Properties

Label 2700.1.bj.a.151.1
Level 27002700
Weight 11
Character 2700.151
Analytic conductor 1.3471.347
Analytic rank 00
Dimension 1212
Projective image D9D_{9}
CM discriminant -20
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,1,Mod(151,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 4, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.151");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2700=223352 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2700.bj (of order 1818, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.347475534111.34747553411
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: Q(ζ36)\Q(\zeta_{36})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 540)
Projective image: D9D_{9}
Projective field: Galois closure of 9.1.5020969537440000.1

Embedding invariants

Embedding label 151.1
Root 0.342020+0.939693i-0.342020 + 0.939693i of defining polynomial
Character χ\chi == 2700.151
Dual form 2700.1.bj.a.751.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.642788+0.766044i)q2+(0.342020+0.939693i)q3+(0.1736480.984808i)q4+(0.5000000.866025i)q6+(1.850830.326352i)q7+(0.866025+0.500000i)q8+(0.7660440.642788i)q9+(0.984808+0.173648i)q12+(1.439691.20805i)q14+(0.939693+0.342020i)q16+(0.9848080.173648i)q18+(0.9396931.62760i)q21+(0.3420200.0603074i)q23+(0.766044+0.642788i)q24+(0.8660250.500000i)q27+1.87939iq28+(0.2660440.223238i)q29+(0.3420200.939693i)q32+(0.500000+0.866025i)q36+(1.173650.984808i)q41+(0.642788+1.76604i)q42+(0.3420200.939693i)q43+(0.173648+0.300767i)q46+(1.50881+0.266044i)q471.00000iq48+(2.37939+0.866025i)q49+(0.173648+0.984808i)q54+(1.439691.20805i)q56+(0.3420200.0603074i)q58+(0.326352+1.85083i)q61+(1.20805+1.43969i)q63+(0.500000+0.866025i)q64+(0.984808+1.17365i)q67+(0.0603074+0.342020i)q69+(0.3420200.939693i)q72+(0.173648+0.984808i)q81+1.53209iq82+(0.9848081.17365i)q83+(1.766040.642788i)q84+(0.939693+0.342020i)q86+(0.3007670.173648i)q87+(0.7660441.32683i)q89+(0.1187820.326352i)q92+(1.17365+0.984808i)q94+(0.766044+0.642788i)q96+(2.19285+1.26604i)q98+O(q100)q+(-0.642788 + 0.766044i) q^{2} +(-0.342020 + 0.939693i) q^{3} +(-0.173648 - 0.984808i) q^{4} +(-0.500000 - 0.866025i) q^{6} +(-1.85083 - 0.326352i) q^{7} +(0.866025 + 0.500000i) q^{8} +(-0.766044 - 0.642788i) q^{9} +(0.984808 + 0.173648i) q^{12} +(1.43969 - 1.20805i) q^{14} +(-0.939693 + 0.342020i) q^{16} +(0.984808 - 0.173648i) q^{18} +(0.939693 - 1.62760i) q^{21} +(0.342020 - 0.0603074i) q^{23} +(-0.766044 + 0.642788i) q^{24} +(0.866025 - 0.500000i) q^{27} +1.87939i q^{28} +(-0.266044 - 0.223238i) q^{29} +(0.342020 - 0.939693i) q^{32} +(-0.500000 + 0.866025i) q^{36} +(1.17365 - 0.984808i) q^{41} +(0.642788 + 1.76604i) q^{42} +(-0.342020 - 0.939693i) q^{43} +(-0.173648 + 0.300767i) q^{46} +(1.50881 + 0.266044i) q^{47} -1.00000i q^{48} +(2.37939 + 0.866025i) q^{49} +(-0.173648 + 0.984808i) q^{54} +(-1.43969 - 1.20805i) q^{56} +(0.342020 - 0.0603074i) q^{58} +(-0.326352 + 1.85083i) q^{61} +(1.20805 + 1.43969i) q^{63} +(0.500000 + 0.866025i) q^{64} +(0.984808 + 1.17365i) q^{67} +(-0.0603074 + 0.342020i) q^{69} +(-0.342020 - 0.939693i) q^{72} +(0.173648 + 0.984808i) q^{81} +1.53209i q^{82} +(0.984808 - 1.17365i) q^{83} +(-1.76604 - 0.642788i) q^{84} +(0.939693 + 0.342020i) q^{86} +(0.300767 - 0.173648i) q^{87} +(0.766044 - 1.32683i) q^{89} +(-0.118782 - 0.326352i) q^{92} +(-1.17365 + 0.984808i) q^{94} +(0.766044 + 0.642788i) q^{96} +(-2.19285 + 1.26604i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q6q6+6q14+6q296q36+12q41+6q496q566q61+6q6412q6912q8412q94+O(q100) 12 q - 6 q^{6} + 6 q^{14} + 6 q^{29} - 6 q^{36} + 12 q^{41} + 6 q^{49} - 6 q^{56} - 6 q^{61} + 6 q^{64} - 12 q^{69} - 12 q^{84} - 12 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2700Z)×\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times.

