Properties

Label 1620.1.bf.b.1099.1
Level $1620$
Weight $1$
Character 1620.1099
Analytic conductor $0.808$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,1,Mod(19,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 16, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1620.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.808485320465\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 540)
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.5020969537440000.1

Embedding invariants

Embedding label 1099.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 1620.1099
Dual form 1620.1.bf.b.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 + 0.642788i) q^{2} +(0.173648 + 0.984808i) q^{4} +(0.939693 + 0.342020i) q^{5} +(0.326352 - 1.85083i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(0.500000 + 0.866025i) q^{10} +(1.43969 - 1.20805i) q^{14} +(-0.939693 + 0.342020i) q^{16} +(-0.173648 + 0.984808i) q^{20} +(0.0603074 + 0.342020i) q^{23} +(0.766044 + 0.642788i) q^{25} +1.87939 q^{28} +(-0.266044 - 0.223238i) q^{29} +(-0.939693 - 0.342020i) q^{32} +(0.939693 - 1.62760i) q^{35} +(-0.766044 + 0.642788i) q^{40} +(-1.17365 + 0.984808i) q^{41} +(-0.939693 + 0.342020i) q^{43} +(-0.173648 + 0.300767i) q^{46} +(0.266044 - 1.50881i) q^{47} +(-2.37939 - 0.866025i) q^{49} +(0.173648 + 0.984808i) q^{50} +(1.43969 + 1.20805i) q^{56} +(-0.0603074 - 0.342020i) q^{58} +(-0.326352 + 1.85083i) q^{61} +(-0.500000 - 0.866025i) q^{64} +(-1.17365 + 0.984808i) q^{67} +(1.76604 - 0.642788i) q^{70} -1.00000 q^{80} -1.53209 q^{82} +(1.17365 + 0.984808i) q^{83} +(-0.939693 - 0.342020i) q^{86} +(0.766044 - 1.32683i) q^{89} +(-0.326352 + 0.118782i) q^{92} +(1.17365 - 0.984808i) q^{94} +(-1.26604 - 2.19285i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{7} - 3 q^{8} + 3 q^{10} + 3 q^{14} + 6 q^{23} + 3 q^{29} - 6 q^{41} - 3 q^{47} - 3 q^{49} + 3 q^{56} - 6 q^{58} - 3 q^{61} - 3 q^{64} - 6 q^{67} + 6 q^{70} - 6 q^{80} + 6 q^{83} - 3 q^{92} + 6 q^{94}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(3\) 0 0
\(4\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(5\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(6\) 0 0
\(7\) 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(8\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(9\) 0 0
\(10\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(11\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(12\) 0 0
\(13\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(14\) 1.43969 1.20805i 1.43969 1.20805i
\(15\) 0 0
\(16\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0 0
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(21\) 0 0
\(22\) 0 0
\(23\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(24\) 0 0
\(25\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(26\) 0 0
\(27\) 0 0
\(28\) 1.87939 1.87939
\(29\) −0.266044 0.223238i −0.266044 0.223238i 0.500000 0.866025i \(-0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(30\) 0 0
\(31\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(32\) −0.939693 0.342020i −0.939693 0.342020i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.939693 1.62760i 0.939693 1.62760i
\(36\) 0 0
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(41\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(47\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(48\) 0 0
\(49\) −2.37939 0.866025i −2.37939 0.866025i
\(50\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(57\) 0 0
\(58\) −0.0603074 0.342020i −0.0603074 0.342020i
\(59\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(60\) 0 0
\(61\) −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i \(0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.500000 0.866025i −0.500000 0.866025i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.76604 0.642788i 1.76604 0.642788i
\(71\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) 0 0
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(80\) −1.00000 −1.00000
\(81\) 0 0
\(82\) −1.53209 −1.53209
\(83\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.939693 0.342020i −0.939693 0.342020i
\(87\) 0 0
\(88\) 0 0
\(89\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(93\) 0 0
\(94\) 1.17365 0.984808i 1.17365 0.984808i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(98\) −1.26604 2.19285i −1.26604 2.19285i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(101\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(102\) 0 0
\(103\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(108\) 0 0
\(109\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(113\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(114\) 0 0
\(115\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(116\) 0.173648 0.300767i 0.173648 0.300767i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.766044 0.642788i 0.766044 0.642788i
\(122\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(126\) 0 0
\(127\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(128\) 0.173648 0.984808i 0.173648 0.984808i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.53209 −1.53209
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(138\) 0 0
\(139\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(140\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.173648 0.300767i −0.173648 0.300767i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.766044 0.642788i −0.766044 0.642788i
