4 3.2 odd 2
162.8.c.m.109.2 4 9.5 odd 6
162.8.c.p.55.1 4 1.1 even 1 trivial
162.8.c.p.109.1 4 9.4 even 3 inner
432.8.a.k.1.1 2 36.11 even 6
432.8.a.p.1.2 2 36.7 odd 6