nn 10011001 13511351 23772377
χ(n)\chi(n) e(29)e\left(\frac{2}{9}\right) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.642788 + 0.766044i −0.642788 + 0.766044i
33 −0.342020 + 0.939693i −0.342020 + 0.939693i
44 −0.173648 0.984808i −0.173648 0.984808i
55 0 0
66 −0.500000 0.866025i −0.500000 0.866025i
77 −1.85083 0.326352i −1.85083 0.326352i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
88 0.866025 + 0.500000i 0.866025 + 0.500000i
99 −0.766044 0.642788i −0.766044 0.642788i
1010 0 0
1111 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
1212 0.984808 + 0.173648i 0.984808 + 0.173648i
1313 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
1414 1.43969 1.20805i 1.43969 1.20805i
1515 0 0
1616 −0.939693 + 0.342020i −0.939693 + 0.342020i
1717 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1818 0.984808 0.173648i 0.984808 0.173648i
1919 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2020 0 0
2121 0.939693 1.62760i 0.939693 1.62760i
2222 0 0
2323 0.342020 0.0603074i 0.342020 0.0603074i 1.00000i 0.5π-0.5\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
2424 −0.766044 + 0.642788i −0.766044 + 0.642788i
2525 0 0
2626 0 0
2727 0.866025 0.500000i 0.866025 0.500000i
2828 1.87939i 1.87939i
2929 −0.266044 0.223238i −0.266044 0.223238i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
3030 0 0
3131 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
3232 0.342020 0.939693i 0.342020 0.939693i
3333 0 0
3434 0 0
3535 0 0
3636 −0.500000 + 0.866025i −0.500000 + 0.866025i
3737 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
3838 0 0
3939 0 0
4040 0 0
4141 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i 0.444444π-0.444444\pi
1.00000 00
4242 0.642788 + 1.76604i 0.642788 + 1.76604i
4343 −0.342020 0.939693i −0.342020 0.939693i −0.984808 0.173648i 0.944444π-0.944444\pi
0.642788 0.766044i 0.277778π-0.277778\pi
4444 0 0
4545 0 0
4646 −0.173648 + 0.300767i −0.173648 + 0.300767i
4747 1.50881 + 0.266044i 1.50881 + 0.266044i 0.866025 0.500000i 0.166667π-0.166667\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
4848 1.00000i 1.00000i
4949 2.37939 + 0.866025i 2.37939 + 0.866025i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 −0.173648 + 0.984808i −0.173648 + 0.984808i
5555 0 0
5656 −1.43969 1.20805i −1.43969 1.20805i
5757 0 0
5858 0.342020 0.0603074i 0.342020 0.0603074i
5959 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
6060 0 0
6161 −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6262 0 0
6363 1.20805 + 1.43969i 1.20805 + 1.43969i
6464 0.500000 + 0.866025i 0.500000 + 0.866025i
6565 0 0
6666 0 0
6767 0.984808 + 1.17365i 0.984808 + 1.17365i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 −0.0603074 + 0.342020i −0.0603074 + 0.342020i
7070 0 0
7171 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7272 −0.342020 0.939693i −0.342020 0.939693i
7373 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
8080 0 0
8181 0.173648 + 0.984808i 0.173648 + 0.984808i
8282 1.53209i 1.53209i
8383 0.984808 1.17365i 0.984808 1.17365i 1.00000i 0.5π-0.5\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
8484 −1.76604 0.642788i −1.76604 0.642788i
8585 0 0
8686 0.939693 + 0.342020i 0.939693 + 0.342020i
8787 0.300767 0.173648i 0.300767 0.173648i
8888 0 0
8989 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
9090 0 0
9191 0 0
9292 −0.118782 0.326352i −0.118782 0.326352i
9393 0 0
9494 −1.17365 + 0.984808i −1.17365 + 0.984808i
9595 0 0
9696 0.766044 + 0.642788i 0.766044 + 0.642788i
9797 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
9898 −2.19285 + 1.26604i −2.19285 + 1.26604i
9999 0 0
100100 0 0
101101 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
102102 0 0
103103 0.342020 0.939693i 0.342020 0.939693i −0.642788 0.766044i 0.722222π-0.722222\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
104104 0 0
105105 0 0
106106 0 0
107107 1.87939i 1.87939i −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 0.939693i 0.388889π-0.388889\pi
108108 −0.642788 0.766044i −0.642788 0.766044i
109109 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
110110 0 0
111111 0 0
112112 1.85083 0.326352i 1.85083 0.326352i
113113 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
114114 0 0
115115 0 0
116116 −0.173648 + 0.300767i −0.173648 + 0.300767i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0.766044 0.642788i 0.766044 0.642788i
122122 −1.20805 1.43969i −1.20805 1.43969i