\(161\) 0.652704 0.652704
\(162\) 0 0
\(163\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) −1.17365 0.984808i −1.17365 0.984808i
\(165\) 0 0
\(166\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(167\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0 0
\(169\) 0.173648 0.984808i 0.173648 0.984808i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.500000 0.866025i −0.500000 0.866025i
\(173\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(174\) 0 0
\(175\) 1.43969 1.20805i 1.43969 1.20805i
\(176\) 0 0
\(177\) 0 0
\(178\) 1.43969 0.524005i 1.43969 0.524005i
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.326352 0.118782i −0.326352 0.118782i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.53209 1.53209
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(192\) 0 0
\(193\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.439693 2.49362i 0.439693 2.49362i
\(197\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(201\) 0 0
\(202\) 0.766044 0.642788i 0.766044 0.642788i
\(203\) −0.500000 + 0.419550i −0.500000 + 0.419550i
\(204\) 0 0
\(205\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(206\) −0.500000 0.866025i −0.500000 0.866025i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.43969 1.20805i −1.43969 1.20805i
\(215\) −1.00000 −1.00000
\(216\) 0 0
\(217\) 0 0
\(218\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(224\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(225\) 0 0
\(226\) 0 0
\(227\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(228\) 0 0
\(229\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(230\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(231\) 0 0
\(232\) 0.326352 0.118782i 0.326352 0.118782i
\(233\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) 0.766044 1.32683i 0.766044 1.32683i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(240\) 0 0
\(241\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(242\) 1.00000 1.00000
\(243\) 0 0
\(244\) −1.87939 −1.87939
\(245\) −1.93969 1.62760i −1.93969 1.62760i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(251\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.326352 0.118782i 0.326352 0.118782i
\(255\) 0 0
\(256\) 0.766044 0.642788i 0.766044 0.642788i
\(257\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.17365 0.984808i −1.17365 0.984808i
\(269\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(281\) −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i \(0.777778\pi\)
−1.00000 \(1.00000\pi\)
\(282\) 0 0
\(283\) −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(288\) 0 0
\(289\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(290\) 0.0603074 0.342020i 0.0603074 0.342020i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −0.347296 −0.347296
\(299\) 0 0
\(300\) 0 0
\(301\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(306\) 0 0
\(307\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(312\) 0 0
\(313\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.173648 0.984808i −0.173648 0.984808i
\(321\) 0 0
\(322\) 0.500000 + 0.419550i 0.500000 + 0.419550i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(327\) 0 0
\(328\) −0.266044 1.50881i −0.266044 1.50881i
\(329\) −2.70574 0.984808i −2.70574 0.984808i
\(330\) 0 0
\(331\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(332\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(333\) 0 0
\(334\) −0.173648 0.300767i −0.173648 0.300767i
\(335\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(336\) 0 0
\(337\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(338\) 0.766044 0.642788i 0.766044 0.642788i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(344\) 0.173648 0.984808i 0.173648 0.984808i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(348\) 0 0
\(349\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(350\) 1.87939 1.87939
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 1.76604 0.642788i 1.76604 0.642788i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.87939 0.684040i 1.87939 0.684040i 0.939693 0.342020i \(-0.111111\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(368\) −0.173648 0.300767i −0.173648 0.300767i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.43969 0.524005i 1.43969 0.524005i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.93969 1.62760i 1.93969 1.62760i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.939693 0.342020i −0.939693 0.342020i
\(401\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.00000 1.00000
\(405\) 0 0
\(406\) −0.652704 −0.652704
\(407\) 0 0
\(408\) 0 0
\(409\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(410\) −1.43969 0.524005i −1.43969 0.524005i
\(411\) 0 0
\(412\) 0.173648 0.984808i 0.173648 0.984808i
\(413\) 0 0
\(414\) 0 0
\(415\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(420\) 0 0
\(421\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.31908 + 1.20805i 3.31908 + 1.20805i
\(428\) −0.326352 1.85083i −0.326352 1.85083i
\(429\) 0 0
\(430\) −0.766044 0.642788i −0.766044 0.642788i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 1.17365 0.984808i 1.17365 0.984808i
\(446\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(447\) 0 0
\(448\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(449\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(458\) 0.347296 0.347296