123123 0.524005 + 1.43969i 0.524005 + 1.43969i
124124 0 0
125125 0 0
126126 −1.87939 −1.87939
127127 −0.300767 0.173648i −0.300767 0.173648i 0.342020 0.939693i 0.388889π-0.388889\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
128128 −0.984808 0.173648i −0.984808 0.173648i
129129 1.00000 1.00000
130130 0 0
131131 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
132132 0 0
133133 0 0
134134 −1.53209 −1.53209
135135 0 0
136136 0 0
137137 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
138138 −0.223238 0.266044i −0.223238 0.266044i
139139 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
140140 0 0
141141 −0.766044 + 1.32683i −0.766044 + 1.32683i
142142 0 0
143143 0 0
144144 0.939693 + 0.342020i 0.939693 + 0.342020i
145145 0 0
146146 0 0
147147 −1.62760 + 1.93969i −1.62760 + 1.93969i
148148 0 0
149149 −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i 0.777778π-0.777778\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
150150 0 0
151151 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
158158 0 0
159159 0 0
160160 0 0
161161 −0.652704 −0.652704
162162 −0.866025 0.500000i −0.866025 0.500000i
163163 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
164164 −1.17365 0.984808i −1.17365 0.984808i
165165 0 0
166166 0.266044 + 1.50881i 0.266044 + 1.50881i
167167 0.118782 0.326352i 0.118782 0.326352i −0.866025 0.500000i 0.833333π-0.833333\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
168168 1.62760 0.939693i 1.62760 0.939693i
169169 −0.173648 + 0.984808i −0.173648 + 0.984808i
170170 0 0
171171 0 0
172172 −0.866025 + 0.500000i −0.866025 + 0.500000i
173173 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
174174 −0.0603074 + 0.342020i −0.0603074 + 0.342020i
175175 0 0
176176 0 0
177177 0 0
178178 0.524005 + 1.43969i 0.524005 + 1.43969i
179179 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
180180 0 0
181181 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 0.642788i 0.222222π-0.222222\pi
182182 0 0
183183 −1.62760 0.939693i −1.62760 0.939693i
184184 0.326352 + 0.118782i 0.326352 + 0.118782i
185185 0 0
186186 0 0
187187 0 0
188188 1.53209i 1.53209i
189189 −1.76604 + 0.642788i −1.76604 + 0.642788i
190190 0 0
191191 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
192192 −0.984808 + 0.173648i −0.984808 + 0.173648i
193193 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
194194 0 0
195195 0 0
196196 0.439693 2.49362i 0.439693 2.49362i
197197 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
198198 0 0
199199 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0 0
201201 −1.43969 + 0.524005i −1.43969 + 0.524005i
202202 −0.642788 0.766044i −0.642788 0.766044i
203203 0.419550 + 0.500000i 0.419550 + 0.500000i
204204 0 0
205205 0 0
206206 0.500000 + 0.866025i 0.500000 + 0.866025i
207207 −0.300767 0.173648i −0.300767 0.173648i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
212212 0 0
213213 0 0
214214 1.43969 + 1.20805i 1.43969 + 1.20805i
215215 0 0
216216 1.00000 1.00000
217217 0 0
218218 0.223238 0.266044i 0.223238 0.266044i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 −1.50881 0.266044i −1.50881 0.266044i −0.642788 0.766044i 0.722222π-0.722222\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
224224 −0.939693 + 1.62760i −0.939693 + 1.62760i
225225 0 0
226226 0 0
227227 0.342020 + 0.939693i 0.342020 + 0.939693i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
228228 0 0
229229 −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i 0.777778π-0.777778\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 0 0
232232 −0.118782 0.326352i −0.118782 0.326352i
233233 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
240240 0 0
241241 −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
242242 1.00000i 1.00000i
243243 −0.984808 0.173648i −0.984808 0.173648i
244244 1.87939 1.87939
245245 0 0
246246 −1.43969 0.524005i −1.43969 0.524005i
247247 0 0
248248 0 0
249249 0.766044 + 1.32683i 0.766044 + 1.32683i
250250 0 0
251251 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 1.20805 1.43969i 1.20805 1.43969i
253253 0 0
254254 0.326352 0.118782i 0.326352 0.118782i
255255 0 0
256256 0.766044 0.642788i 0.766044 0.642788i
257257 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
258258 −0.642788 + 0.766044i −0.642788 + 0.766044i
259259 0 0
260260 0 0
261261 0.0603074 + 0.342020i 0.0603074 + 0.342020i
262262 0 0
263263 0.984808 + 0.173648i 0.984808 + 0.173648i 0.642788 0.766044i 0.277778π-0.277778\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
264264 0 0
265265 0 0
266266 0 0
267267 0.984808 + 1.17365i 0.984808 + 1.17365i
268268 0.984808 1.17365i 0.984808 1.17365i
269269 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0.347296 0.347296
277277 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
278278 0 0
279279 0 0
280280 0 0
281281 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i 0.222222π-0.222222\pi
1.00000 00
282282 −0.524005 1.43969i −0.524005 1.43969i
283283 −0.223238 0.266044i −0.223238 0.266044i 0.642788 0.766044i 0.277778π-0.277778\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
284284 0 0
285285 0 0
286286 0 0
287287 −2.49362 + 1.43969i −2.49362 + 1.43969i
288288 −0.866025 + 0.500000i −0.866025 + 0.500000i
289289 0.500000 0.866025i 0.500000 0.866025i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
294294 −0.439693 2.49362i −0.439693 2.49362i
295295 0 0
296296 0 0
297297 0 0
298298 0.347296i 0.347296i
299299 0 0
300300 0 0
301301 0.326352 + 1.85083i 0.326352 + 1.85083i
302302 0 0
303303 −0.866025 0.500000i −0.866025 0.500000i
304304 0 0
305305 0 0
306306 0 0
307307 0.300767 0.173648i 0.300767 0.173648i −0.342020 0.939693i 0.611111π-0.611111\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
308308 0 0
309309 0.766044 + 0.642788i 0.766044 + 0.642788i
310310 0 0
311311 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
312312 0 0
313313 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
318318 0 0
319319 0 0
320320 0 0
321321 1.76604 + 0.642788i 1.76604 + 0.642788i
322322 0.419550 0.500000i 0.419550 0.500000i
323323 0 0
324324 0.939693 0.342020i 0.939693 0.342020i
325325 0 0
326326 −0.766044 0.642788i −0.766044 0.642788i
327327 0.118782 0.326352i 0.118782 0.326352i
328328 1.50881 0.266044i 1.50881 0.266044i
329329 −2.70574 0.984808i −2.70574 0.984808i
330330 0 0
331331 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
332332 −1.32683 0.766044i −1.32683 0.766044i
333333 0 0
334334 0.173648 + 0.300767i 0.173648 + 0.300767i
335335 0 0
336336 −0.326352 + 1.85083i −0.326352 + 1.85083i
337337 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
338338 −0.642788 0.766044i −0.642788 0.766044i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −2.49362 1.43969i −2.49362 1.43969i
344344 0.173648 0.984808i 0.173648 0.984808i
345345 0 0
346346 0 0
347347 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i 0.388889π-0.388889\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
348348 −0.223238 0.266044i −0.223238 0.266044i
349349 −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i 0.555556π-0.555556\pi
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
354354 0 0
355355 0 0
356356 −1.43969 0.524005i −1.43969 0.524005i
357357 0 0
358358 0 0
359359 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 −0.500000 0.866025i −0.500000 0.866025i
362362 0.642788 + 1.76604i 0.642788 + 1.76604i
363363 0.342020 + 0.939693i 0.342020 + 0.939693i
364364 0 0
365365 0 0
366366 1.76604 0.642788i 1.76604 0.642788i
367367 −0.684040 1.87939i −0.684040 1.87939i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.342020 0.939693i 0.611111π-0.611111\pi
368368 −0.300767 + 0.173648i −0.300767 + 0.173648i
369369 −1.53209 −1.53209
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
374374 0 0
375375 0 0
376376 1.17365 + 0.984808i 1.17365 + 0.984808i
377377 0 0
378378 0.642788 1.76604i 0.642788 1.76604i
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0.266044 0.223238i 0.266044 0.223238i
382382 0 0
383383 0.342020 0.939693i 0.342020 0.939693i −0.642788 0.766044i 0.722222π-0.722222\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
384384 0.500000 0.866025i 0.500000 0.866025i
385385 0 0
386386 0 0
387387 −0.342020 + 0.939693i −0.342020 + 0.939693i
388388 0 0
389389 1.43969 0.524005i 1.43969 0.524005i 0.500000 0.866025i 0.333333π-0.333333\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
390390 0 0
391391 0 0
392392 1.62760 + 1.93969i 1.62760 + 1.93969i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
398398 0 0
399399 0 0
400400 0 0
401401 −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 0.642788i 0.222222π-0.222222\pi
402402 0.524005 1.43969i 0.524005 1.43969i
403403 0 0
404404 1.00000 1.00000
405405 0 0
406406 −0.652704 −0.652704
407407 0 0
408408 0 0
409409 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