\(459\) 0 0
\(460\) −0.347296 −0.347296
\(461\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 0 0
\(463\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(464\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(465\) 0 0
\(466\) 0 0
\(467\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(468\) 0 0
\(469\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(470\) 1.43969 0.524005i 1.43969 0.524005i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.326352 1.85083i −0.326352 1.85083i
\(483\) 0 0
\(484\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(485\) 0 0
\(486\) 0 0
\(487\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(488\) −1.43969 1.20805i −1.43969 1.20805i
\(489\) 0 0
\(490\) −0.439693 2.49362i −0.439693 2.49362i
\(491\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(500\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(501\) 0 0
\(502\) 0 0
\(503\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(504\) 0 0
\(505\) 0.500000 0.866025i 0.500000 0.866025i
\(506\) 0 0
\(507\) 0 0
\(508\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(509\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) −0.766044 0.642788i −0.766044 0.642788i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(522\) 0 0
\(523\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(527\) 0 0
\(528\) 0 0
\(529\) 0.826352 0.300767i 0.826352 0.300767i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.76604 0.642788i −1.76604 0.642788i
\(536\) −0.266044 1.50881i −0.266044 1.50881i
\(537\) 0 0
\(538\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(546\) 0 0
\(547\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(561\) 0 0
\(562\) −1.76604 0.642788i −1.76604 0.642788i
\(563\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.347296 −0.347296
\(567\) 0 0
\(568\) 0 0
\(569\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(570\) 0 0
\(571\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(575\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(576\) 0 0
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(579\) 0 0
\(580\) 0.266044 0.223238i 0.266044 0.223238i
\(581\) 2.20574 1.85083i 2.20574 1.85083i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i \(0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.266044 0.223238i −0.266044 0.223238i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(600\) 0 0
\(601\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(602\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(603\) 0 0
\(604\) 0 0
\(605\) 0.939693 0.342020i 0.939693 0.342020i
\(606\) 0 0
\(607\) −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(618\) 0 0
\(619\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.20574 1.85083i −2.20574 1.85083i
\(624\) 0 0
\(625\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.266044 0.223238i 0.266044 0.223238i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.500000 0.866025i 0.500000 0.866025i
\(641\) 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(642\) 0 0
\(643\) 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(644\) 0.113341 + 0.642788i 0.113341 + 0.642788i
\(645\) 0 0
\(646\) 0 0
\(647\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(653\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.766044 1.32683i 0.766044 1.32683i
\(657\) 0 0
\(658\) −1.43969 2.49362i −1.43969 2.49362i
\(659\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(660\) 0 0
\(661\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.0603074 0.104455i 0.0603074 0.104455i
\(668\) 0.0603074 0.342020i 0.0603074 0.342020i
\(669\) 0 0
\(670\) −1.43969 0.524005i −1.43969 0.524005i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 1.00000 1.00000
\(677\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(684\) 0 0
\(685\) 0 0
\(686\) −2.70574 + 0.984808i −2.70574 + 0.984808i
\(687\) 0 0
\(688\) 0.766044 0.642788i 0.766044 0.642788i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.500000 0.866025i 0.500000 0.866025i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(699\) 0 0
\(700\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(701\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.76604 0.642788i −1.76604 0.642788i
\(708\) 0 0
\(709\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(722\) 0.173648 0.984808i 0.173648 0.984808i
\(723\) 0 0
\(724\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(725\) −0.0603074 0.342020i −0.0603074 0.342020i
\(726\) 0 0
\(727\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(734\) 1.87939 + 0.684040i 1.87939 + 0.684040i
\(735\) 0 0
\(736\) 0.0603074 0.342020i 0.0603074 0.342020i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(744\) 0 0
\(745\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.613341 + 3.47843i −0.613341 + 3.47843i
\(750\) 0 0
\(751\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(752\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) 0.113341 0.642788i 0.113341 0.642788i
\(764\) 0 0
\(765\) 0 0
\(766\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(767\) 0 0
\(768\) 0 0
\(769\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 2.53209 2.53209
\(785\) 0 0
\(786\) 0 0
\(787\) −0.347296 1.96962i −0.347296 1.96962i −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.500000 0.866025i −0.500000 0.866025i
\(801\) 0 0