410410 0 0
411411 0 0
412412 −0.984808 0.173648i −0.984808 0.173648i
413413 0 0
414414 0.326352 0.118782i 0.326352 0.118782i
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
420420 0 0
421421 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
422422 0 0
423423 −0.984808 1.17365i −0.984808 1.17365i
424424 0 0
425425 0 0
426426 0 0
427427 1.20805 3.31908i 1.20805 3.31908i
428428 −1.85083 + 0.326352i −1.85083 + 0.326352i
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 −0.642788 + 0.766044i −0.642788 + 0.766044i
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0.0603074 + 0.342020i 0.0603074 + 0.342020i
437437 0 0
438438 0 0
439439 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
440440 0 0
441441 −1.26604 2.19285i −1.26604 2.19285i
442442 0 0
443443 0.524005 + 1.43969i 0.524005 + 1.43969i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
444444 0 0
445445 0 0
446446 1.17365 0.984808i 1.17365 0.984808i
447447 −0.118782 0.326352i −0.118782 0.326352i
448448 −0.642788 1.76604i −0.642788 1.76604i
449449 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 −0.939693 0.342020i −0.939693 0.342020i
455455 0 0
456456 0 0
457457 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
458458 0.347296i 0.347296i
459459 0 0
460460 0 0
461461 −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
462462 0 0
463463 −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i 0.722222π-0.722222\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
464464 0.326352 + 0.118782i 0.326352 + 0.118782i
465465 0 0
466466 0 0
467467 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 −1.43969 2.49362i −1.43969 2.49362i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
480480 0 0
481481 0 0
482482 1.85083 0.326352i 1.85083 0.326352i
483483 0.223238 0.613341i 0.223238 0.613341i
484484 −0.766044 0.642788i −0.766044 0.642788i
485485 0 0
486486 0.766044 0.642788i 0.766044 0.642788i
487487 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
488488 −1.20805 + 1.43969i −1.20805 + 1.43969i
489489 −0.939693 0.342020i −0.939693 0.342020i
490490 0 0
491491 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
492492 1.32683 0.766044i 1.32683 0.766044i
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 −1.50881 0.266044i −1.50881 0.266044i
499499 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
500500 0 0
501501 0.266044 + 0.223238i 0.266044 + 0.223238i
502502 0 0
503503 1.62760 0.939693i 1.62760 0.939693i 0.642788 0.766044i 0.277778π-0.277778\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
504504 0.326352 + 1.85083i 0.326352 + 1.85083i
505505 0 0
506506 0 0
507507 −0.866025 0.500000i −0.866025 0.500000i
508508 −0.118782 + 0.326352i −0.118782 + 0.326352i
509509 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 0 0
515515 0 0
516516 −0.173648 0.984808i −0.173648 0.984808i
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
522522 −0.300767 0.173648i −0.300767 0.173648i
523523 1.62760 0.939693i 1.62760 0.939693i 0.642788 0.766044i 0.277778π-0.277778\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
524524 0 0
525525 0 0
526526 −0.766044 + 0.642788i −0.766044 + 0.642788i
527527 0 0
528528 0 0
529529 −0.826352 + 0.300767i −0.826352 + 0.300767i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 −1.53209 −1.53209
535535 0 0
536536 0.266044 + 1.50881i 0.266044 + 1.50881i
537537 0 0
538538 −1.20805 + 1.43969i −1.20805 + 1.43969i
539539 0 0
540540 0 0
541541 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
542542 0 0
543543 1.20805 + 1.43969i 1.20805 + 1.43969i
544544 0 0
545545 0 0
546546 0 0
547547 1.50881 + 0.266044i 1.50881 + 0.266044i 0.866025 0.500000i 0.166667π-0.166667\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
548548 0 0
549549 1.43969 1.20805i 1.43969 1.20805i
550550 0 0
551551 0 0
552552 −0.223238 + 0.266044i −0.223238 + 0.266044i
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −0.642788 + 1.76604i −0.642788 + 1.76604i
563563 1.50881 0.266044i 1.50881 0.266044i 0.642788 0.766044i 0.277778π-0.277778\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
564564 1.43969 + 0.524005i 1.43969 + 0.524005i
565565 0 0
566566 0.347296 0.347296
567567 1.87939i 1.87939i
568568 0 0
569569 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i 0.111111π-0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
570570 0 0
571571 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