\(802\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(803\) 0 0
\(804\) 0 0
\(805\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(806\) 0 0
\(807\) 0 0
\(808\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(809\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −0.500000 0.419550i −0.500000 0.419550i
\(813\) 0 0
\(814\) 0 0
\(815\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(816\) 0 0
\(817\) 0 0
\(818\) 0.500000 0.866025i 0.500000 0.866025i
\(819\) 0 0
\(820\) −0.766044 1.32683i −0.766044 1.32683i
\(821\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0 0
\(823\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(824\) 0.766044 0.642788i 0.766044 0.642788i
\(825\) 0 0
\(826\) 0 0
\(827\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(828\) 0 0
\(829\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(830\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −0.266044 0.223238i −0.266044 0.223238i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(840\) 0 0
\(841\) −0.152704 0.866025i −0.152704 0.866025i
\(842\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(843\) 0 0
\(844\) 0 0
\(845\) 0.500000 0.866025i 0.500000 0.866025i
\(846\) 0 0
\(847\) −0.939693 1.62760i −0.939693 1.62760i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(854\) 1.76604 + 3.05888i 1.76604 + 3.05888i
\(855\) 0 0
\(856\) 0.939693 1.62760i 0.939693 1.62760i
\(857\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(858\) 0 0
\(859\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(860\) −0.173648 0.984808i −0.173648 0.984808i
\(861\) 0 0
\(862\) 0 0
\(863\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(873\) 0 0
\(874\) 0 0
\(875\) 1.76604 0.642788i 1.76604 0.642788i
\(876\) 0 0
\(877\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(882\) 0 0
\(883\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.43969 0.524005i −1.43969 0.524005i
\(887\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(888\) 0 0
\(889\) −0.500000 0.419550i −0.500000 0.419550i
\(890\) 1.53209 1.53209
\(891\) 0 0
\(892\) −1.53209 −1.53209
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.76604 0.642788i −1.76604 0.642788i
\(897\) 0 0
\(898\) 0.173648 0.984808i 0.173648 0.984808i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.43969 1.20805i 1.43969 1.20805i
\(906\) 0 0
\(907\) −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i \(0.777778\pi\)
−1.00000 \(1.00000\pi\)
\(908\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) −0.266044 0.223238i −0.266044 0.223238i
\(921\) 0 0
\(922\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(927\) 0 0
\(928\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(929\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0.939693 0.342020i 0.939693 0.342020i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(939\) 0 0
\(940\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(941\) −0.266044 1.50881i −0.266044 1.50881i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(942\) 0 0
\(943\) −0.407604 0.342020i −0.407604 0.342020i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(962\) 0 0
\(963\) 0 0
\(964\) 0.939693 1.62760i 0.939693 1.62760i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(968\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.53209 1.28558i −1.53209 1.28558i
\(975\) 0 0
\(976\) −0.326352 1.85083i −0.326352 1.85083i
\(977\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.26604 2.19285i 1.26604 2.19285i
\(981\) 0 0
\(982\) 0 0
\(983\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.173648 0.300767i −0.173648 0.300767i
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.1.bf.b.1099.1 6
3.2 odd 2 540.1.bf.b.259.1 yes 6
4.3 odd 2 1620.1.bf.a.1099.1 6
5.4 even 2 1620.1.bf.a.1099.1 6
12.11 even 2 540.1.bf.a.259.1 6
15.2 even 4 2700.1.bj.a.151.2 12
15.8 even 4 2700.1.bj.a.151.1 12
15.14 odd 2 540.1.bf.a.259.1 6
20.19 odd 2 CM 1620.1.bf.b.1099.1 6
27.5 odd 18 540.1.bf.b.319.1 yes 6
27.22 even 9 inner 1620.1.bf.b.199.1 6
60.23 odd 4 2700.1.bj.a.151.2 12
60.47 odd 4 2700.1.bj.a.151.1 12
60.59 even 2 540.1.bf.b.259.1 yes 6
108.59 even 18 540.1.bf.a.319.1 yes 6
108.103 odd 18 1620.1.bf.a.199.1 6
135.32 even 36 2700.1.bj.a.751.1 12
135.49 even 18 1620.1.bf.a.199.1 6
135.59 odd 18 540.1.bf.a.319.1 yes 6
135.113 even 36 2700.1.bj.a.751.2 12
540.59 even 18 540.1.bf.b.319.1 yes 6
540.167 odd 36 2700.1.bj.a.751.2 12
540.319 odd 18 inner 1620.1.bf.b.199.1 6
540.383 odd 36 2700.1.bj.a.751.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
540.1.bf.a.259.1 6 12.11 even 2
540.1.bf.a.259.1 6 15.14 odd 2
540.1.bf.a.319.1 yes 6 108.59 even 18
540.1.bf.a.319.1 yes 6 135.59 odd 18
540.1.bf.b.259.1 yes 6 3.2 odd 2
540.1.bf.b.259.1 yes 6 60.59 even 2
540.1.bf.b.319.1 yes 6 27.5 odd 18
540.1.bf.b.319.1 yes 6 540.59 even 18
1620.1.bf.a.199.1 6 108.103 odd 18
1620.1.bf.a.199.1 6 135.49 even 18
1620.1.bf.a.1099.1 6 4.3 odd 2
1620.1.bf.a.1099.1 6 5.4 even 2
1620.1.bf.b.199.1 6 27.22 even 9 inner
1620.1.bf.b.199.1 6 540.319 odd 18 inner
1620.1.bf.b.1099.1 6 1.1 even 1 trivial
1620.1.bf.b.1099.1 6 20.19 odd 2 CM
2700.1.bj.a.151.1 12 15.8 even 4
2700.1.bj.a.151.1 12 60.47 odd 4
2700.1.bj.a.151.2 12 15.2 even 4
2700.1.bj.a.151.2 12 60.23 odd 4
2700.1.bj.a.751.1 12 135.32 even 36
2700.1.bj.a.751.1 12 540.383 odd 36
2700.1.bj.a.751.2 12 135.113 even 36
2700.1.bj.a.751.2 12 540.167 odd 36