572572 0 0
573573 0 0
574574 0.500000 2.83564i 0.500000 2.83564i
575575 0 0
576576 0.173648 0.984808i 0.173648 0.984808i
577577 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
578578 0.342020 + 0.939693i 0.342020 + 0.939693i
579579 0 0
580580 0 0
581581 −2.20574 + 1.85083i −2.20574 + 1.85083i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.85083 0.326352i −1.85083 0.326352i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
588588 2.19285 + 1.26604i 2.19285 + 1.26604i
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0.266044 + 0.223238i 0.266044 + 0.223238i
597597 0 0
598598 0 0
599599 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
600600 0 0
601601 −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
602602 −1.62760 0.939693i −1.62760 0.939693i
603603 1.53209i 1.53209i
604604 0 0
605605 0 0
606606 0.939693 0.342020i 0.939693 0.342020i
607607 0.223238 + 0.266044i 0.223238 + 0.266044i 0.866025 0.500000i 0.166667π-0.166667\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
608608 0 0
609609 −0.613341 + 0.223238i −0.613341 + 0.223238i
610610 0 0
611611 0 0
612612 0 0
613613 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
614614 −0.0603074 + 0.342020i −0.0603074 + 0.342020i
615615 0 0
616616 0 0
617617 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
618618 −0.984808 + 0.173648i −0.984808 + 0.173648i
619619 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
620620 0 0
621621 0.266044 0.223238i 0.266044 0.223238i
622622 0 0
623623 −1.85083 + 2.20574i −1.85083 + 2.20574i
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 −1.62760 + 0.939693i −1.62760 + 0.939693i
643643 −0.118782 + 0.326352i −0.118782 + 0.326352i −0.984808 0.173648i 0.944444π-0.944444\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
644644 0.113341 + 0.642788i 0.113341 + 0.642788i
645645 0 0
646646 0 0
647647 0.347296i 0.347296i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
648648 −0.342020 + 0.939693i −0.342020 + 0.939693i
649649 0 0
650650 0 0
651651 0 0
652652 0.984808 0.173648i 0.984808 0.173648i
653653 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
654654 0.173648 + 0.300767i 0.173648 + 0.300767i
655655 0 0
656656 −0.766044 + 1.32683i −0.766044 + 1.32683i
657657 0 0
658658 2.49362 1.43969i 2.49362 1.43969i
659659 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
660660 0 0
661661 −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
662662 0 0
663663 0 0
664664 1.43969 0.524005i 1.43969 0.524005i
665665 0 0
666666 0 0
667667 −0.104455 0.0603074i −0.104455 0.0603074i
668668 −0.342020 0.0603074i −0.342020 0.0603074i
669669 0.766044 1.32683i 0.766044 1.32683i
670670 0 0
671671 0 0
672672 −1.20805 1.43969i −1.20805 1.43969i
673673 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
674674 0 0
675675 0 0
676676 1.00000 1.00000
677677 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
678678 0 0
679679 0 0
680680 0 0
681681 −1.00000 −1.00000
682682 0 0
683683 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
684684 0 0
685685 0 0
686686 2.70574 0.984808i 2.70574 0.984808i
687687 −0.118782 0.326352i −0.118782 0.326352i
688688 0.642788 + 0.766044i 0.642788 + 0.766044i
689689 0 0
690690 0 0
691691 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
692692 0 0
693693 0 0
694694 −0.500000 + 0.866025i −0.500000 + 0.866025i
695695 0 0
696696 0.347296 0.347296
697697 0 0
698698 1.50881 0.266044i 1.50881 0.266044i
699699 0 0
700700 0 0
701701 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0.642788 1.76604i 0.642788 1.76604i
708708 0 0
709709 −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
710710 0 0
711711 0 0
712712 1.32683 0.766044i 1.32683 0.766044i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
720720 0 0
721721 −0.939693 + 1.62760i −0.939693 + 1.62760i
722722 0.984808 + 0.173648i 0.984808 + 0.173648i
723723 1.62760 0.939693i 1.62760 0.939693i
724724 −1.76604 0.642788i −1.76604 0.642788i
725725 0 0
726726 −0.939693 0.342020i −0.939693 0.342020i
727727 1.20805 1.43969i 1.20805 1.43969i 0.342020 0.939693i 0.388889π-0.388889\pi
0.866025 0.500000i 0.166667π-0.166667\pi
728728 0 0
729729 0.500000 0.866025i 0.500000 0.866025i
730730 0 0
731731 0 0
732732 −0.642788 + 1.76604i −0.642788 + 1.76604i
733733 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
734734 1.87939 + 0.684040i 1.87939 + 0.684040i
735735 0 0
736736 0.0603074 0.342020i 0.0603074 0.342020i
737737 0 0
738738 0.984808 1.17365i 0.984808 1.17365i
739739 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
740740 0 0
741741 0 0
742742 0 0
743743 −0.984808 1.17365i −0.984808 1.17365i −0.984808 0.173648i 0.944444π-0.944444\pi
1.00000i 0.5π-0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 −1.50881 + 0.266044i −1.50881 + 0.266044i
748748 0 0
749749 −0.613341 + 3.47843i −0.613341 + 3.47843i
750750 0 0
751751 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
752752 −1.50881 + 0.266044i −1.50881 + 0.266044i
753753 0 0
754754 0 0
755755 0 0
756756 0.939693 + 1.62760i 0.939693 + 1.62760i
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
762762 0.347296i 0.347296i
763763 0.642788 + 0.113341i 0.642788 + 0.113341i
764764 0 0
765765 0 0
766766 0.500000 + 0.866025i 0.500000 + 0.866025i
767767 0 0
768768 0.342020 + 0.939693i 0.342020 + 0.939693i
769769 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i 0.333333π-0.333333\pi
0.939693 0.342020i 0.111111π-0.111111\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 −0.500000 0.866025i −0.500000 0.866025i
775775 0 0
776776 0 0
777777 0 0
778778 −0.524005 + 1.43969i −0.524005 + 1.43969i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −0.342020 0.0603074i −0.342020 0.0603074i
784784 −2.53209 −2.53209
785785 0 0
786786 0 0
787787 −1.96962 + 0.347296i −1.96962 + 0.347296i −0.984808 + 0.173648i 0.944444π0.944444\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
788788 0 0
789789 −0.500000 + 0.866025i −0.500000 + 0.866025i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
798798 0 0
799799 0 0
800800 0 0
801801 −1.43969 + 0.524005i −1.43969 + 0.524005i
802802 0.866025 + 0.500000i 0.866025 + 0.500000i
803803 0 0
804804 0.766044 + 1.32683i 0.766044 + 1.32683i
805805 0 0
806806 0 0
807807 −0.642788 + 1.76604i −0.642788 + 1.76604i
808808 −0.642788 + 0.766044i −0.642788 + 0.766044i
809809 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0.419550 0.500000i 0.419550 0.500000i
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −0.866025 0.500000i −0.866025 0.500000i
819819 0 0
820820 0 0
821821 −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i 0.666667π-0.666667\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
822822 0 0
823823 1.20805 + 1.43969i 1.20805 + 1.43969i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
824824 0.766044 0.642788i 0.766044 0.642788i
825825 0 0
826826 0 0
827827 0.300767 0.173648i 0.300767 0.173648i −0.342020 0.939693i 0.611111π-0.611111\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
828828 −0.118782 + 0.326352i −0.118782 + 0.326352i
829829 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i 0.777778π-0.777778\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
840840 0 0
841841 −0.152704 0.866025i −0.152704 0.866025i
842842 −0.342020 + 0.939693i −0.342020 + 0.939693i
843843 1.87939i 1.87939i
844844 0 0
845845 0 0
846846 1.53209 1.53209
847847 −1.62760 + 0.939693i −1.62760 + 0.939693i
848848 0 0
849849 0.326352 0.118782i 0.326352 0.118782i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
854854 1.76604 + 3.05888i 1.76604 + 3.05888i
855855 0 0
856856 0.939693 1.62760i 0.939693 1.62760i
857857 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
858858 0 0
859859 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
860860 0 0
861861 −0.500000 2.83564i −0.500000 2.83564i
862862 0 0
863863 1.87939i 1.87939i 0.342020 + 0.939693i 0.388889π0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
864864 −0.173648 0.984808i −0.173648 0.984808i
865865 0 0
866866 0 0
867867 0.642788 + 0.766044i 0.642788 + 0.766044i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −0.300767 0.173648i −0.300767 0.173648i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
878878 0 0
879879 0 0
880880 0 0
881881 −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
882882 2.49362 + 0.439693i 2.49362 + 0.439693i
883883 1.32683 + 0.766044i 1.32683 + 0.766044i 0.984808 0.173648i 0.0555556π-0.0555556\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
884884 0 0
885885 0 0
886886 −1.43969 0.524005i −1.43969 0.524005i
887887 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i 0.388889π-0.388889\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
888888 0 0
889889 0.500000 + 0.419550i 0.500000 + 0.419550i
890890 0 0
891891 0 0
892892 1.53209i 1.53209i
893893 0 0
894894 0.326352 + 0.118782i 0.326352 + 0.118782i
895895 0 0
896896 1.76604 + 0.642788i 1.76604 + 0.642788i
897897 0 0
898898 0.984808 + 0.173648i 0.984808 + 0.173648i
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 −1.85083 0.326352i −1.85083 0.326352i
904904 0 0
905905 0 0
906906 0 0
907907 0.642788 + 1.76604i 0.642788 + 1.76604i 0.642788 + 0.766044i 0.277778π0.277778\pi
1.00000i 0.5π0.5\pi
908908 0.866025 0.500000i 0.866025 0.500000i
909909 0.766044 0.642788i 0.766044 0.642788i
910910 0 0
911911 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0.266044 + 0.223238i 0.266044 + 0.223238i
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0.0603074 + 0.342020i 0.0603074 + 0.342020i
922922 1.85083 0.326352i 1.85083 0.326352i
923923 0 0
924924 0 0
925925 0 0
926926 0.500000 0.866025i 0.500000 0.866025i
927927 −0.866025 + 0.500000i −0.866025 + 0.500000i
928928 −0.300767 + 0.173648i −0.300767 + 0.173648i
929929 −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 −0.939693 + 0.342020i −0.939693 + 0.342020i
935935 0 0
936936 0 0
937937 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
938938 2.83564 + 0.500000i 2.83564 + 0.500000i
939939 0 0
940940 0 0
941941 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
942942 0 0
943943 0.342020 0.407604i 0.342020 0.407604i
944944 0 0
945945 0 0
946946 0 0
947947 −0.984808 + 1.17365i −0.984808 + 1.17365i 1.00000i 0.5π0.5\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.939693 + 0.342020i −0.939693 + 0.342020i
962962 0 0
963963 −1.20805 + 1.43969i −1.20805 + 1.43969i
964964 −0.939693 + 1.62760i −0.939693 + 1.62760i
965965 0 0
966966 0.326352 + 0.565258i 0.326352 + 0.565258i
967967 0.118782 0.326352i 0.118782 0.326352i −0.866025 0.500000i 0.833333π-0.833333\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
968968 0.984808 0.173648i 0.984808 0.173648i
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 1.00000i 1.00000i
973973 0 0
974974 −1.53209 1.28558i −1.53209 1.28558i
975975 0 0
976976 −0.326352 1.85083i −0.326352 1.85083i
977977 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
978978 0.866025 0.500000i 0.866025 0.500000i
979979 0 0
980980 0 0
981981 0.266044 + 0.223238i 0.266044 + 0.223238i
982982 0 0
983983 −0.642788 1.76604i −0.642788 1.76604i −0.642788 0.766044i 0.722222π-0.722222\pi
1.00000i 0.5π-0.5\pi
984984 −0.266044 + 1.50881i −0.266044 + 1.50881i
985985 0 0
986986 0 0
987987 1.85083 2.20574i 1.85083 2.20574i
988988 0 0
989989 −0.173648 0.300767i −0.173648 0.300767i
990990 0 0
991991 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 1.17365 0.984808i 1.17365 0.984808i
997997 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.1.bj.a.151.1 12
4.3 odd 2 inner 2700.1.bj.a.151.2 12
5.2 odd 4 540.1.bf.b.259.1 yes 6
5.3 odd 4 540.1.bf.a.259.1 6
5.4 even 2 inner 2700.1.bj.a.151.2 12
15.2 even 4 1620.1.bf.b.1099.1 6
15.8 even 4 1620.1.bf.a.1099.1 6
20.3 even 4 540.1.bf.b.259.1 yes 6
20.7 even 4 540.1.bf.a.259.1 6
20.19 odd 2 CM 2700.1.bj.a.151.1 12
27.22 even 9 inner 2700.1.bj.a.751.2 12
60.23 odd 4 1620.1.bf.b.1099.1 6
60.47 odd 4 1620.1.bf.a.1099.1 6
108.103 odd 18 inner 2700.1.bj.a.751.1 12
135.22 odd 36 540.1.bf.b.319.1 yes 6
135.32 even 36 1620.1.bf.b.199.1 6
135.49 even 18 inner 2700.1.bj.a.751.1 12
135.103 odd 36 540.1.bf.a.319.1 yes 6
135.113 even 36 1620.1.bf.a.199.1 6
540.103 even 36 540.1.bf.b.319.1 yes 6
540.167 odd 36 1620.1.bf.a.199.1 6
540.319 odd 18 inner 2700.1.bj.a.751.2 12
540.383 odd 36 1620.1.bf.b.199.1 6
540.427 even 36 540.1.bf.a.319.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
540.1.bf.a.259.1 6 5.3 odd 4
540.1.bf.a.259.1 6 20.7 even 4
540.1.bf.a.319.1 yes 6 135.103 odd 36
540.1.bf.a.319.1 yes 6 540.427 even 36
540.1.bf.b.259.1 yes 6 5.2 odd 4
540.1.bf.b.259.1 yes 6 20.3 even 4
540.1.bf.b.319.1 yes 6 135.22 odd 36
540.1.bf.b.319.1 yes 6 540.103 even 36
1620.1.bf.a.199.1 6 135.113 even 36
1620.1.bf.a.199.1 6 540.167 odd 36
1620.1.bf.a.1099.1 6 15.8 even 4
1620.1.bf.a.1099.1 6 60.47 odd 4
1620.1.bf.b.199.1 6 135.32 even 36
1620.1.bf.b.199.1 6 540.383 odd 36
1620.1.bf.b.1099.1 6 15.2 even 4
1620.1.bf.b.1099.1 6 60.23 odd 4
2700.1.bj.a.151.1 12 1.1 even 1 trivial
2700.1.bj.a.151.1 12 20.19 odd 2 CM
2700.1.bj.a.151.2 12 4.3 odd 2 inner
2700.1.bj.a.151.2 12 5.4 even 2 inner
2700.1.bj.a.751.1 12 108.103 odd 18 inner
2700.1.bj.a.751.1 12 135.49 even 18 inner
2700.1.bj.a.751.2 12 27.22 even 9 inner
2700.1.bj.a.751.2 12 540.319 odd 18 inner